
Exercises for the Proseminar Stochastic Processes

Winter Semester 2018-19, PS250069

Exercise 1 Compute explicitly the moment-generating and characteristic functions of the
Gaussian distribution N (µ, σ2) and the Poisson distribution Poisλ.

Exercise 2 Let X, Y be independent random variables. Use characteristic functions (or
the moment-generating function) to compute the distribution of X + Y if

• X ' N (µ1, σ
2
1) and Y ' N (µ2, σ

2
2);

• X ' Poisλ1 and Y ' Poisλ2.

Exercise 3 The referee at a baseball game has to do a toss at the beginning of the game
to decide which team is going to bowl first. However, he cannot be sure that he has a fair
coin. What can he do with this potentially unfair coin to produce a fair decision? What
is the expected number of coin tosses to come to this decision.

Exercise 4 Consider random variables Xλ ' Poisλ. Using characteristic functions, show
that Xλ−λ√

λ
→d Y where Y is a standard normally distributed random variable.

Exercise 5 (Example of how Kolmogorov’s Extension Theorem works) Let Ω =
{(ωn)n≥0 : ωn ∈ {−1, 1}} be the probability space of a stochastic process of coin-flips with
a fair coin. Let [e0 . . . ek−1] = {(ωn)n≥0 ∈ Ω : ωn = en, 0 ≤ n < k} be a k-cylinder. Since
the coin is fair, P([e0 . . . ek−1]) = (1

2
)k for every choice of e0, . . . , ek−1 ∈ {−1, 1}.

Let

Hk,m =
⋃{

[e0, . . . , ek−1] : |1
k

#{0 ≤ i < k : ei = −1} − 1

2
| ≤ 1

m

}
.

1. Let B be the σ-algebra generated by all cylinder sets. Show that

L = {(ωn)n≥0 ∈ Ω : lim
k→∞

1

k
#{0 ≤ i < k : ωi = −1} =

1

2
}

belongs to B.

2. Show that P(L) = 1.

Solution to Exercise 5: 1. Clearly Hk,m is a finite union of cylinders, and it belongs
to F .

L = {(ωn)n≥0 : ∀m ∈ N ∃k0 ∈ N ∀k ≥ k0 |
1

k
#{0 ≤ i < k : ωi = −1} − 1

2
| < 1

m
}

=
⋂
m

⋃
k0∈N

⋂
k≥k0

Hk,m

is produced by countable intersections and countable unons, and therefore L ∈ F .
2. Using Sk = #{0 ≤ i < k : ωi = −1} and the CLT (with σ2 = 1

4
) we have

P(Hc
k,m) = P(|1

k
Sk −

1

2
| ≥ 1

m
) = 2P(

1√
k

(Sk −
k

2
) ≥
√
k

m
)
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By the Central Limit Theorem, this tends to 2
∫∞√

k
m

1√
2πσ

e−
u2

2σ2 du as k → ∞, so there is

some C > 0 such that

P(Hc
k,m) ≤ 2C

∫ ∞
√
k
m

1√
2πσ

e−
u2

2σ2 du ≤ 2C
m√
2πk

∫ ∞
√
k
m

u

σ
e−

u2

2σ2 du

=
4C

m
√

2πk
[−σe−

u2

2σ2 ]∞√k
m

=
4mCσ√

2πk
e−

k
2m2σ2 .

Set Ĥk0,m =
⋂
k≥k0 Hk,m. Then

P(Ĥk0,m) = P(∩k≥k0Hk,m) = P(Ω \ ∪k≥k0Hc
k,m)

≥ 1−
∑
k≥k0

P(Hc
k,m) ≥ 1− 4mCσ√

2π

∑
k≥k0

1√
k
e−

k
2σ2m2 ,

and this tends to 1 as k0 → ∞. Since Ĥk0,m is increasing in k0 and
⋃
k0∈N Ĥk0,m is

decreasing in m, we have

P(L) = P(∩m ∪k0∈N Ĥk0,m) = lim
m→∞

lim
k0→∞

P(Ĥk0,m) = 1.

Exercise 6 Consider the difference equation

yn+2 + ayn+1 + byn = c, n ∈ N, yn ∈ R, a, b, c ∈ R.

1. Find the full solution if a = −2, b = −3, c = 0 and initial condition y0 = y1 = 1.

2. Find the full solution if a = −2, b = −3, c = 2 and initial condition y0 = y1 = 1.

3. Find the full solution if a = −2, b = 1, c = 0 and initial condition y0 = 1, y1 = 2.

Exercise 7 Let A = (aij) be an n× n probability matrix, i.e., aij ≥ 0 and the row-sums∑
j aij = 1. Show that

1. Ak is a probability matrix for every k ∈ N;

2. 1 is an eigenvalue of A;

3. there are no eigenvalues λ with |λ| > 1;

4. the left and right eigenvectors with eigenvalue 1 can be chosen such that vj ≥ 0 for
all j = 1, . . . , n.

Exercise 8 Consider the following transition graph, where from each node, each passage
to a neighbouring node is equally likely.

1. Give the transition probability matrix associated to this graph.

2. Starting from node S, what is the probability of returning to S after three, resp. four
steps?
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3. A marmot starts in S and walks the graph until she reaches state E. What is the
probability that she returns to S before reaching E?

4. What is the expected number of steps for the marmot to reach the end?

Exercise 9 Lisa and Bart play a game with one die and six marbles. They start with
three marbles each, and roll the die. If the number of spots is 1 or 2, then Bart loses two
marbles to Lisa. If the number of spots is 3,4,5 or 6, then Lisa loses one marble to Bart.
They continue until one of them has all the marbles, who then of course is the winner.

1. What is the probability that Lisa wins?

2. What is the probability that Lisa wins after first getting down to one marble?

Exercise 10 Given is the transition matrix

P = (pij)
4
i,j=1 =


2
3

0 1
3

0
0 0 0 1
1 0 0 0
0 1 0 0

 .

1. What are the communication classes?

2. Compute the expected return time µk for each state.

3. For which i, j holds: limn→∞ p
(n)
i,j → 1/µj?

Exercise 11 Given a Markov chain on a state space E, let P = (pij)i,j∈E denote a

transition matrix, and P n = (p
(n)
ij )i,j∈E its n-th power. Show the following:

1. If C is a communicating class of a finite Markov chain with pii > 0 for some i ∈ C,
show that there is n ∈ N such that p

(n)
ij > 0 for all i, j ∈ C.

2. If C is a closed communicating class, then (pij)i,j∈C is a probability matrix.

3. Every finite Markov chain has at least one closed communicating class.

4. Find an example of a Markov chain without closed communicating class.

Exercise 12 A salmon has to jump up three waterfalls to reach the place where she
spawns. Every attempt to jump a river succeeds with probability 4

5
, except that jumping

the first waterfall will always succeed, but there is a chance of 1
5

that she inadvertently
falls down the previous watervall. But once up the river she spawns and dies (nature is
hard).
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1. Give a Markov chain description of this story. What are the communication classes?
Which are closed?

2. What is the expected time, in number of waterfalls crossed (up or down), that the
whole journey takes.

3. Supposing that every succeeded jump causes a 10gr weight loss. What is the expected
weight loss at the end of the journey?

4. Same as the previous, but now the middle watervall is extra hard and causes a 30gr
weight loss.

Exercise 13 Let P =

(
1
2

1
2

1 0

)
be the transition matrix of a Markov chain on state space

E = {1, 2}. Compute the expected return time µi = E(Ti) for i = 1, 2. What is the
distribution of Ti?

Exercise 14 A bag contains N red and green balls. We draw balls, and whichever colour
we find, we put the ball back together with another ball of the same colour. Let Rn be the
number of red balls in the bag after the n-th drawing.

1. Show that ( Rn
N+n

)n≥1 is a martingale.

2. Use the Optional Stopping Theorem to compute the expectation E( 1
T+N

) if T ≥ 0 is
the number of drawings when the first green ball is drawn.

Exercise 15 A chess-king moves on a 3×3 chess-board, taking each of its possible moves
(a king can move to each of the neighbouring squares, horizontally, vertically or diagonally)
with equal probability. What are the limit visit frequencies to each of the squares?

You can try for the other chess-pieces too.

Exercise 16 Consider a Markov chain and recall the notation

p
(n)
ij = P(Xn = j,X0 = i), f

(n)
ij = P(Xn = j,X0 = i,Xk 6= i, j for 0 < k < n}

Also recall that i is a recurrent state if
∑

n≥1 f
(n)
ii = 1 and a positive recurrent state if∑

n≥1 nf
(n)
ii <∞.

1. Show that
∑

n≥1 f
(n)
ii = 1 is equivalent to

∑
n≥1 p

(n)
ii =∞.

2. Show that all states in a communication class are simulatenously (null/positive re-
current or transient).

3. Show that if the Markov chain is irreducible and finite, then every state is positively
recurrent.
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Solution to Exercise 16: Part 1.
∑

n≥1 f
(n)
ii = P(Ti <∞|X0 = i) for the stopping

time Ti = min{n : Xn = i}. If
∑

n≥1 f
(n)
ii = 1, then by the strong Markov property, also

P(T ki < ∞) = 1 for all k ≥ 1, for the successive return times T ki = min{n > T k−1i :

Xn = i}, T 1
i = Ti. Therefore P(Xn = i infinitely often) = 1, and hence

∑
n≥1 p

(n)
ii = ∞.

Conversely, if
∑

n≥1 f
(n)
ii = γ < 1, then by the strong Markov property P(T ki <∞|TK−1i <

∞) = γ, and hence P(Xn = i at least k times) = γk, so
∑

n≥1 p
(n)
ii ≥ k occurs with prob-

ability γk. In the limit P(Xn = i infinitely often) = P(
∑

n≥1 p
(n)
ii ≥ ∞) = 0.

Part 2. If i, j belong to the same communication class, then there is M,N ∈ N such that
p
(M)
ij , p

(N)
ji > 0. Since p

(n+M+N)
ii ≥ pij(M)p

(n)
jj p

(N)
ji , we have that

∑
n p

(n)
ii and

∑
n p

(n)
jj con-

verge/diverge simulateneously. So both states are transient or both states are recurrent.
The argument for null-recurrence is a bit more involved. Assume that state i is positive

recurrent, so the expected return time µi := E(Ti|X0 = i) < ∞. Recall from the lecture
that

γj := E(#{0 ≤ k < Ti : Xk = j}|X0 = i}
satisfies γP = γ, γi = 1 and

∑
j γ

j = µi < ∞. Therefore π = γ/µi is a normalized
positive left-eigenvector of the transtion matrix P . Moreover, since the MC is irreducible,

for each j there is a Nj minimal such that p
(Nj)
ij > 0, so that γj ≥ π

(Nj)
ij > 0, and therefore

also πj > 0 for each j. Also from the lecture: µj = E(Tj : X0 = j) = 1/πj <∞, so state
j is positive recurrent. This showsthat if one state is positive recurrent, then they all are,
and hence if one state is null-recurrent, they all are.

Part 3. Because the MC is irreducible, we can find Nj such that p
(Nj)
ji > 0 and since the

MC is finite, N := maxj Nj < ∞ and p = minj p
(Nj)
ji > 0. This means that f

(n)
ii ≤ 1 − p

for N ≤ n < 2N . By induction f
(kN)
ii ≤ (1− p)k for kN ≤ n < kN +N , so

∑
(n) fii(N) ≤

N
∑

k(1− p)k <∞. Similarly
∑

(n) nfii(n) ≤ N
∑

k k(1− p)k <∞. Hence i is a positive
recurrent.

Exercise 17 Given a finite irreducible Markov chain, show that all states are not just
recurrent, but positive recurrent, i.e., µi = E(Ti) < ∞ for the return time Ti to state i,
and any i ∈ E. Show that Ti has finite variance as well.

Exercise 18 Let (Xn)n≥0 be a random walk on the non-negative integers, with p0,1 = 1
and pn,n−1 = p, pn,n+1 = 1 − p for n ≥ 1. For which p is this random walk posi-
tive recurrent/null-recurrent/transient? What is the stationary distribution is the Markov
chain is positive recurrent? Is there a stationary distribution if the Markov chain is null-
recurrent?

Exercise 19 Let G be an infinite rooted binary graph, i.e., there is a single root R and
every other vertex has exactly three neighbours (so two “below” it), and there are no loops.
Let (Xn)n≥0 be a random walk on G.

1. Suppose, in one step you can only go to a neighbouring vertex, and from every
vertex there is equal probability to jump to any of its neighbours. Is this random
walk positive recurrent/null-recurrent/transient?

2. Same question, but now the probability to jump to the neighbour closer to the root
is 1

2
(and from the root you always jump to its single neighbour).
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Exercise 20 Let P be the transition matrix of a finite state Markov chain, and assume
that P is irreducible, but periodic with period d ≥ 2. Show that state space E decom-
poses into d communication classes for the d-th iterate of the process, i.e., for the process
(Xdn)n≥0. Show that e2πic/d is an eigenvalue of P for all integers 0 ≤ c < d.

Exercise 21 We are given an irreducible aperiodic Markov chain with finite state space
E, transition matrix P and stationary distribution π.

1. Show that the first return process to a subset E ′ is also a Markov chain; what is the
stationary distribution of this Markov chain?

2. If there are states i, i′ ∈ E such that pij = pi′j and pji = pji′ for all j ∈ E, show
that we find a new Markov chain by merging states i and i′; what is the stationary
distribution of this Markov chain?

Exercise 22 Let (Xn)n≥0 be a random walk on Z, with transition probabilities pn,n−2 = 1
4
,

pn,n−1 = 1
4

and pn,n+1 = 1
2
. Is this random walk positive recurrent/null-recurrent/transient?

Exercise 23 Let (Xn)n≥0 be a symmetric random walk on Z with X0 = 0. Let u2n =
P(X2n = 0) and f2n = P(min{k ≥ 1 : X2k = 0} = n).

1. Show that f2n = 1
2n−1u2n.

2. Show that u2n =
∑n

k=1 f2ku2(n−k).

3. Show that
∑n

k=0 u2ku2(n−k) = 1.

Exercise 24 The Taqqus of the Planet Koozebane1 each have K ∈ N offspring before
they evaporate. For each Taqqu, K is independent of everything else and has distribution
P(K = 0) = P(K = 1) = 1

4
, P(K = 2) = 1

2
.

1. Compute the generating function and the moment generating function of K.

2. Assume that Xn is the total population of Taqqus, starting with X0 = 1. Compute
the probability that the Taqqus go extinct.

3. Show that, provided the Taqqus survive for n steps, that the probability that they die
out decreases to zero, superexponentialy in n.

Exercise 25 Let Nt ' Pois(λt). Show that P(Nt+h = 0) = (1−λh−o(λh))P(Nt = 0). If
we write p(t) = P(Nt = 0), show that p(t) satisfies the differential equation p′(t) = λp(t).
Solve this equation.

Exercise 26 Telephone calls arrive at the station according to a Poisson process with an
hourly rate λ.

1. The phone equipment is not entirely functioning: a phonecall is not properrly con-
nected with probability q. Show that the number of properly received calls has dis-
tribtuion Pois(λ(1− q)t) for time unit an hour.

2. A second stream of phone calls comes in with hourly rate µ. Find the distribution of
total number of incoming calls. After putting down the phone, how much time does
the operator have to wait on average for the next call?

1https://www.youtube.com/watch?v=vbXzpoH6m2c

6


