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Joint work with Alexey Garber and Neil Mañibo
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Substitution tiling in dimension d = 1:

a

b

a ab

b ba a a

I substitution matrix

(
2 3
1 2

)
,

I inflation factor λ = 2 +
√

3,

I minimal polynomial x2 − 4x + 1.



In dimension d = 2:
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I substitution matrix

0 0 1
1 1 0
0 1 1

,

I inflation factor λ = 1.3247 . . . (the plastic number),

I minimal polynomial x3 − x − 1.



In dimension d = 3:

I substitution matrix


0 0 1 0
3 2 0 1
2 1 2 0
6 4 2 1

,

I inflation factor λ = 1
2(
√

5 + 1) (the golden mean),

I minimal polynomial x2 − x − 1.



Since λd is an eigenvalue of an integer matrix, the inflation factor
λ is always an algebraic integer.

Always?

What if there are infinitely many prototiles?

In most examples with infinitely many prototiles studied so far
(Ferenczi, Sadun, Frank-Sadun, Smilansky-Solomon...):

I tiles of length 1, infinitely many labels, or

I no proper inflation factor
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Mañibo-Rust-Walton (preprint 2022): conditions for unique
ergodicity of the dynamical systems arising from substitutions in
dimension d = 1 for infinitely many prototiles with distinct lengths.

Their example: Prototiles 0, 1, 2, 3, . . . and ∞.

0 7→ 0 0 0 1

i 7→ 0 i−1 i+1

∞ 7→ 0∞∞

0 010 10000 8 80 8 8

The tiles have indeed well-defined (distinct) lengths `i :

`i = 1 +
1√
2

(
1− 1√

2

)i
,

and a proper inflation factor: λ = 3 + 1√
2
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0 0 21000 1000 10 000

Their substitution ”matrix”:
3 2 1 1 1 · · ·
1 0 1 0 0 · · ·
0 1 0 1 0

0 0 1 0 1
. . .

...
. . .

. . .
. . .

. . .



When we saw this example we tried to find more.

But: unlike in the finite case one cannot just turn any ”matrix”
into a proper substitution
(negative lengths, lengths →∞, all tile frequencies 0, ...)
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0 0 21 0 31000 1000 100 00

There is also no simple analogue of Perron-Frobenius.

And in order to establish unique ergodicity they (Neil-Dan-Jamie)
need to work a lot:

I The alphabet {0, 1, 2, . . . , } ∪ {∞} needs to be compact,

I the symbolic substitution needs to be continuous,

I and primitive,

I but what means primitive here?

However, all this can be solved.
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In an earlier paper on infinite alphabets they (Neil-Dan-Jamie)
asked whether there are substitutions with transcendental
(that is, not algebraic) inflation factor.

Theorem (F-Garber-Mañibo 2022+)

For any λ > 2 there is a primitive substitution with infinitely many
prototiles having λ as inflation factor.

Corollary

There are a lot of substitution tilings with transcendental inflation
factor.
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Proof: (idea, simplified) Generalize the example above:

Let a = (ai )i = a0, a1, a2, . . . with ai ∈ {1, 2, . . . ,N} for some
N ∈ Z+.

Let A =


a0 1 + a1 a2 a3 a4 · · ·
1 0 1 0 0 · · ·
0 1 0 1 0

0 0 1 0 1
. . .

...
. . .

. . .
. . .

. . .



For instance, a0 = 3 and ai = 1 for i ≥ 1 is the example above.

%a =


0 7→ 0a0 1
i 7→ 0ai i−1 i+1
· · · · · ·
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In order to show that this defines nice substitution tilings (”good”
tile lengths and frequencies etc) we apply Mañibo-Rust-Walton:

We need to turn the set {0, 1, 2, . . .} (corr. to the prototiles) into
a compact alphabet A. (Amazingly sophisticated)

...and show that

I The substitution %a is a continuous map %a : A → A+,

I %a is primitive,

I %a is recognizable,

I the substitution operator (roughly, the ”matrix”) is
quasicompact

0 0 21000 1000 10 000
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It remains to realize all inflation factors λ > 2.

Ansatz:
Let (ai )i be fixed, and let µ ∈ (0, 12 ] be the unique number with

1

µ
=
∞∑
i=0

aiµ
i

Claim:
λ = µ+ 1

µ is an eigenvalue with eigenvector v = (1, µ, µ2, . . .)T .

Av = λv.

Row by row:

I 1st row: µ+
∑∞

i=0 aiµ
i = µ+ 1

µ = λ · 1. 3

I ith row: µi−2 + µi = (µ−1 + µ)µi−1 = λµi−1. 3
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It follows that λ is the inflation factor (by some infinite equivalent of

Perron-Frobenius: eigenvector in the positive cone), and v (normalized) is
the vector of tile frequencies.

It remains to show that we get all values λ > 2 in this way.

I First, we don’t. We need to allow ai = 0.

I But to keep it simple, let us assume ai 6= 0.

I Then we get all values λ > 5
2 .

Now we fix µ ∈ (0, 12 ]. We have to find (ai )i such that

1

µ
=
∞∑
i=0

aiµ
i
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Now fix µ ∈ (0, 12 ]. We have to find (ai )i such that

1

µ
=
∞∑
i=0

aiµ
i

I All ai = 1: 1
µ = 1

1−µ , hence µ = 1
2 , λ = 5

2 .

I All ai = 2: 1
µ = 2

1−µ , hence µ = 1
3 , λ = 10

3 .

So, if 1
3 < µ < 1

2 , start with all ai = 1.
Then increase a0, a1, a2, . . . in a greedy way.

I It is clear that we get infinitely many µ in this way.

I Showing that we get all µ ∈ [13 ,
1
2 ] requires more effort.

That’s it!
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This result is a proof of existence. Is there a concrete example?

Yes! Let

a = 211212211221211212212112211212211221211221121221 · · ·

be the Thue-Morse sequence (with 1s and 2s).

Plugging it into %a yields a transcendental inflation factor
λ = µ+ 1

µ which we can compute (approximately).

Why ”transcendental”?



This result is a proof of existence. Is there a concrete example?

Yes! Let

a = 211212211221211212212112211212211221211221121221 · · ·

be the Thue-Morse sequence (with 1s and 2s).

Plugging it into %a yields a transcendental inflation factor
λ = µ+ 1

µ which we can compute (approximately).

Why ”transcendental”?



This result is a proof of existence. Is there a concrete example?

Yes! Let

a = 211212211221211212212112211212211221211221121221 · · ·

be the Thue-Morse sequence (with 1s and 2s).

Plugging it into %a yields a transcendental inflation factor
λ = µ+ 1

µ which we can compute (approximately).

Why ”transcendental”?



Consider the classical Thue–Morse sequence tn := (−1)s(n), where
s(n) is the number of ones in the binary expansion of n.

1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1,−1, 1,−1, 1, 1,−1, 1, . . .

Theorem (Mahler 1929)

I Consider the generating function T (z) :=
∑

n>0 tnz
n.

I Let α 6= 0 be an algebraic number with |α| < 1.

Then the number T (α) is transcendental.

The generating function of the 1-2-Thue-Morse sequence is

A(z) =
∞∑
n=0

anz
n =

3

2
· 1

1− z
+

1

2
T (z)
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n=0

anz
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2
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1− z
+

1

2
T (z)

Assume that the µ defined by plugging in the 1-2-Thue-Morse
sequence a into %a is algebraic.

1

µ
= A(µ) =

3

2
· 1

1− µ
+

1

2
T (µ).

Now...

I from Mahler’s result follows: T (µ) is transcendental,

I but T (µ) = 2
µ −

3
1−µ , hence T (µ) is algebraic.

If λ = µ+ 1
µ is algebraic, then µ is algebraic as well.

Since µ2 − λµ + 1 = 0, hence µ = 1
2

(
λ±
√
λ2 − 4

)
. That’s it!
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I Adding to the 1-2-Thue-Morse sequence a some periodic
sequence b yields another transcendental inflation factor.

I Our paper is still unfinished.

I Mañibo-Rust-Walton: two preprints on arXiv.org

(”compact alphabets”)

Thank you!
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