Cardinal inequalities with Shanin number and π -character

Ivan S. Gotchev Central Connecticut State University

Joint work with Vladimir Tkachuk

36th Summer Topology Conference University of Vienna July 19, 2022

< 🗇 > < 🖃 >

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

Hajnal–Juhász' and Arhangel'skiĭ's inequalities

Two of the most famous cardinal inequalities in the theory of cardinal functions are the Hajnal–Juhász' inequality and Arhangel'skiĩ's inequality:

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

・ロト ・日本 ・モート ・モート

Hajnal–Juhász' and Arhangel'skiĭ's inequalities

Two of the most famous cardinal inequalities in the theory of cardinal functions are the Hajnal–Juhász' inequality and Arhangel'skiĩ's inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space, then

 $|X| \leq 2^{\chi(X)c(X)},$

where $\chi(X)$ is the character and c(X) is the cellularity of X.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

< ロ > < 同 > < 回 > < 正 > < 正

Hajnal–Juhász' and Arhangel'skiĭ's inequalities

Two of the most famous cardinal inequalities in the theory of cardinal functions are the Hajnal–Juhász' inequality and Arhangel'skiï's inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space, then

 $|X| \leq 2^{\chi(X)c(X)},$

where $\chi(X)$ is the character and c(X) is the cellularity of X.

Theorem: [Arhangel'skiĭ's, 1969] If X is a Hausdorff space, then

 $|X| \leq 2^{\chi(X)L(X)},$

where L(X) is the Lindelöf degree of X.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

(4月) (4日) (4日)

Pospišil's inequality

Pol's proof [Pol–1974] uses the so called now "closure" method, aka "Pol-Šapirovskiĭ technique" and the following theorem:

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イポト イラト イラト

Pospišil's inequality

Pol's proof [Pol–1974] uses the so called now "closure" method, aka "Pol-Šapirovskiĭ technique" and the following theorem:

Theorem 1: [Pospišil, 1937] If X is a Hausdorff space, then $|X| \le d(X)^{\chi(X)},$

where d(X) is the density and $\chi(X)$ is the character of X.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

・ロト ・日本 ・モート ・モート

Pospišil's inequality

Pol's proof [Pol–1974] uses the so called now "closure" method, aka "Pol-Šapirovskiĭ technique" and the following theorem:

Theorem 1: [Pospišil, 1937] If X is a Hausdorff space, then $|X| \le d(X)^{\chi(X)},$

where d(X) is the density and $\chi(X)$ is the character of X.

Note that Pospišil's inequality gives a lower upper bound for the cardinality of a space X than Hajnal–Juhász' and Arhangel'skiĩ's inequalities.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

・ロト ・日本 ・モート ・モート

Pospišil's inequality

Pol's proof [Pol–1974] uses the so called now "closure" method, aka "Pol-Šapirovskiĭ technique" and the following theorem:

Theorem 1: [Pospišil, 1937] If X is a Hausdorff space, then $|X| \le d(X)^{\chi(X)},$

where d(X) is the density and $\chi(X)$ is the character of X.

Note that Pospišil's inequality gives a lower upper bound for the cardinality of a space X than Hajnal–Juhász' and Arhangel'skiï's inequalities.

$$d(X)^{\chi(X)} \le |X|^{\chi(X)} \le (2^{\chi(X)c(X)})^{\chi(X)} = 2^{\chi(X)c(X)}$$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イヨト イヨト イヨト

æ

Some definitions

To formulate some of the generalizations of Pospišil's inequality, we need to recall some definitions.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イポト イヨト イヨト

Some definitions

To formulate some of the generalizations of Pospišil's inequality, we need to recall some definitions.

The θ -closure of a set A in a space X, denoted by $cl_{\theta}(A)$, is the set of all points $x \in X$ such that for every open neighborhood U of x we have $cl(U) \cap A \neq \emptyset$.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

・ロト ・日本 ・モート ・モート

Some definitions

To formulate some of the generalizations of Pospišil's inequality, we need to recall some definitions.

The θ -closure of a set A in a space X, denoted by $cl_{\theta}(A)$, is the set of all points $x \in X$ such that for every open neighborhood U of x we have $cl(U) \cap A \neq \emptyset$.

A is called θ -closed if $A = cl_{\theta}(A)$ and A is θ -dense if $cl_{\theta}(A) = X$ (Veličko, 1966).

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イヨト イヨト イヨト

Some definitions

To formulate some of the generalizations of Pospišil's inequality, we need to recall some definitions.

The θ -closure of a set A in a space X, denoted by $cl_{\theta}(A)$, is the set of all points $x \in X$ such that for every open neighborhood U of x we have $cl(U) \cap A \neq \emptyset$.

A is called θ -closed if $A = cl_{\theta}(A)$ and A is θ -dense if $cl_{\theta}(A) = X$ (Veličko, 1966).

The θ -density of a space X is $d_{\theta}(X) = \min\{|A| : A \subset X, cl_{\theta}(A) = X\}.$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イポト イヨト イヨト

Bella and Cammaroto's inequality

Theorem 2: [Bella and Cammaroto, 1988] If X is a Hausdorff space, then

 $|X| \leq d_{\theta}(X)^{\chi(X)},$

where $d_{\theta}(X)$ is the θ -density of X.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

・ロト ・日本 ・モート ・モート

Bella and Cammaroto's inequality

Theorem 2: [Bella and Cammaroto, 1988] If X is a Hausdorff space, then

 $|X| \leq d_{\theta}(X)^{\chi(X)},$

where $d_{\theta}(X)$ is the θ -density of X.

Since $d_{\theta}(X) \leq d(X)$ for every space X, Bella and Cammaroto's inequality is a formal generalization of Pospišil's inequality.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イヨト イヨト イヨト

More definitions

For every Urysohn space X the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, is defined to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and $\bigcap \{ cl_{\theta}(\overline{V}) : V \in \mathcal{V}_x \} = \{x\}.$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

・ロン ・回と ・ヨン ・ヨン

More definitions

For every Urysohn space X the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, is defined to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and $\bigcap \{ cl_{\theta}(\overline{V}) : V \in \mathcal{V}_x \} = \{x\}.$

We note that when $U \subset X$ is open, then $cl(U) = cl_{\theta}(U)$. Therefore, $cl_{\theta}(cl(V)) = cl_{\theta}(cl_{\theta}(V))$. This explains the notation $\psi_{\theta^2}(X)$ and also shows that we can use the notation $\psi_{\theta}(X)$ instead of $\psi_c(X)$.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

More definitions

For every Urysohn space X the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, is defined to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and $\bigcap \{ cl_{\theta}(\overline{V}) : V \in \mathcal{V}_x \} = \{x\}.$

We note that when $U \subset X$ is open, then $cl(U) = cl_{\theta}(U)$. Therefore, $cl_{\theta}(cl(V)) = cl_{\theta}(cl_{\theta}(V))$. This explains the notation $\psi_{\theta^2}(X)$ and also shows that we can use the notation $\psi_{\theta}(X)$ instead of $\psi_c(X)$.

It follows from the definitions that $\psi(x) \leq \psi_c(X) \leq \psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X and that for regular spaces we have $\psi(x) = \psi_c(X) = \psi_{\theta^2}(X)$.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イポト イヨト イヨト

A new generalization of Pospišil's inequality

Theorem 3: [G–T, 2022] If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イポト イヨト イヨト

A new generalization of Pospišil's inequality

Theorem 3: [G–T, 2022] If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロン イヨン イヨン イヨン

A new generalization of Pospišil's inequality

Theorem 3: [G–T, 2022] If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Corollary: If X is a Urysohn space, then

$$d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}.$$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロン イヨン イヨン イヨン

A new generalization of Pospišil's inequality

Theorem 3: [G–T, 2022] If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Corollary: If X is a Urysohn space, then

$$d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}.$$

Proof:

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^2}(X)})^{\chi(X)} \leq d_{ heta}(X)^{\chi(X)}.$$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

A new generalization of Pospišil's inequality

Theorem 3: [G–T, 2022] If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Corollary: If X is a Urysohn space, then

$$d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}.$$

Proof:

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^2}(X)})^{\chi(X)} \leq d_{ heta}(X)^{\chi(X)}.$$

Therefore Bella and Cammaroto's inequality is equivalent to Pospišil's inequality for Urysohn spaces.

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

イロト イヨト イヨト イヨト

Willard and Dissanayake's inequality

Theorem 4: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

 $|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}.$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

(人間) とうき くうり

Willard and Dissanayake's inequality

Theorem 4: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

$$|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}$$

Proposition: If X is a Urysohn space, then

$$d(X)^{\pi\chi(X)\psi_c(X)} \leq d_ heta(X)^{\pi\chi(X)\psi_{ heta^2}(X)}$$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

(人間) とうき くうり

Willard and Dissanayake's inequality

Theorem 4: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

$$|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}$$

Proposition: If X is a Urysohn space, then

$$d(X)^{\pi\chi(X)\psi_c(X)} \leq d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^2}(X)}$$

Proof:

$$egin{aligned} d(X)^{\pi\chi(X)\psi_{c}(X)} &\leq |X|^{\pi\chi(X)\psi_{c}(X)} \leq (d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^{2}}(X)})^{\pi\chi(X)\psi_{c}(X)} \ &\leq d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^{2}}(X)}. \end{aligned}$$

Bella and Cammaroto's inequality A new generalization of Pospišil's inequality Willard and Dissanayake's inequality

Willard and Dissanayake's inequality

Theorem 4: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

$$|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}.$$

Proposition: If X is a Urysohn space, then

$$d(X)^{\pi\chi(X)\psi_c(X)} \leq d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^2}(X)}$$

Proof:

$$egin{aligned} d(X)^{\pi\chi(X)\psi_{c}(X)} &\leq |X|^{\pi\chi(X)\psi_{c}(X)} \leq (d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^{2}}(X)})^{\pi\chi(X)\psi_{c}(X)} \ &\leq d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^{2}}(X)}. \end{aligned}$$

Therefore the inequality in Theorem 3 is not better than Willard and Dissanayake's inequality but it was useful to show that $d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}$ for every Urysohn space X.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

- 4 同 ト 4 ヨ ト 4 ヨ ト

Possible improvements of Pospišil's or Willard and Dissanayake's inequality

Our aim is to improve the upper bound of the cardinality of a Hausdorff space given by Willard and Dissanayake's inequality.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イポト イヨト イヨト

Possible improvements of Pospišil's or Willard and Dissanayake's inequality

Our aim is to improve the upper bound of the cardinality of a Hausdorff space given by Willard and Dissanayake's inequality.

Remark 1: The space $X = \beta \omega$ shows that the inequality $|X| \le d(X)^{\pi \chi(X)}$ can fail even for compact Hausdorff spaces.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロン イヨン イヨン イヨン

Possible improvements of Pospišil's or Willard and Dissanayake's inequality

Our aim is to improve the upper bound of the cardinality of a Hausdorff space given by Willard and Dissanayake's inequality.

Remark 1: The space $X = \beta \omega$ shows that the inequality $|X| \le d(X)^{\pi \chi(X)}$ can fail even for compact Hausdorff spaces.

Remark 2: Fleissner gave in 1978 a very non-trivial consistent example of a space X such that $|X| > c(X)^{\chi(X)}$, so it is not possible, at least in ZFC, to replace the density with the Souslin number even in Pospišil's inequality.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イポト イヨト イヨト

Shanin's number

Therefore it is natural to ask if d(X) could be replaced by the Shanin's number sh(X) in Pospišil's or in Willard and Dissanayake's inequality because $c(X) \le sh(X) \le d(X)$ for any space X.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イポト イヨト イヨト

Shanin's number

Therefore it is natural to ask if d(X) could be replaced by the Shanin's number sh(X) in Pospišil's or in Willard and Dissanayake's inequality because $c(X) \le sh(X) \le d(X)$ for any space X.

Remark: $sh(X) = \min\{\kappa : \kappa^+ \text{ is a caliber of } X\}.$

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロン イヨン イヨン イヨン

Shanin's number

Therefore it is natural to ask if d(X) could be replaced by the Shanin's number sh(X) in Pospišil's or in Willard and Dissanayake's inequality because $c(X) \le sh(X) \le d(X)$ for any space X.

Remark: $sh(X) = \min\{\kappa : \kappa^+ \text{ is a caliber of } X\}.$

Recall that a regular cardinal κ is a caliber of a space X if for any family \mathcal{U} of non-empty open subsets of X such that $|\mathcal{U}| = \kappa$, there exists a family $\mathcal{V} \in [\mathcal{U}]^{\kappa}$ such that $\bigcap \mathcal{V} \neq \emptyset$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イポト イヨト イヨト

Inequalities with Shanin's number

Theorem 5: [G–T, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イポト イヨト イヨト

Inequalities with Shanin's number

Theorem 5: [G–T, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Corollary: Under GCH, if X is a regular Hausdorff space, then we have the inequality $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イヨト イヨト イヨト

Inequalities with Shanin's number

Theorem 5: [G–T, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Corollary: Under GCH, if X is a regular Hausdorff space, then we have the inequality $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Remark: Fleissner's example mentioned before shows that there is a model of ZFC in which GCH holds and $d(X) > c(X)^{\chi(X)}$. Therefore, consistently, we cannot replace in the above inequality sh(X) with c(X).

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロン イヨン イヨン イヨン

Inequalities with Shanin's number

Theorem 6: [G–T, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロン イヨン イヨン イヨン

Inequalities with Shanin's number

Theorem 6: [G–T, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロン イヨン イヨン イヨン

Inequalities with Shanin's number

Theorem 6: [G–T, 2022] If either $\max{\{\pi\chi(X), \psi_c(X)\}} \ge sh(X) \text{ or } 2^{sh(X)} = sh(X)^+ \text{ for a}$ Hausdorff space X, then $|X| \le sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロン 不同と 不同と 不同と

Inequalities with Shanin's number

Theorem 6: [G–T, 2022] If either $\max{\{\pi\chi(X), \psi_c(X)\}} \ge sh(X) \text{ or } 2^{sh(X)} = sh(X)^+ \text{ for a}$ Hausdorff space X, then $|X| \le sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\chi(X)} = sh(X)^{\chi(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

<ロ> <同> <同> < 同> < 同> < 同>

Inequalities with Shanin's number

Theorem 6: [G–T, 2022] If either $\max{\{\pi\chi(X), \psi_c(X)\}} \ge sh(X) \text{ or } 2^{sh(X)} = sh(X)^+ \text{ for a}$ Hausdorff space X, then $|X| \le sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\chi(X)} = sh(X)^{\chi(X)}$.

Therefore, under GCH, the inequality $|X| \le sh(X)^{\chi(X)}$ is an equivalent form of Pospišil's inequality.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イヨト イヨト イヨト

æ

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イヨト イヨト イヨト

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is an infinite Hausdorff space, then we have the equality $sh(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イヨト イヨト イヨト

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is an infinite Hausdorff space, then we have the equality $sh(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

イロト イヨト イヨト イヨト

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is an infinite Hausdorff space, then we have the equality $sh(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we have the equality $sh(X)^{\chi(X)} = \pi w(X)^{\chi(X)}$.

Fleissner's example Inequalities with Shanin's number Inequalities with the π -weight

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary 1: Under GCH, if X is an infinite Hausdorff space, then we have the equality $sh(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary 2: Under GCH, if X is a Hausdorff space, then we have the equality $sh(X)^{\chi(X)} = \pi w(X)^{\chi(X)}$.

Therefore, under GCH, the inequality $|X| \le \pi w(X)^{\chi(X)}$ is an equivalent form of Pospišil's inequality.

Several open questions

Open questions

Question 1: Assume that X is a regular Hausdorff space such that $t(X) = \psi(X) = \omega$ and ω_1 is a caliber of X. Does there exist any bound on the cardinality of X? For example, is it true that $|X| \le 2^{c}$?

イロト イヨト イヨト イヨト

Several open questions

Open questions

Question 1: Assume that X is a regular Hausdorff space such that $t(X) = \psi(X) = \omega$ and ω_1 is a caliber of X. Does there exist any bound on the cardinality of X? For example, is it true that $|X| \le 2^{c}$?

Question 2: Assume that X is a regular Hausdorff space such that $t(X) = \Delta(X) = \omega$ and ω_1 is a caliber of X. Does there exist any bound on the cardinality of X? For example, is it true that $|X| \le 2^{c}$?

・ロン ・回と ・ヨン ・ヨン

Several open questions

Open questions

Question 1: Assume that X is a regular Hausdorff space such that $t(X) = \psi(X) = \omega$ and ω_1 is a caliber of X. Does there exist any bound on the cardinality of X? For example, is it true that $|X| \le 2^{c}$?

Question 2: Assume that X is a regular Hausdorff space such that $t(X) = \Delta(X) = \omega$ and ω_1 is a caliber of X. Does there exist any bound on the cardinality of X? For example, is it true that $|X| \le 2^{c}$?

Question 3: Assume that X is a regular σ -closed, discrete Hausdorff space of countable tightness such that ω_1 is a caliber of X. Does there exist any bound on the cardinality of X? For example, is it true that $|X| \leq 2^{c}$?

イロト イヨト イヨト イヨト

Several open questions

Open questions

Question 4: Is it true in ZFC that $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$ for any regular Hausdorff space X?

イロト イヨト イヨト イヨト

æ

Several open questions

Open questions

Question 4: Is it true in ZFC that $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$ for any regular Hausdorff space X?

Question 5: What is the answer of Questions 1, 2, 3, and 4 when *X* is a Hausdorff space?

イロト イヨト イヨト イヨト

Several open questions

Open questions

Question 4: Is it true in ZFC that $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$ for any regular Hausdorff space X?

Question 5: What is the answer of Questions 1, 2, 3, and 4 when *X* is a Hausdorff space?

Question 6: Is it true in ZFC that $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ for any Hausdorff space X?

<ロ> <同> <同> <同> < 同> < 同>

Several open questions

Open questions

Question 4: Is it true in ZFC that $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$ for any regular Hausdorff space X?

Question 5: What is the answer of Questions 1, 2, 3, and 4 when *X* is a Hausdorff space?

Question 6: Is it true in ZFC that $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ for any Hausdorff space X?

Question 7: Is it true in ZFC that $|X| \leq sh(X)^{\chi(X)}$ for any Hausdorff space X?

イロト イヨト イヨト イヨト

Several open questions

The End

THANK YOU!

Ivan S. Gotchev Cardinal Inequalities

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ