# The (profinite) fundamental group of a tiling space

Franz Gähler

Mathematics, Bielefeld University

Summer Topology Conference, Vienna 20 July 2022

Franz Gähler The (profinite) fundamental group of a tiling space

イロト イポト イヨト イヨト

- tiles: assume here polyhedra, meeting face-to-face
- tiling: covering of  $\mathbb{R}^d$  by tiles, finitely many local patterns (FLC)
- tiling metric: two tilings are ε-close, if they agree in a ball B<sub>1/ε</sub>(0) after an ε-small translation
- tiling space: closed, tranlsation invariant space of tilings

Under mild assumptions, tiling spaces are compact.

Inflation tilings are self-similar, generated by inflation procedure:

- 1. scale tiling by factor  $\lambda$
- 2. disect inflated tiles into tiles of original size

・ 同 ト ・ ヨ ト ・ ヨ ト

3

## Tiling spaces are inverse limit spaces

$$\mathbb{X} = \varprojlim X_i = \left\{ (x_i)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} X_i \ \middle| \ x_i = \tilde{f}_i(x_{i+1}) \right\}$$

- $X_i$  approximants of X: finite cell complexes, whose points represent cylinder sets of tilings
- $ilde{f}_i$  continuous cellular surjection; each  $x_i \in X_i$  has typically several preimages under  $ilde{f}_i$

For inflation tilings, all  $X_i$  can be chosen equal, likewise for  $\tilde{f}_i$ . Points in  $X_1$ ,  $X_2$ , ... represent cylinder sets of (collared) tiles, supertiles, etc. Tiling spaces are locally Euclidean × Cantor, connected, but not path-connected.

・ 同 ト ・ ヨ ト ・ ヨ ト

Čech cohomology behaves well under inverse limits:

$$\check{H}(\varprojlim X_i) = \varinjlim \check{H}(X_i) = \varinjlim H(X_i)$$

This is practically computable!

Other common invariants only see path-components – not interesting.

However, if  $(x_i)_{i \in \mathbb{N}}$  is an inflation fixpoint, we have an inverse system

$$\pi_1(X_1, x_2) \xleftarrow{f_1} \pi_1(X_2, x_2) \xleftarrow{f_2} \pi_1(X_3, x_3) \xleftarrow{f_3} \cdots$$

of fundamental groups and homomorphisms between them. Is this useful?

More promising are the dual objects  $Hom(\pi_1(X_i, x_i), G)$ , with G any group, for which there is a direct limit of the system

$$Hom(\pi_1(X_1, x_2), G) \xrightarrow{f_{1*}} Hom(\pi_1(X_2, x_2), G) \xrightarrow{f_{2*}} \cdots$$

This had already been proposed by Sadun. Erdin (arxiv:1002.1460) has expressed the representation varieties  $Hom(\pi_1(X_i, x_i), G)/G$  in terms of flat, principle *G*-bundles, and showed that their direct limit  $\varinjlim Hom(\pi_1(X_i, x_i), G)/G$  is a homeomorphism invariant of  $\mathbb{X}$ .

Moreover, for G finite, this is practically computable!

(日) (コン・コン・コン

Here, we go a different route. We remark that with  $F = \pi_1(X_i, x_i)$ , also its profinite completion  $\hat{F}$  is a good invariant of  $X_i$ .

Since  $\hat{F}$  already is an inverse limit (a profinite group), the corresponding inverse limit  $\lim_{k \to \infty} \hat{F}$  is much better behaved. In fact, it is again a profinite group, and a genuine invariant of  $\mathbb{X}$ .

Along with  $\varprojlim \hat{F}$ , also  $\varinjlim Hom(\hat{F}, G)$  is an invariant, and is computable for G finite, because then,

$$\varinjlim Hom(\hat{F}, G) = \varinjlim Hom(F, G)$$

(周) (日) (日) 日

- Let F be a finitely generated group, and set
- $\mathcal{N} = \{N_i\}_{i \in I} := \{\text{all finite-index normal subgroups of } F\},\$
- $\mathcal{Q} = \{F/N_i\}_{i \in I} := \{\text{all finite quotients of } F\}.$

Let  $\eta_i : F \to F/N_i$  be the canonical projection.

If  $N_i \ge N_j$ , there exist morphisms  $\Phi_{ji} : F/N_j \to F/N_i$  with  $\eta_i = \Phi_{ji} \circ \eta_j$ .

If  $N_i \ge N_j \ge N_K$ , we have  $\Phi_{ki} = \Phi_{ji} \circ \Phi_{kj}$ , and for any  $N_i, N_j \in \mathcal{N}$ , there exists  $N_k \in \mathcal{N}$  with  $N_i \ge N_k$ ,  $N_j \ge N_k$ .

The quotients  $\mathcal{Q}$  form a partially ordered, directed set, and we can form an inverse limit:

$$\hat{F} = \varprojlim F/N_i = \{(g_i)_{i \in I} | g_i \in F/N_i, g_i = \Phi_{ji}(g_j) \text{ whenever } F/N_i \leq F/N_j\}.$$

 $\hat{F} \subset \prod_{i \in I} F/N_i$  is the profinite completion of F.

Giving  $F/N_i$  the discrete topology,  $\hat{F}$  becomes a topological group.

There is a natural map  $\eta: F \to \hat{F}$  given by  $\eta(g) = (\eta_i(g))_{i \in I}$ , which is injective iff  $\bigcap_{i \in I} N_i$  is trivial.

 $\hat{F}$  is the completion of F in the minimal topology in which all  $N_i$  are open.

For every homomorphism  $h: F \to H$  to a profinite group H, there exists a unique continuous  $\hat{h}: \hat{F} \to H$  with  $h = \hat{h} \circ \eta$ . In particular, this holds for every H finite.

Given an endomorphism  $f: F \to F$ , there is a unique continuous endomorphism  $\hat{f}: \hat{F} \to \hat{F}$  making the following diagram commutative:



(4) 同() (4) 日 (4) H (4)

Suppose we have a inflation tiling space constructed from a single approximant X of collared tiles, and assume  $x_0 \in X$  is a fixpoint. Then, we can replace the inverse system on the fundamental group  $F = \pi_1(X, x_0)$  with endomorphism f by the corresponding system on the profinite completion  $\hat{F}$  and the induced endomorphism  $\hat{f}$ :

$$\hat{F} \xleftarrow{\hat{f}} \hat{F} \xleftarrow{\hat{f}} \hat{F} \xleftarrow{\hat{f}} \hat{F} \xleftarrow{\hat{f}} \dots$$

This system has a well-behaved inverse limit  $\varprojlim \hat{F}$ , the profinite fundamenatal group  $\hat{\pi}_1(\mathbb{X}, x_0)$ . It is a profinite group, and in fact a genuine homeomorphism invariant of  $\mathbb{X}$ .

イロト 不得 トイラト イラト・ラ

With  $\hat{\pi}_1(\mathbb{X}, x_0) = \varprojlim \hat{F}$ , also the representation varieties  $Hom(\hat{\pi}_1(\mathbb{X}, x_0), G) = \varinjlim Hom(\hat{F}, G)$ , G any group, are invariants.

If G is finite, Hom(F, G) is finite, and due to the universality property of  $\eta$ ,  $|Hom(F, G)| = |Hom(\hat{F}, G)|$  (here,  $Hom(\hat{F}, G)$  consists of continuous homomorphisms). Note that  $h: F \to G$  factors uniquely through  $\hat{F}$ .

Under the endomorphism f of F, the homomorphism  $h: F \to G$  is mapped to  $h \circ f$ . For any finite G,  $\varinjlim Hom(F, G)$  is a finite set of homomorphisms. Its size is an invariant of X.

Computing F of a 1d complex:

• inscribe spanning tree S in X

• 
$$\pi_1(X, x_0) = \pi_1(X, S, x_0)$$

• For each 1-cell  $c \in X$ , we have a free group generator  $g_c$ . We have:  $F = \langle g_c \rangle_{c \in X \setminus S} = \langle g_c \rangle_{c \in X} / [\langle g_c \rangle_{x \in S}]_{nc}$ 

To each "bridge"  $c \in X \setminus S$ , there corresponds a unique loop at  $x_0$ , and an element in  $\tilde{F} = \langle g_c \rangle_{c \in X}$ . We take its image under inflation and mod out non-bridge generators, to obtain the image of a bridge generator in F.

マボト マラト マラト 二日

First, construct  $\pi_1$  of the 1-skeleton.

Then, each 2-cell provides a loop homotopic to zero. The path-ordered product  $\prod_{c' \in \partial c} g_{c'}$  is trivial in  $\pi_1$ , gives a relation. For all 2-cells, mod out those relations from  $\pi_1$  of 1-skeleton.

In  $d \ge 2$ ,  $\pi_1(X, x_0)$  is not free in general, but finitely presented. This is no fundamental obstacle, but makes computation a bit more complicated.

In d = 1,  $\pi_1(X, x_0)$  is always a free group.

不得下 イヨト イヨト 二日

### Remarks

- if  $f : F \to F$  is an isomorphism,  $\varprojlim \hat{F} = \hat{F} \to$  we cannot distinguish different isomorphisms
- if G is abelian,  $Hom(\varprojlim \hat{F}, G)$  is not more informative than  $H^1(\mathbb{X}, G) \rightarrow$  better take G non-abelian
- ▶ if F is free, f(F) is also free, possibly of smaller rank;
  first iterate f until rank no longer shrinks, and work wit f<sup>k</sup>(G)
- ▶ abelianisation of lim F gives 1-cohomology, so rkH<sup>1</sup> ≤ rkF
  rkF can be bigger if abelianisation of f contains eigenvalues 0
  (e.g. Thue-Morse)

イロト 不得 トイラト イラト 二日

## 1d Examples

Inflations with matrix  $\begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$ . Taking all possible permutations of tiles in the supertiles, we get 20 different inflations, which fall into 2 symmetric and 4 mirror pairs of MLD classes. These 6 classes can all easily be distinguished with small groups *G*, like *S*<sub>3</sub> or *S*<sub>4</sub>.

Inflations with matrix  $\begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$ . Here, we get 30 inflations falling into 2 symmetric and 5 mirror pairs of MLD classes, which can be distinguished.

Many other cases have been computed, with similar results. The only problematic cases are those with several isomorphisms f of the same rank, which can't be distinguished.

## 2d Examples I



For the squiral tiling, F is free abelian of rank 2, and has the same  $\hat{\pi}_1$  as the 2d 3-adic solenoid, very disappointing...

For the chair tiling, F is not abelian, but almost. For most small groups,  $Hom(\hat{\pi}_1(\text{chair}), G) = Hom(\hat{\pi}_1(2\text{d 2-adic solenoid}), G).$ But there are two groups of order 27 where they differ.

For tilings with simple  $H^1$ , F tends to be too simple: abelian, eventually abelian, almost abelian,...



For the 2d Thue-Morse tiling, 1-cohomology is more complicated, and so are F (of rank 4) and the endomorphism acting on it. Here we get results which allow to distinguish it from other tilings

For the octagonal Ammann-Beenke tiling, F has rank 5 (like  $H^1$ ), and also gives non-trivial results.

So, we need a sufficiently rich  $H^1$  for a rich invariant  $Hom(\hat{\pi}_1, G)$ .

(日本) (日本) (日本)