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Generators

Let X be a T1 space.

Recall X is Tychonoff if:
whenever x is not in closed C
then there is a g in C(X) such that g(x) /∈ g(C)

Here, C(X) = all continuous real-valued functions on X.
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Generators

Let X be a T1 space.

Recall X is Tychonoff if:
whenever x is not in closed C
then there is a g in C(X) such that g(x) /∈ g(C)

Here, C(X) = all continuous real-valued functions on X.

Definition
A subset G of C(X) is a generator if:
whenever x is not in closed C,

then there is a g in G such that g(x) /∈ g(C)
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Natural Topologies on C(X)
Give C(X) the pointwise convergence topology.
Denote by Cp(X).
Basic open neighborhoods of f have form:

B(f, F, ϵ) = {g ∈ C(X) : ∀x ∈ F |f(x)− g(x)| < ϵ},
where F is a finite subset of X, and ϵ > 0.

Give C(X) the compact-open topology.
Denote by Ck(X).
Basic open neighborhoods of f have form:

B(f,K, ϵ) = {g ∈ C(X) : ∀x ∈ K |f(x)− g(x)| < ϵ},
where K is a compact subset of X, and ϵ > 0.

Any generator G ⊆ C(X) is a subspace of Cp(X) and of Ck(X).

Metrizable generator, separable generator, discrete,
compact, σ-compact, or Lindelöf generator…
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Compact Generators

Note 1: if Ck(X) (σ-)compact then Cp(X) is (σ-)compact.
Note 2: Cp(X) is never compact.

Theorem (Velichko)
Cp(X) is σ-compact if and only if X is finite.

Tkachuk & Shakmatov: σ-countably compact.
Reznichenko: σ-pseudocompact.
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Which spaces
have a compact generator:

1. In Ck(X)?
2. In Cp(X)?

3. σ-compact?

Which spaces have a countably compact or pseudocompact
generator in Cp(X) or Ck(X)?



SomeNotation

D(S) = the set S with discrete topology.

α(X) = the one-point compactification of X.

Examples:
α(D(κ)),

⊕
n α(D(κ))n, α (

⊕
n α(D(κ))n).
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Precise Generators

A space X is Tychonoff
⇐⇒ whenever x is not in closed C

then there is a g in C(X) such that g(x) /∈ g(C)
⇐⇒ whenever x is not in closed C

then there is a g in C(X) such that g(C) ⊆ {0} but g(x) ̸= 0

⇐⇒ whenever x is not in closed C
then there is a g in C(X) such that g(C) ⊆ {0} but g(x) = 1

Definition
A subset G of C(X) is a

(0, ̸=0)-generator if: whenever x is not in closed C
then there is a g in G such that g(C) ⊆ {0} but g(x) ̸= 0

(0, 1)-generator if: whenever x is not in closed C
then there is a g in G such that g(C) ⊆ {0} but g(x) = 1

Question inflation – now have 2× 2× 3 = 12!
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Generator TypeMatters

Proposition
The following are equivalent:
(i) X has a compact (0, 1)-generator in Ck(X),
(ii) X has a compact (0, 1)-generator in Cp(X), and
(iii) X is discrete.

X discrete: set G = {χ{x} : x ∈ X} ∪ {0}.
Clearly a (0, 1)-generator for X. And in Ck(X) see G ≡ α(D(X)).

X not discrete, say x0 not isolated: set f = χ{x0} /∈ C(X).
If G is any (0, 1)-generator for X in Cp(X), then f is in the
pointwise closure of G, so G cannot be compact.
Take any basic nbd B(f, F, ϵ) of f in RX , and let F′ = F \ {x0}.

There is a g in G such that g(F′) ⊆ {0} but g(x0) = 1. Then f and g coincide on F, so g ∈ G ∩ B(f, F, ϵ).
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Tidying Generators

Theorem
Let X be any space, and give C(X) either the compact-open
topology or the pointwise topology. Then the following are
equivalent:
(1) X has a σ-compact (0, 1)-generator,
(2) X has a σ-compact (0, ̸=0)-generator,
(3) X has a σ-compact generator,
(4) X has a compact (0, ̸=0)-generator, and
(5) X has a compact generator.

(1)⇒ (4): G =
∪

n Gn be a (0, 1)-generator, each Gn cpt.
Set G′

n = mid(−1/n,Gn, 1/n) – compact. Set G′ =
∪

n G′
n ∪ {0}.

Lemma
Generator G, set G′ = {1−min(λ|g− µ1|,1) : g ∈ G, λ, µ ∈ R}.
Then G′ is a (0, 1)-generator, the continuous image of R2 × G.
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Which spaces
have a compact generator:

1. In Ck(X)?
2. In Cp(X)?

3. With special properties?



Compact Generators - Compact-Open

Proposition
Every metrizable space X has a compact generator in Ck(X).

Proposition
Let X be a k-space with a σ-compact generator in Ck(X). Then X
is metrizable.

Remove restriction to k-space?
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Metrizable⇒Compact Generator in Cpt-Open

Proposition
Every metrizable space X has a compact generator in Ck(X).

Let (X,d) be a metric space with d bounded by 1.
Let B =

∪
n∈N Bn be a basis for X with each Bn locally finite.

For any B′ ⊆ B,
define gB′ =

∑∞
n=1 gB′,n/2

n

where gB′,n(x) = sup
(
{0} ∪ DB′,n,x

)
with DB′,n,x = {d(x, X \ B) : B ∈ B′ ∩ Bn}.

Define Γ : {0, 1}B → Ck(X, [0, 1]) by Γ(χB′) = gB′ .
Let G be the image of {0, 1}B under Γ.

Γ is continuous, G a compact generator.
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Compact Generator in Cpt-Open⇒Metrizable

Proposition
Let X be a k-space with a compact generator in Ck(X).

Then X is metrizable.

Let G be a compact (0, ̸=0)-generator in Ck(X).

Set Wn = {(x, x′) : if g ∈ G and |g(x)| ≥ 1/n then |g(x′)| > 0}.

Then (Wn)n is the basis for a compatible local uniformity.
So Xmetrizable.

As X is a k-space and G compact, the
evaluation map e : G× X → R, e(g, x) = g(x) is continuous.
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Compact Generators - Pointwise Topology

Proposition
Space X has a compact generator in Cp(X)

if and only if X is Eberlein-Grothendieck.

A space is Eberlein-Grothendieck (EG)
if it embeds in a Cp(K) where K is compact.

(Arhangelskii) Internal characterization of EG spaces.

Eberlein-Grothendieck spaces have all finite powers countably tight, and
monolithic – that is, nw(A) ≤ |A| for every subspace A, and in particular,
every separable subspace has a countable network.
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Compact Eberlein-Grothendieck Spaces

Fact: Compact Eberlein-Grothendieck space
≡ Eberlein compact.

Eberlein compacta are really well understood.

Theorem
Let X be compact. Then the following are equivalent:
(1) X is Eberlein compact,
(2) X has a σ-point finite T0-separating family of cozero sets,
(3) X has a separator homeomorphic to some α(D(κ)),
(4) X has a generator homeomorphic to

a continuous image of some α (
⊕

n α(D(κ))n).
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Which spaces have a:

1. generator homeomorphic to α(D(κ))?
2. generator homeomorphic to a continuous
image of some α (

⊕
n α(D(κ))n)?

3. σ-point finite almost subbase?

In particular – are they the Eberlein-Grothendieck spaces?



Very Simple Compact Generators

Theorem
A space X has a

compact (0, ̸=0)-generator homeomorphic to some α(D(κ))
if and only if

it has a σ-point-finite base of cozero sets.
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Simple Compact Generators

Theorem
Let X be a space. Then the following are equivalent:
(1) X embeds in some Cp(α(D(κ))),
(2) X has a generator that is a

continuous image of some α (
⊕

n α(D(κ))n), and
(3) X has a σ-point-finite almost subbase.

Let’s say X is K-Eberlein Grothendieck if it embeds in Cp(K).

Which spaces are, say, I-EG?
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