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Cut and project tilings

Definition (C & P tiling)
A C & P tiling is the projection onto a d-dim. subspace E C R”,
called the slope, of the d-dim. facets of Z" included in E + [0, 1]".

example

Sturmian words

Billiard words

Discrete planes
Ammann-Beenker tilings
Penrose tilings
Icosahedral tilings
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Examples

A rhombille tiling in Saint-Etienne de Marmoutier (Alsace).
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Examples

Michael Baake's Ammann-Beenker tiled floor in Tubingen.
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Examples

My Penrose wooden floor in Paris.




Main question

Definition (Tiling space)
A tiling space is a set of tilings invariant by translation and closed.
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Main question

Definition (Tiling space)
A tiling space is a set of tilings defined by forbidden patterns.

Example

The hull of a C & P tiling is a tiling space.
It is (typically) invariant by shifting the slope, even infinitesimally.

Definition (Finite type)
A tiling space of finite type is defined by finitely many patterns.

Main question (motivated by quasicrystal stabilization)
Which C & P tilings have a hull of finite type?
» How to characterize a slope by patterns?

» How to enforce planarity by patterns?
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Studying patterns

Definition (Window)
The window W of a C & P tiling of slope E C R" is the image of
[0,1]" by the orthogonal projection 7’ onto E*:

W = ([0, 1]").

Proposition
To any pointed pattern P corresponds a subregion R of the window
in which project the vertices which point this pattern in the tiling:

R:= ﬂ (WfTr')?).

X vertex of P
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Examples
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Codimension 1

(Levitov, 1988)

Aperiodic codim. 1 C & P tilings do not have hull of finite type.

Theorem
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W avay
gE==2

Shifting a slope yields “isolated flips” that can be “decorrelated”.
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Higher codimensions

Theorem (De Bruijn, 1981)
Penrose tilings are 5 — 2 C & P tilings whose hull has finite type.
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Higher codimensions

Theorem (De Bruijn, 1981)
Penrose tilings are 5 — 2 C & P tilings whose hull has finite type.
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Higher codimensions

Theorem (De Bruijn, 1981)
Penrose tilings are 5 — 2 C & P tilings whose hull has finite type.
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Shifting the slope yields “lines of flips” that cannot be decorrelated.
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Subperiods

These lines of flips are directed by “hidden periodicities”:
Definition (Subperiod)
A subperiod of a d-plane E is a vector with d + 1 integer entries.
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Subperiods

These lines of flips are directed by “hidden periodicities”
Definition (Subperiod)
A subperiod of a d-plane E is a vector with d + 1 integer entries.
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Subperiods
These lines of flips are directed by “hidden periodicities”:
Definition (Subperiod)
A subperiod of a d-plane E is a vector with d + 1 integer entries.
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Subperiods

These lines of flips are directed by “hidden periodicities”:
Definition (Subperiod)
A subperiod of a d-plane E is a vector with d + 1 integer entries.

Proposition (Subperiods and expansivity)

If a C & P tiling has subperiods for any choice of d + 1 entries,
then these subperiods give the non-expansive directions of its hull.
Otherwise, there is no expansive direction.
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A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic n — d C & P tiling have a hull of finite type iff
1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

10/10



A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic n — d C & P tiling have a hull of finite type iff
1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

» The first conditions is necessary (Levitov, 1988)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic n — d C & P tiling have a hull of finite type iff
1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

» The first conditions is necessary (Levitov, 1988)
» The second condition is necessary (Bédaride-F., 2015)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic n — d C & P tiling have a hull of finite type iff
1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

» The first conditions is necessary (Levitov, 1988)
» The second condition is necessary (Bédaride-F., 2015)
» It holds for 4 — 2 t|||ngs (up to thickness issues) (Bédaride-F., 2017)

10/10



A conjecture

Conjecture (Bédaride-Fernique, ~ 2012)
An aperiodic n — d C & P tiling have a hull of finite type iff
1. it has subperiods for any choice of entries;

2. these subperiods characterize its slope.

» The first conditions is necessary (Levitov, 1988)
» The second condition is necessary (Bédaride-F., 2015)
» It holds for 4 — 2 tilings (up o thickness issues) ~ (Bédaride-F., 2017)
» It holds if planarity is assumed (Bédaride-F., 2020)
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Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods.
Patterns of given size are preserved by suitably modifying the slope.
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Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods.
Patterns of given size are preserved by suitably modifying the slope.
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Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods.
Patterns of given size are preserved by suitably modifying the slope.
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Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods.
Patterns of given size are preserved by suitably modifying the slope.
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Ammann-Beenker

Ammann-Beenker tilings are not characterized by their subperiods.
Patterns of given size are preserved by suitably modifying the slope.




