Compact Generators

Paul Gartside joint work with Jeremiah Morgan and Alex Yuschik (University of Pittsburgh)

Sumtopo — July, 2022

Generators

Let X be a T_1 space.

Recall X is Tychonoff if: whenever x is not in closed C then there is a g in C(X) such that $g(x) \notin \overline{g(C)}$

Here, C(X) = all continuous real-valued functions on *X*.

Generators

Let X be a T_1 space.

Recall X is Tychonoff if:

whenever x is not in closed C then there is a g in C(X) such that $g(x) \notin \overline{g(C)}$

Here, C(X) = all continuous real-valued functions on *X*.

Lemma A space X is Tychonoff if and only if $\{g^{-1}U : g \in C(X), U \text{ open in } \mathbb{R}\}\$ is a base for X.

Generators

Let X be a T_1 space. Recall X is Tychonoff if: whenever x is not in closed C then there is a g in C(X) such that $g(x) \notin \overline{g(C)}$ Here, C(X) = all continuous real-valued functions on X.

Definition

A subset *G* of *C*(*X*) is a generator if: whenever *x* is not in closed *C*, then there is a *g* in *G* such that $g(x) \notin \overline{g(C)}$

Lemma

A subset G of C(X) is a generator if and only if $\{g^{-1}U : g \in G, U \text{ open in } \mathbb{R}\}$ is a base for X.

Natural Topologies on C(X)

Give C(X) the pointwise convergence topology. Denote by $C_p(X)$.

Basic open neighborhoods of *f* have form:

 $B(f, F, \epsilon) = \{ g \in C(X) : \forall x \in F | |f(x) - g(x)| < \epsilon \},\$ where *F* is a finite subset of *X*, and $\epsilon > 0$.

Give *C*(*X*) the compact-open topology.

Denote by $C_k(X)$.

Basic open neighborhoods of *f* have form:

$$B(f, K, \epsilon) = \{ g \in C(X) : \forall x \in K | f(x) - g(x) | < \epsilon \},$$

where *K* is a compact subset of *X*, and $\epsilon > 0$.

Natural Topologies on C(X)

Give C(X) the pointwise convergence topology. Denote by $C_p(X)$.

Basic open neighborhoods of *f* have form:

 $B(f, F, \epsilon) = \{ g \in C(X) : \forall x \in F | f(x) - g(x) | < \epsilon \},$ where *F* is a finite subset of *X*, and $\epsilon > 0$.

Give C(X) the compact-open topology.

Denote by $C_k(X)$.

Basic open neighborhoods of *f* have form:

 $B(f, K, \epsilon) = \{ g \in C(X) : \forall x \in K | |f(x) - g(x)| < \epsilon \},$ where K is a compact subset of X, and $\epsilon > 0$.

Any generator $G \subseteq C(X)$ is a subspace of $C_p(X)$ and of $C_k(X)$.

Metrizable generator, separable generator, discrete, compact, σ-compact, or Lindelöf generator... Note 1: if $C_k(X)$ (σ -)compact then $C_p(X)$ is (σ -)compact. Note 2: $C_p(X)$ is never compact.

Theorem (Velichko)

 $C_p(X)$ is σ -compact if and only if X is finite.

Tkachuk & Shakmatov: σ -countably compact. Reznichenko: σ -pseudocompact.

Which spaces have a compact generator:

In C_k(X)?
 In C_p(X)?
 σ-compact?

Which spaces have a countably compact or pseudocompact generator in $C_p(X)$ or $C_k(X)$?

D(S) = the set *S* with discrete topology.

$\alpha(X) =$ the one-point compactification of *X*.

Examples:

$$\alpha(\mathbf{D}(\kappa))$$
, $\bigoplus_{n} \alpha(\mathbf{D}(\kappa))^{n}$, $\alpha(\bigoplus_{n} \alpha(\mathbf{D}(\kappa))^{n})$.

Precise Generators

A space X is Tychonoff

- \iff whenever x is not in closed C then there is a q in C(X) such that $q(x) \notin \overline{q(C)}$
- \iff whenever *x* is not in closed *C* then there is a *g* in *C*(*X*) such that $g(C) \subseteq \{0\}$ but $g(x) \neq 0$
- \iff whenever x is not in closed C

then there is a g in C(X) such that $g(C) \subseteq \{0\}$ but g(x) = 1

Precise Generators

A space X is Tychonoff

- whenever x is not in closed C then there is a g in C(X) such that $g(x) \notin \overline{g(C)}$
- \iff whenever *x* is not in closed *C* then there is a *g* in *C*(*X*) such that $g(C) \subseteq \{0\}$ but $g(x) \neq 0$
- \iff whenever *x* is not in closed *C* then there is a *g* in *C*(*X*) such that $g(C) \subseteq \{0\}$ but g(x) = 1

Definition A subset *G* of *C*(*X*) is a

 $(0, \neq 0)$ -generator if: whenever *x* is not in closed *C* then there is a *g* in *G* such that $g(C) \subseteq \{0\}$ but $g(x) \neq 0$

(0,1)-generator if: whenever *x* is not in closed *C* then there is a *g* in *G* such that $g(C) \subseteq \{0\}$ but g(x) = 1

Precise Generators

A space X is Tychonoff

- whenever x is not in closed C then there is a g in C(X) such that $g(x) \notin \overline{g(C)}$
- \iff whenever *x* is not in closed *C* then there is a *g* in *C*(*X*) such that $g(C) \subseteq \{0\}$ but $g(x) \neq 0$
- \iff whenever *x* is not in closed *C* then there is a *g* in *C*(*X*) such that $g(C) \subseteq \{0\}$ but g(x) = 1

Definition A subset *G* of *C*(*X*) is a

 $(0, \neq 0)$ -generator if: whenever *x* is not in closed *C* then there is a *g* in *G* such that $g(C) \subseteq \{0\}$ but $g(x) \neq 0$

(0, 1)-generator if: whenever *x* is not in closed *C* then there is a *g* in *G* such that $g(C) \subseteq \{0\}$ but g(x) = 1

Question inflation – now have $2 \times 2 \times 3 = 12!$

Generator Type Matters

Proposition

The following are equivalent:

(i) X has a compact (0,1)-generator in $C_k(X)$, (ii) X has a compact (0,1)-generator in $C_p(X)$, and (iii) X is discrete.

Proposition

The following are equivalent:

(i) X has a compact (0, 1)-generator in $C_k(X)$, (ii) X has a compact (0, 1)-generator in $C_p(X)$, and (iii) X is discrete.

X discrete: set $G = \{\chi_{\{x\}} : x \in X\} \cup \{\mathbf{0}\}.$

Clearly a (0,1)-generator for X. And in $C_k(X)$ see $G \equiv \alpha(D(X))$.

Proposition

The following are equivalent:

(i) X has a compact (0, 1)-generator in $C_k(X)$, (ii) X has a compact (0, 1)-generator in $C_p(X)$, and (iii) X is discrete.

X discrete: set $G = \{\chi_{\{x\}} : x \in X\} \cup \{\mathbf{0}\}$. Clearly a (0, 1)-generator for *X*. And in $C_k(X)$ see $G \equiv \alpha(D(X))$.

X not discrete, say x_0 not isolated: set $f = \chi_{\{x_0\}} \notin C(X)$. If G is any (0, 1)-generator for X in $C_p(X)$, then f is in the pointwise closure of G, so G cannot be compact.

Take any basic nbd $B(f, F, \epsilon)$ of f in \mathbb{R}^{X} , and let $F' = F \setminus \{x_0\}$.

There is a g in G such that $g(F') \subseteq \{0\}$ but $g(x_0) = 1$. Then f and g coincide on F, so $g \in G \cap B(f, F, \epsilon)$.

Tidying Generators

Theorem

Let X be any space, and give C(X) either the compact-open topology or the pointwise topology. Then the following are equivalent:

- (1) X has a σ -compact (0, 1)-generator,
- (2) X has a σ -compact $(0, \neq 0)$ -generator,
- (3) X has a σ -compact generator,
- (4) X has a compact $(0, \neq 0)$ -generator, and
- (5) X has a compact generator.

(1) \Rightarrow (4): $G = \bigcup_n G_n$ be a (0,1)-generator, each G_n cpt. Set $G'_n = \operatorname{mid}(-1/n, G_n, 1/n)$ – compact. Set $G' = \bigcup_n G'_n \cup \{\mathbf{0}\}$.

Lemma

Generator G, set $G' = \{\mathbf{1} - \min(\lambda | g - \mu \mathbf{1} |, \mathbf{1}) : g \in G, \lambda, \mu \in \mathbb{R}\}.$ Then G' is a (0, 1)-generator, the continuous image of $\mathbb{R}^2 \times G$.

Which spaces <u>have a com</u>pact generator:

In *C_k(X)*?
 In *C_p(X)*?
 With special properties?

Proposition

Every metrizable space X has a compact generator in $C_k(X)$.

Proposition Let *X* be a *k*-space with a σ -compact generator in $C_k(X)$. Then *X* is metrizable.

Remove restriction to *k*-space?

Metrizable \Rightarrow Compact Generator in Cpt-Open

Proposition

Every metrizable space X has a compact generator in $C_k(X)$.

Let (X, d) be a metric space with d bounded by 1. Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a basis for X with each \mathcal{B}_n locally finite.

For any
$$\mathcal{B}' \subseteq \mathcal{B}$$
,
define $g_{\mathcal{B}'} = \sum_{n=1}^{\infty} g_{\mathcal{B}',n}/2^n$
where $g_{\mathcal{B}',n}(x) = \sup (\{0\} \cup D_{\mathcal{B}',n,x})$
with $D_{\mathcal{B}',n,x} = \{d(x,X \setminus B) : B \in \mathcal{B}' \cap \mathcal{B}_n\}$.
Define $\Gamma : \{0,1\}^{\mathcal{B}} \to C_k(X, [0,1])$ by $\Gamma(\chi_{\mathcal{B}'}) = g_{\mathcal{B}'}$.
Let *G* be the image of $\{0,1\}^{\mathcal{B}}$ under Γ .

 Γ is continuous, $\ {\it G}$ a compact generator.

Compact Generator in Cpt-Open ⇒ Metrizable

Proposition

Let X be a k-space with a compact generator in $C_k(X)$. Then X is metrizable.

Let *G* be a compact $(0, \neq 0)$ -generator in $C_k(X)$.

Set $W_n = \{(x, x') : \text{if } g \in G \text{ and } |g(x)| \ge 1/n \text{ then } |g(x')| > 0\}.$

Then $(W_n)_n$ is the basis for a compatible local uniformity. So *X* metrizable.

As X is a k-space and G compact, the evaluation map $e : G \times X \to \mathbb{R}$, e(g, x) = g(x) is continuous.

Compact Generators - Pointwise Topology

Proposition

Space X has a compact generator in $C_p(X)$ if and only if X is Eberlein-Grothendieck.

A space is *Eberlein-Grothendieck* (EG) if it embeds in a $C_p(K)$ where K is compact.

(Arhangelskii) Internal characterization of EG spaces.

Eberlein-Grothendieck spaces have all finite powers countably tight, and *monolithic* – that is, $nw(\overline{A}) \leq |A|$ for every subspace A, and in particular, every separable subspace has a countable network.

Compact Eberlein-Grothendieck Spaces

Fact: Compact Eberlein-Grothendieck space \equiv Eberlein compact.

Eberlein compacta are *really* well understood.

Theorem

Let X be compact. Then the following are equivalent:

- (1) X is Eberlein compact,
- (2) X has a σ -point finite T_0 -separating family of cozero sets,
- (3) X has a separator homeomorphic to some $\alpha(D(\kappa))$,
- (4) X has a generator homeomorphic to

a continuous image of some $\alpha (\bigoplus_n \alpha(D(\kappa))^n)$.

Compact Eberlein-Grothendieck Spaces

Fact: Compact Eberlein-Grothendieck space \equiv Eberlein compact.

Eberlein compacta are *really* well understood.

Theorem Let X be compact. Then the following are equivalent: (1) X is Eberlein compact, (2) X has a σ -point finite almost subbase (Dimov), (3) X has a separator homeomorphic to some $\alpha(D(\kappa))$, (4) X has a generator homeomorphic to a continuous image of some $\alpha(\bigoplus_n \alpha(D(\kappa))^n)$.

Which spaces have a:

generator homeomorphic to α(D(κ))?
 generator homeomorphic to a continuous image of some α (⊕_n α(D(κ))ⁿ)?
 <u>σ-point fi</u>nite almost subbase?

In particular – are they the Eberlein-Grothendieck spaces?

Very Simple Compact Generators

Theorem A space X has a

compact $(0, \neq 0)$ -generator homeomorphic to some $\alpha(D(\kappa))$ if and only if it has a σ -point-finite base of cozero sets.

Simple Compact Generators

Theorem Let X be a space. Then the following are equivalent: (1) X embeds in some $C_p(\alpha(D(\kappa)))$, (2) X has a generator that is a continuous image of some $\alpha (\bigoplus_n \alpha(D(\kappa))^n)$, and (3) X has a σ -point-finite almost subbase.

Simple Compact Generators

Theorem Let X be a space. Then the following are equivalent: (1) X embeds in some $C_p(\alpha(D(\kappa)))$, (2) X has a generator that is a continuous image of some $\alpha (\bigoplus_n \alpha(D(\kappa))^n)$, and (3) X has a σ -point-finite almost subbase.

Let's say X is K-Eberlein Grothendieck if it embeds in $C_{\rho}(K)$.

Which spaces are, say, I-EG?

Reference

Compact generators

Paul Gartside, Jeremiah Morgan, Alex Yuschik Fundamenta Mathematicae

MSC: Primary 54C30; Secondary 54C35, 54C50, 54D30, 54D20 DOI: 10.4064/fm92-3-2022 Published online: 20 June 2022