Tilings with transcendental inflation factor

Dirk Frettlöh

Joint work with Alexey Garber and Neil Mañibo

Technische Fakultät
Universität Bielefeld
$36^{\text {th }}$ Summer Topology Conference
Wien, 20 July 2022

Substitution tiling in dimension $d=1$:

b
a
b
a
b
a

- substitution matrix $\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$,
- inflation factor $\lambda=2+\sqrt{3}$,
- minimal polynomial $x^{2}-4 x+1$.

In dimension $d=2$:

- substitution matrix $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$,
- inflation factor $\lambda=1.3247 \ldots$ (the plastic number),
- minimal polynomial $x^{3}-x-1$.

In dimension $d=3$:

- substitution matrix $\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 3 & 2 & 0 & 1 \\ 2 & 1 & 2 & 0 \\ 6 & 4 & 2 & 1\end{array}\right)$,
- inflation factor $\lambda=\frac{1}{2}(\sqrt{5}+1)$ (the golden mean),
- minimal polynomial $x^{2}-x-1$.

Since λ^{d} is an eigenvalue of an integer matrix, the inflation factor λ is always an algebraic integer.

Always?

Since λ^{d} is an eigenvalue of an integer matrix, the inflation factor λ is always an algebraic integer.

Always?
What if there are infinitely many prototiles?
In most examples with infinitely many prototiles studied so far (Ferenczi, Sadun, Frank-Sadun, Smilansky-Solomon...):

- tiles of length 1 , infinitely many labels, or
- no proper inflation factor

Mañibo-Rust-Walton (preprint 2022): conditions for unique ergodicity of the dynamical systems arising from substitutions in dimension $d=1$ for infinitely many prototiles with distinct lengths.

Their example: Prototiles $0,1,2,3, \ldots$ and ∞.

$$
\begin{aligned}
0 & \mapsto 0001 \\
i & \mapsto 0 i-1 i+1 \\
\infty & \mapsto 0 \infty \infty
\end{aligned}
$$

Mañibo-Rust-Walton (preprint 2022): conditions for unique ergodicity of the dynamical systems arising from substitutions in dimension $d=1$ for infinitely many prototiles with distinct lengths.

Their example: Prototiles $0,1,2,3, \ldots$ and ∞.

$$
\begin{aligned}
0 & \mapsto 0001 \\
i & \mapsto 0 i-1 i+1 \\
\infty & \mapsto 0 \infty \infty
\end{aligned}
$$

The tiles have indeed well-defined (distinct) lengths ℓ_{i} :

$$
\ell_{i}=1+\frac{1}{\sqrt{2}}\left(1-\frac{1}{\sqrt{2}}\right)^{i}
$$

and a proper inflation factor: $\lambda=3+\frac{1}{\sqrt{2}}$

| 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- |

Their substitution "matrix":

$$
\left(\begin{array}{cccccc}
3 & 2 & 1 & 1 & 1 & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 1 & 0 & \\
0 & 0 & 1 & 0 & 1 & \ddots \\
\vdots & & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Their substitution "matrix":

$$
\left(\begin{array}{cccccc}
3 & 2 & 1 & 1 & 1 & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 1 & 0 & \\
0 & 0 & 1 & 0 & 1 & \ddots \\
\vdots & & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

When we saw this example we tried to find more.
But: unlike in the finite case one cannot just turn any "matrix" into a proper substitution
(negative lengths, lengths $\rightarrow \infty$, all tile frequencies $0, \ldots$)

There is also no simple analogue of Perron-Frobenius.
And in order to establish unique ergodicity they (Neil-Dan-Jamie) need to work a lot:

- The alphabet $\{0,1,2, \ldots,\} \cup\{\infty\}$ needs to be compact,
- the symbolic substitution needs to be continuous,

There is also no simple analogue of Perron-Frobenius.
And in order to establish unique ergodicity they (Neil-Dan-Jamie) need to work a lot:

- The alphabet $\{0,1,2, \ldots,\} \cup\{\infty\}$ needs to be compact,
- the symbolic substitution needs to be continuous,
- and primitive,

There is also no simple analogue of Perron-Frobenius.
And in order to establish unique ergodicity they (Neil-Dan-Jamie) need to work a lot:

- The alphabet $\{0,1,2, \ldots,\} \cup\{\infty\}$ needs to be compact,
- the symbolic substitution needs to be continuous,
- and primitive,
- but what means primitive here?

However, all this can be solved.

In an earlier paper on infinite alphabets they (Neil-Dan-Jamie) asked whether there are substitutions with transcendental (that is, not algebraic) inflation factor.

In an earlier paper on infinite alphabets they (Neil-Dan-Jamie) asked whether there are substitutions with transcendental (that is, not algebraic) inflation factor.
Theorem (F-Garber-Mañibo 2022+)
For any $\lambda>2$ there is a primitive substitution with infinitely many prototiles having λ as inflation factor.

In an earlier paper on infinite alphabets they (Neil-Dan-Jamie) asked whether there are substitutions with transcendental (that is, not algebraic) inflation factor.

Theorem (F-Garber-Mañibo 2022+)

For any $\lambda>2$ there is a primitive substitution with infinitely many prototiles having λ as inflation factor.

Corollary

There are a lot of substitution tilings with transcendental inflation factor.

Proof: (idea, simplified) Generalize the example above:
Let $\mathbf{a}=\left(a_{i}\right)_{i}=a_{0}, a_{1}, a_{2}, \ldots$ with $a_{i} \in\{1,2, \ldots, N\}$ for some $N \in \mathbb{Z}^{+}$.

$$
\text { Let } A=\left(\begin{array}{cccccc}
a_{0} & 1+a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 1 & 0 & \\
0 & 0 & 1 & 0 & 1 & \ddots \\
\vdots & & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Proof: (idea, simplified) Generalize the example above:
Let $\mathbf{a}=\left(a_{i}\right)_{i}=a_{0}, a_{1}, a_{2}, \ldots$ with $a_{i} \in\{1,2, \ldots, N\}$ for some $N \in \mathbb{Z}^{+}$.

$$
\text { Let } A=\left(\begin{array}{cccccc}
a_{0} & 1+a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 1 & 0 & \\
0 & 0 & 1 & 0 & 1 & \ddots \\
\vdots & & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

For instance, $a_{0}=3$ and $a_{i}=1$ for $i \geq 1$ is the example above.

$$
\varrho_{\mathbf{a}}= \begin{cases}0 \mapsto & 0^{a_{0}} 1 \\ i \mapsto & 0^{a_{i}} i-1 i+1 \\ \cdots & \cdots\end{cases}
$$

In order to show that this defines nice substitution tilings ("good" tile lengths and frequencies etc) we apply Mañibo-Rust-Walton:

We need to turn the set $\{0,1,2, \ldots\}$ (corr. to the prototiles) into a compact alphabet \mathcal{A}. (Amazingly sophisticated)

In order to show that this defines nice substitution tilings ("good" tile lengths and frequencies etc) we apply Mañibo-Rust-Walton:
We need to turn the set $\{0,1,2, \ldots\}$ (corr. to the prototiles) into a compact alphabet \mathcal{A}. (Amazingly sophisticated)
...and show that

- The substitution $\varrho_{\mathbf{a}}$ is a continuous map $\varrho_{\mathbf{a}}: \mathcal{A} \rightarrow \mathcal{A}^{+}$,
- $\varrho_{\mathbf{a}}$ is primitive,
- ϱ_{a} is recognizable,
- the substitution operator (roughly, the "matrix") is quasicompact

It remains to realize all inflation factors $\lambda>2$.

Ansatz:

Let $\left(a_{i}\right)_{i}$ be fixed, and let $\mu \in\left(0, \frac{1}{2}\right]$ be the unique number with

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

Claim:
$\lambda=\mu+\frac{1}{\mu}$ is an eigenvalue with eigenvector $\mathbf{v}=\left(1, \mu, \mu^{2}, \ldots\right)^{T}$.

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

It remains to realize all inflation factors $\lambda>2$.

Ansatz:

Let $\left(a_{i}\right)_{i}$ be fixed, and let $\mu \in\left(0, \frac{1}{2}\right]$ be the unique number with

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

Claim:
$\lambda=\mu+\frac{1}{\mu}$ is an eigenvalue with eigenvector $\mathbf{v}=\left(1, \mu, \mu^{2}, \ldots\right)^{T}$.

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Row by row:

- $1^{\text {st }}$ row: $\mu+\sum_{i=0}^{\infty} a_{i} \mu^{i}=\mu+\frac{1}{\mu}=\lambda \cdot 1$.
- $i^{\text {th }}$ row: $\mu^{i-2}+\mu^{i}=\left(\mu^{-1}+\mu\right) \mu^{i-1}=\lambda \mu^{i-1}$.

It follows that λ is the inflation factor (by some infinite equivalent of Perron-Frobenius: eigenvector in the positive cone), and \mathbf{v} (normalized) is the vector of tile frequencies.

It remains to show that we get all values $\lambda>2$ in this way.

It follows that λ is the inflation factor (by some infinite equivalent of Perron-Frobenius: eigenvector in the positive cone), and \mathbf{v} (normalized) is the vector of tile frequencies.

It remains to show that we get all values $\lambda>2$ in this way.

- First, we don't. We need to allow $a_{i}=0$.

It follows that λ is the inflation factor (by some infinite equivalent of Perron-Frobenius: eigenvector in the positive cone), and \mathbf{v} (normalized) is the vector of tile frequencies.

It remains to show that we get all values $\lambda>2$ in this way.

- First, we don't. We need to allow $a_{i}=0$.
- But to keep it simple, let us assume $a_{i} \neq 0$.
- Then we get all values $\lambda>\frac{5}{2}$.

Now we fix $\mu \in\left(0, \frac{1}{2}\right]$. We have to find $\left(a_{i}\right)_{i}$ such that

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

Now fix $\mu \in\left(0, \frac{1}{2}\right]$. We have to find $\left(a_{i}\right)_{i}$ such that

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

- All $a_{i}=1: \frac{1}{\mu}=\frac{1}{1-\mu}$, hence $\mu=\frac{1}{2}, \lambda=\frac{5}{2}$.
- All $a_{i}=2: \frac{1}{\mu}=\frac{2}{1-\mu}$, hence $\mu=\frac{1}{3}, \lambda=\frac{10}{3}$.

Now fix $\mu \in\left(0, \frac{1}{2}\right]$. We have to find $\left(a_{i}\right)_{i}$ such that

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

\Rightarrow All $a_{i}=1: \frac{1}{\mu}=\frac{1}{1-\mu}$, hence $\mu=\frac{1}{2}, \lambda=\frac{5}{2}$.

- All $a_{i}=2: \frac{1}{\mu}=\frac{2}{1-\mu}$, hence $\mu=\frac{1}{3}, \lambda=\frac{10}{3}$.

So, if $\frac{1}{3}<\mu<\frac{1}{2}$, start with all $a_{i}=1$. Then increase $a_{0}, a_{1}, a_{2}, \ldots$ in a greedy way.

Now fix $\mu \in\left(0, \frac{1}{2}\right]$. We have to find $\left(a_{i}\right)_{i}$ such that

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

- All $a_{i}=1: \frac{1}{\mu}=\frac{1}{1-\mu}$, hence $\mu=\frac{1}{2}, \lambda=\frac{5}{2}$.
- All $a_{i}=2: \frac{1}{\mu}=\frac{2}{1-\mu}$, hence $\mu=\frac{1}{3}, \lambda=\frac{10}{3}$.

So, if $\frac{1}{3}<\mu<\frac{1}{2}$, start with all $a_{i}=1$.
Then increase $a_{0}, a_{1}, a_{2}, \ldots$ in a greedy way.

- It is clear that we get infinitely many μ in this way.
- Showing that we get all $\mu \in\left[\frac{1}{3}, \frac{1}{2}\right]$ requires more effort.

Now fix $\mu \in\left(0, \frac{1}{2}\right]$. We have to find $\left(a_{i}\right)_{i}$ such that

$$
\frac{1}{\mu}=\sum_{i=0}^{\infty} a_{i} \mu^{i}
$$

\Rightarrow All $a_{i}=1: \frac{1}{\mu}=\frac{1}{1-\mu}$, hence $\mu=\frac{1}{2}, \lambda=\frac{5}{2}$.

- All $a_{i}=2: \frac{1}{\mu}=\frac{2}{1-\mu}$, hence $\mu=\frac{1}{3}, \lambda=\frac{10}{3}$.

So, if $\frac{1}{3}<\mu<\frac{1}{2}$, start with all $a_{i}=1$.
Then increase $a_{0}, a_{1}, a_{2}, \ldots$ in a greedy way.

- It is clear that we get infinitely many μ in this way.
- Showing that we get all $\mu \in\left[\frac{1}{3}, \frac{1}{2}\right]$ requires more effort.

That's it!

This result is a proof of existence. Is there a concrete example?

This result is a proof of existence. Is there a concrete example?
Yes! Let
$\mathbf{a}=211212211221211212212112211212211221211221121221 \cdots$
be the Thue-Morse sequence (with 1 s and 2 s).

This result is a proof of existence. Is there a concrete example?
Yes! Let
$\mathbf{a}=211212211221211212212112211212211221211221121221 \cdots$
be the Thue-Morse sequence (with 1 s and 2 s).
Plugging it into $\varrho_{\mathbf{a}}$ yields a transcendental inflation factor
$\lambda=\mu+\frac{1}{\mu}$ which we can compute (approximately).
Why "transcendental"?

Consider the classical Thue-Morse sequence $t_{n}:=(-1)^{s(n)}$, where $s(n)$ is the number of ones in the binary expansion of n.
$1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1, \ldots$

Theorem (Mahler 1929)

- Consider the generating function $T(z):=\sum_{n \geqslant 0} t_{n} z^{n}$.
- Let $\alpha \neq 0$ be an algebraic number with $|\alpha|<1$.

Then the number $T(\alpha)$ is transcendental.

Consider the classical Thue-Morse sequence $t_{n}:=(-1)^{s(n)}$, where $s(n)$ is the number of ones in the binary expansion of n.
$1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1, \ldots$

Theorem (Mahler 1929)

- Consider the generating function $T(z):=\sum_{n \geqslant 0} t_{n} z^{n}$.
- Let $\alpha \neq 0$ be an algebraic number with $|\alpha|<1$.

Then the number $T(\alpha)$ is transcendental.
The generating function of the $1-2-$ Thue-Morse sequence is

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{3}{2} \cdot \frac{1}{1-z}+\frac{1}{2} T(z)
$$

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{3}{2} \cdot \frac{1}{1-z}+\frac{1}{2} T(z)
$$

Assume that the μ defined by plugging in the 1-2-Thue-Morse sequence a into $\varrho_{\mathbf{a}}$ is algebraic.

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{3}{2} \cdot \frac{1}{1-z}+\frac{1}{2} T(z)
$$

Assume that the μ defined by plugging in the 1-2-Thue-Morse sequence a into $\varrho_{\mathbf{a}}$ is algebraic.

$$
\frac{1}{\mu}=A(\mu)=\frac{3}{2} \cdot \frac{1}{1-\mu}+\frac{1}{2} T(\mu)
$$

Now...

- from Mahler's result follows: $T(\mu)$ is transcendental,
- but $T(\mu)=\frac{2}{\mu}-\frac{3}{1-\mu}$, hence $T(\mu)$ is algebraic.

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{3}{2} \cdot \frac{1}{1-z}+\frac{1}{2} T(z)
$$

Assume that the μ defined by plugging in the 1-2-Thue-Morse sequence a into $\varrho_{\mathbf{a}}$ is algebraic.

$$
\frac{1}{\mu}=A(\mu)=\frac{3}{2} \cdot \frac{1}{1-\mu}+\frac{1}{2} T(\mu)
$$

Now...

- from Mahler's result follows: $T(\mu)$ is transcendental,
but $T(\mu)=\frac{2}{\mu}-\frac{3}{1-\mu}$, hence $T(\mu)$ is algebraic.
If $\lambda=\mu+\frac{1}{\mu}$ is algebraic, then μ is algebraic as well.

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{3}{2} \cdot \frac{1}{1-z}+\frac{1}{2} T(z)
$$

Assume that the μ defined by plugging in the 1-2-Thue-Morse sequence a into $\varrho_{\mathbf{a}}$ is algebraic.

$$
\frac{1}{\mu}=A(\mu)=\frac{3}{2} \cdot \frac{1}{1-\mu}+\frac{1}{2} T(\mu)
$$

Now...

- from Mahler's result follows: $T(\mu)$ is transcendental,
- but $T(\mu)=\frac{2}{\mu}-\frac{3}{1-\mu}$, hence $T(\mu)$ is algebraic.

If $\lambda=\mu+\frac{1}{\mu}$ is algebraic, then μ is algebraic as well.
Since $\mu^{2}-\lambda \mu+1=0$, hence $\mu=\frac{1}{2}\left(\lambda \pm \sqrt{\lambda^{2}-4}\right)$.

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{3}{2} \cdot \frac{1}{1-z}+\frac{1}{2} T(z)
$$

Assume that the μ defined by plugging in the 1-2-Thue-Morse sequence a into $\varrho_{\mathbf{a}}$ is algebraic.

$$
\frac{1}{\mu}=A(\mu)=\frac{3}{2} \cdot \frac{1}{1-\mu}+\frac{1}{2} T(\mu)
$$

Now...

- from Mahler's result follows: $T(\mu)$ is transcendental,
- but $T(\mu)=\frac{2}{\mu}-\frac{3}{1-\mu}$, hence $T(\mu)$ is algebraic.

If $\lambda=\mu+\frac{1}{\mu}$ is algebraic, then μ is algebraic as well.
Since $\mu^{2}-\lambda \mu+1=0$, hence $\mu=\frac{1}{2}\left(\lambda \pm \sqrt{\lambda^{2}-4}\right)$.
That's it!

- Adding to the 1-2-Thue-Morse sequence a some periodic sequence \mathbf{b} yields another transcendental inflation factor.
- Adding to the 1-2-Thue-Morse sequence a some periodic sequence \mathbf{b} yields another transcendental inflation factor.
- Our paper is still unfinished.
- Adding to the 1-2-Thue-Morse sequence a some periodic sequence \mathbf{b} yields another transcendental inflation factor.
- Our paper is still unfinished.
- Mañibo-Rust-Walton: two preprints on arXiv.org (" compact alphabets")
- Adding to the 1-2-Thue-Morse sequence a some periodic sequence \mathbf{b} yields another transcendental inflation factor.
- Our paper is still unfinished.
- Mañibo-Rust-Walton: two preprints on arXiv.org ("compact alphabets")

Thank you!

