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Hajnal–Juhász’ and Arhangel′skĭı’s inequalities

Two of the most famous cardinal inequalities in the theory of
cardinal functions are the Hajnal–Juhász’ inequality and
Arhangel′skĭı’s inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space,
then

|X | ≤ 2χ(X )c(X ),

where χ(X ) is the character and c(X ) is the cellularity of X .

Theorem: [Arhangel′skĭı’s, 1969] If X is a Hausdorff space,
then

|X | ≤ 2χ(X )L(X ),

where L(X ) is the Lindelöf degree of X .
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Pospǐsil’s inequality

Pol’s proof [Pol–1974] uses the so called now “closure”
method, aka “Pol-Šapirovskĭı technique” and the following
theorem:

Theorem 1: [Pospǐsil, 1937] If X is a Hausdorff space, then

|X | ≤ d(X )χ(X ),

where d(X ) is the density and χ(X ) is the character of X .

Note that Pospǐsil’s inequality gives a lower upper bound for
the cardinality of a space X than Hajnal–Juhász’ and
Arhangel′skĭı’s inequalities.

d(X )χ(X ) ≤ |X |χ(X ) ≤ (2χ(X )c(X ))χ(X ) = 2χ(X )c(X )
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Some definitions

To formulate some of the generalizations of Pospǐsil’s
inequality, we need to recall some definitions.

The θ-closure of a set A in a space X , denoted by clθ(A), is
the set of all points x ∈ X such that for every open
neighborhood U of x we have cl(U) ∩ A 6= ∅.

A is called θ-closed if A = clθ(A) and A is θ-dense if
clθ(A) = X (Veličko, 1966).

The θ-density of a space X is
dθ(X ) = min{|A| : A ⊂ X , clθ(A) = X}.

Ivan S. Gotchev Cardinal Inequalities
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Pospǐsil’s inequality and some of its generalizations
Inequalities with Shanin’s number and π-character

Open questions

Bella and Cammaroto’s inequality
A new generalization of Pospǐsil’s inequality
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Bella and Cammaroto’s inequality

Theorem 2: [Bella and Cammaroto, 1988] If X is a Hausdorff
space, then

|X | ≤ dθ(X )χ(X ),

where dθ(X ) is the θ-density of X .

Since dθ(X ) ≤ d(X ) for every space X , Bella and
Cammaroto’s inequality is a formal generalization of Pospǐsil’s
inequality.
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Willard and Dissanayake’s inequality

Bella and Cammaroto’s inequality

Theorem 2: [Bella and Cammaroto, 1988] If X is a Hausdorff
space, then

|X | ≤ dθ(X )χ(X ),

where dθ(X ) is the θ-density of X .

Since dθ(X ) ≤ d(X ) for every space X , Bella and
Cammaroto’s inequality is a formal generalization of Pospǐsil’s
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More definitions

For every Urysohn space X the θ2-pseudocharacter, denoted
by ψθ2(X ), is defined to be the smallest infinite cardinal κ
such that for each x ∈ X , there is a collection Vx of open
neighborhoods of x such that |Vx | ≤ κ and⋂
{clθ(V ) : V ∈ Vx} = {x}.

We note that when U ⊂ X is open, then cl(U) = clθ(U).
Therefore, clθ(cl(V )) = clθ(clθ(V )). This explains the
notation ψθ2(X ) and also shows that we can use the notation
ψθ(X ) instead of ψc(X ).

It follows from the definitions that
ψ(x) ≤ ψc(X ) ≤ ψθ2(X ) ≤ χ(X ) for every Urysohn space X
and that for regular spaces we have ψ(x) = ψc(X ) = ψθ2(X ).
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A new generalization of Pospǐsil’s inequality

Theorem 3: [G–T, 2022] If X is a Urysohn space, then

|X | ≤ dθ(X )πχ(X )ψθ2 (X ),

where πχ(X ) is the π-character of X .

Since πχ(X )ψθ2(X ) ≤ χ(X ) for every Urysohn space X , the
above inequality is a generalization of Pospǐsil’s inequality.

Corollary: If X is a Urysohn space, then

d(X )χ(X ) = dθ(X )χ(X ).

Proof:

d(X )χ(X ) ≤ |X |χ(X ) ≤ (dθ(X )πχ(X )ψθ2 (X ))χ(X ) ≤ dθ(X )χ(X ).

Therefore Bella and Cammaroto’s inequality is equivalent to
Pospǐsil’s inequality for Urysohn spaces.
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Pospǐsil’s inequality for Urysohn spaces.

Ivan S. Gotchev Cardinal Inequalities
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Willard and Dissanayake’s inequality

Willard and Dissanayake’s inequality

Theorem 4: [Willard and Dissanayake, 1984] If X is a
Hausdorff space, then

|X | ≤ d(X )πχ(X )ψc (X ).

Proposition: If X is a Urysohn space, then

d(X )πχ(X )ψc (X ) ≤ dθ(X )πχ(X )ψθ2 (X ).

Proof:

d(X )πχ(X )ψc (X ) ≤ |X |πχ(X )ψc (X ) ≤ (dθ(X )πχ(X )ψθ2 (X ))πχ(X )ψc (X )

≤ dθ(X )πχ(X )ψθ2 (X ).

Therefore the inequality in Theorem 3 is not better than
Willard and Dissanayake’s inequality but it was useful to show
that d(X )χ(X ) = dθ(X )χ(X ) for every Urysohn space X .
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Open questions

Fleissner’s example
Inequalities with Shanin’s number
Inequalities with the π-weight

Possible improvements of Pospǐsil’s or

Willard and Dissanayake’s inequality

Our aim is to improve the upper bound of the cardinality of a
Hausdorff space given by Willard and Dissanayake’s inequality.

Remark 1: The space X = βω shows that the inequality
|X | ≤ d(X )πχ(X ) can fail even for compact Hausdorff spaces.

Remark 2: Fleissner gave in 1978 a very non-trivial consistent
example of a space X such that |X | > c(X )χ(X ), so it is not
possible, at least in ZFC, to replace the density with the
Souslin number even in Pospǐsil’s inequality.
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Open questions

Fleissner’s example
Inequalities with Shanin’s number
Inequalities with the π-weight

Shanin’s number

Therefore it is natural to ask if d(X ) could be replaced by the
Shanin’s number sh(X ) in Pospǐsil’s or in Willard and
Dissanayake’s inequality because c(X ) ≤ sh(X ) ≤ d(X ) for
any space X .

Remark: sh(X ) = min{κ : κ+ is a caliber of X}.

Recall that a regular cardinal κ is a caliber of a space X if for
any family U of non-empty open subsets of X such that
|U| = κ, there exists a family V ∈ [U ]κ such that

⋂
V 6= ∅.
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Inequalities with Shanin’s number

Theorem 5: [G–T, 2022] If either
max{πχ(X ), t(X )} ≥ sh(X ) or 2sh(X ) = sh(X )+ for a regular
Hausdorff space X , then d(X ) ≤ sh(X )πχ(X )·t(X ).

Corollary: Under GCH, if X is a regular Hausdorff space, then
we have the inequality d(X ) ≤ sh(X )πχ(X )·t(X ).

Remark: Fleissner’s example mentioned before shows that
there is a model of ZFC in which GCH holds and
d(X ) > c(X )χ(X ). Therefore, consistently, we cannot replace
in the above inequality sh(X ) with c(X ).
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Theorem 6: [G–T, 2022] If either
max{πχ(X ), ψc(X )} ≥ sh(X ) or 2sh(X ) = sh(X )+ for a
Hausdorff space X , then |X | ≤ sh(X )πχ(X )·ψc (X ).

Corollary 1: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )πχ(X )·ψc (X ) = sh(X )πχ(X )·ψc (X ).

Therefore, under GCH, the inequality |X | ≤ sh(X )πχ(X )·ψc (X ) is
an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )χ(X ) = sh(X )χ(X ).

Therefore, under GCH, the inequality |X | ≤ sh(X )χ(X ) is an
equivalent form of Pospǐsil’s inequality.
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Pospǐsil’s inequality and some of its generalizations
Inequalities with Shanin’s number and π-character

Open questions

Fleissner’s example
Inequalities with Shanin’s number
Inequalities with the π-weight

Inequalities with Shanin’s number

Theorem 6: [G–T, 2022] If either
max{πχ(X ), ψc(X )} ≥ sh(X ) or 2sh(X ) = sh(X )+ for a
Hausdorff space X , then |X | ≤ sh(X )πχ(X )·ψc (X ).

Corollary 1: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )πχ(X )·ψc (X ) = sh(X )πχ(X )·ψc (X ).

Therefore, under GCH, the inequality |X | ≤ sh(X )πχ(X )·ψc (X ) is
an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )χ(X ) = sh(X )χ(X ).

Therefore, under GCH, the inequality |X | ≤ sh(X )χ(X ) is an
equivalent form of Pospǐsil’s inequality.
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Ivan S. Gotchev Cardinal Inequalities



Pospǐsil’s inequality and some of its generalizations
Inequalities with Shanin’s number and π-character

Open questions

Fleissner’s example
Inequalities with Shanin’s number
Inequalities with the π-weight

Inequalities with the π-weight

Observation: If X is an infinite Hausdorff space, then
d(X )πχ(X )·ψc (X ) = πw(X )πχ(X )·ψc (X ).

Corollary 1: Under GCH, if X is an infinite Hausdorff space,
then we have the equality
sh(X )πχ(X )·ψc (X ) = πw(X )πχ(X )·ψc (X ).

Therefore, under GCH, the inequality |X | ≤ πw(X )πχ(X )·ψc (X )

is an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we
have the equality sh(X )χ(X ) = πw(X )χ(X ).
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Open questions

Question 1: Assume that X is a regular Hausdorff space such
that t(X ) = ψ(X ) = ω and ω1 is a caliber of X . Does there
exist any bound on the cardinality of X? For example, is it
true that |X | ≤ 2c?

Question 2: Assume that X is a regular Hausdorff space such
that t(X ) = ∆(X ) = ω and ω1 is a caliber of X . Does there
exist any bound on the cardinality of X? For example, is it
true that |X | ≤ 2c?

Question 3: Assume that X is a regular σ-closed, discrete
Hausdorff space of countable tightness such that ω1 is a
caliber of X . Does there exist any bound on the cardinality of
X? For example, is it true that |X | ≤ 2c?
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Question 4: Is it true in ZFC that d(X ) ≤ sh(X )πχ(X )·t(X ) for
any regular Hausdorff space X?

Question 5: What is the answer of Questions 1, 2, 3, and 4
when X is a Hausdorff space?

Question 6: Is it true in ZFC that |X | ≤ sh(X )πχ(X )·ψc (X ) for
any Hausdorff space X?

Question 7: Is it true in ZFC that |X | ≤ sh(X )χ(X ) for any
Hausdorff space X?
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Pospǐsil’s inequality and some of its generalizations
Inequalities with Shanin’s number and π-character

Open questions
Several open questions

Open questions

Question 4: Is it true in ZFC that d(X ) ≤ sh(X )πχ(X )·t(X ) for
any regular Hausdorff space X?

Question 5: What is the answer of Questions 1, 2, 3, and 4
when X is a Hausdorff space?

Question 6: Is it true in ZFC that |X | ≤ sh(X )πχ(X )·ψc (X ) for
any Hausdorff space X?

Question 7: Is it true in ZFC that |X | ≤ sh(X )χ(X ) for any
Hausdorff space X?

Ivan S. Gotchev Cardinal Inequalities
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The End

THANK YOU!
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