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Intro Warmup Infinite alphabets

Why counting matters?

Question
Given a tiling (or a point set), how many tiles (or points) are there in
a large part of the space?

▶ We count the tiles in a ball of radius R and are interested in
the asymptotics of the counting function;

▶ The leading term of the function may give us information
about density of tiles or points;

▶ The second term says how “well” the tiles or points are
distributed.

Examples: Gauss circle problem, Mass transport, Bounded
remainder sets.
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What will we count?
▶ A is an alphabet

▶ ρ is a substitution on A, so for every x ∈ A, ρ(x) is a
non-empty word with letters from A;

▶ We fix a letter a ∈ A and study the function

L(n) = #(ρn(a))

that counts the number of letters in ρn(a);

▶ In the “nice” situations

L(n) = “Main part” ± “Error”

▶ Goal: quantify the error
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Thue-Morse sequence

ρ =

{
a 7→ ab
b 7→ ba

Then
▶ L(n) = #(ρn(a)) =

2n

▶ This is the “main part” and there is no error
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Fibonacci sequence

ρ =

{
a 7→ b
b 7→ ba

Then
▶ L(n) is the (n+ 1)st Fibonacci number in the sequence

1, 1, 2, 3, 5, 8, . . ., and

▶

L(n) ≈ 1√
5
φn+1 where φ =

1+
√
5

2

▶ and the error is

1√
5
(1− φ)n+1 =

1√
5

(
1−

√
5

2

)n+1
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Weird substitution

ρ =

{
a 7→ bbbbbb
b 7→ ba

▶ Then
L(n) = c1 · 3n + c2 · (−2)n

▶ LetM =

(
0 1
6 1

)
be the substitution matrix that counts

the letters in ρ(a) and ρ(b), then

▶

L(n) =
(
1 1

)
Mn

(
1
0

)
and this can be expressed through the eigenvalues ofM.
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Crazy substitution

ρ =


a 7→ abbbccc
b 7→ abbbbcccccc
c 7→ aabbbcccccccccc

▶ Then

L(n) = c1 · 13n + “linear polynomial in n”

▶ The substitution matrix

M =

 1 1 2
3 4 3
3 6 10


has eigenvalues λ = 13, 1, 1 with a non-trivial Jordan block.
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Finite alphabets and the Perron-Frobenius theory
▶ Let ρ be a primitive substitution on a finite alphabet A;

▶ LetM be the corresponding substitution matrix
▶ primitivity means that for some N,MN has only positive

entries;

▶ Let λ be the largest eigenvalue ofM, and λ′ be the second
in absolute value;

▶ Then

L(n) = 1 ·Mn · e1 = c1 · λn + O(|λ′|n · “polynomial”)

▶ The constant c1 can be found from the point set density of
the geometric version of the substitution
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Infinite alphabet setting
We approach similar questions in the case of infinite alphabets
described by Dan and Dirk in the previous two talks.

We fix an appropriate sequence a = a0, a1, a2, . . .

ρa =

{
[0] 7→ [0]a0 [1]
[i] 7→ [0]ai [i − 1][i + 1] for i ≥ 1

The associated infinite “substitution matrix” is

A =



a0 a1 + 1 a2 a3 a4 . . .
1 0 1 0 0 . . .
0 1 0 1 0 . . .
0 0 1 0 1 . . .
0 0 0 1 0 . . .
...

...
...

...
... . . .
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Density estimates
Since the frequencies and “lengths” of all letters are known,

L(n) = #(ρna([0])) = c1 · λn + o(λn)

where

▶ λ = µ+
1
µ
is the inflation factor with µ defined by

1
µ
=

∞∑
i=0

aiµi

▶ c1 is the density of the associated geometric substitution, or
the reciprocal of the average tile length assuming the
length of [0] is 1.

Goal: get better estimates for the error, a.k.a. the discrepancy
function da(n)
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The “simplest” case a = 1, 1, 1, 1, 1, . . .

A =



1 2 1 1 1 . . .
1 0 1 0 0 . . .
0 1 0 1 0 . . .
0 0 1 0 1 . . .
0 0 0 1 0 . . .
...

...
...

...
... . . .


1
µ
=

∞∑
i=0

µi =
1

1− µ
, so µ =

1
2

and λ =
5
2

▶ lengths are 2− 1
2i

and frequencies are 1
2i+1

▶

L(n) = 3
4
·
(
5
2

)n
+ da(n)
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Finding discrepancy, part I
Idea: pretend that the same linear algebra works

▶ We start from writing the couting function in a vector form

L(n) = (1, 1, 1, . . .)An(1, 0, 0, . . .)t = 3
4
·
(
5
2

)n
+ da(n)

In other words, we are interested in [(1, 1, 1, . . .)An]0, the
0th term of that vector.

▶ Then eliminate the leading term

2da(n+ 1)− 5da(n) =
= [(1, 1, 1, . . .) (2A− 5I)An]0 =

= [(−1, 1, 1, . . .)An]0
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Finding discrepancy, part II
▶ Then we choose a nicer basis in an ivariant subspace of A

e0 = (−1, 1, 1, 1, . . .)
e1 = (1,−2, 0, 0, . . .)
e2 = (0, 1,−2, 0, . . .)
e3 = (0, 0, 1,−2, . . .)

and so on.
▶ In this basis, the right multiplication by A has the matrix

B =



1 1 0 0 0 . . .
1 0 1 0 0 . . .
0 1 0 1 0 . . .
0 0 1 0 1 . . .
0 0 0 1 0 . . .
...

...
...

...
... . . .
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Finding discrepancy, part III

▶ In this setting

Bn(1, 0, 0, 0, ...)t = “sorted binomial coefficients”

▶ and therefore

2da(n+ 1)− 5da(n) = difference between two largest

▶ or alternatively

2da(n+ 1)− 5da(n) =
{

−Ck if n = 2k
0 if n = 2k + 1

where Ck =
1

k+1
(2k
k
)
is the kth Catalan number
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Finding discrepancy, part IV
▶ Using the initial terms and the Catalan series

1−
√
1− 4x
2x

=

∞∑
i=0

Cixi

we get an expression for da(n) as the (scaled) remainder of
the series at x = 4/25.

▶ Namely,

da(2k+1) =
(
25
4

)k ∞∑
i=k+1

Ci

(
4
25

)i
and da(2k) =

5
2
da(2k−1)

Theorem (Frettlöh, G., Mañibo, 2022+)

da(n) = Θ(C2k) = Θ

(
2n

n3/2

)
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What about other sequences a?

If a stabilizes on some positive number, then
▶ µ and λ are algebraic, and

▶ it is possible to employ a similar strategy (even getting the
same matrix B in a new basis) and get that for some
coefficents

α0da(n) + α1da(n+ 1) + . . .+ αpda(n+ p) =

=

{
β0Ck + . . .+ βqCk+q if n = 2k,
γ0Ck + . . .+ γqCk+q if n = 2k + 1.
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Discrepancy for stabilizing a
Theorem (Frettlöh, G., Mañibo, 2022+)
There is a non-negative integer t such that a subsequence of da(n)

grows at least as fast as Ω
(

2n

nt+3/2

)
.

How is this connected to the general theory?

Theorem (Mañibo, Rust, Walton)
Under some assumptions on the substitution on a compact alphabet,
the discrepancy does not exceed

θ(n) · |λ′|n

where θ is a function with lim n
√
θ(n) = 1 and λ′ is the second largest

element in the spectrum of A.
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Final remarks

▶ Same “infinite-dimensional linear algebra” approach can
be used to count not only letters in supertiles of [0] but
“things” in any supertiles;

▶ We expect that similar growth rates appear there;

▶ As Dirk said, we expect that |λ′| = 2 for all appropriate
sequences a and in this case our lower bound “coincides”
with the upper bound from the theorem of Mañibo, Rust,
and Walton.
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THANK YOU!
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