Pure point diffraction and entropy beyond the euclidean space

Till Hauser

MPI Bonn

July 21, 2022

Naturhistorisches Museum Wien (wikipedia.org)

(www.nhm-wien.ac.at)

- 0. Introduction
- 1. Dyadic numbers

- 0. Introduction
- 1. Dyadic numbers
- 2. Delone sets
 - 2.1 Pure point diffraction
 - 2.2 Patch counting entropy

- 0. Introduction
- 1. Dyadic numbers
- 2. Delone sets
 - 2.1 Pure point diffraction
 - 2.2 Patch counting entropy
- 3. Euclidean case.

- 0. Introduction
- 1. Dyadic numbers
- 2. Delone sets
 - 2.1 Pure point diffraction
 - 2.2 Patch counting entropy
- 3. Euclidean case.
- 4. Dyadic case (Main result).

Setting

G σ-compact locally compact Abelian group (σ-cpt. LCA group).

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 $\mathbb{Z}^d,\,\mathbb{R}^d,\,\mathbb{T}^d,\,\dots$

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=0}^{n} x_k 2^k.$$

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=0}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=0}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with respect to standard metric.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 . x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-\infty}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := \mathsf{set} \ \mathsf{of} \ \mathsf{rational} \ \mathsf{numbers} \ \mathsf{with} \ \mathsf{finite} \ \mathsf{binary} \ \mathsf{expansion} \ \mathsf{as} \ \mathsf{above}.$

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with respect to standard metric.

 \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 \cdot x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R}, \mathbb{Q}_2 field extensions of \mathbb{Q} .

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 \cdot x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R}, \mathbb{Q}_2 field extensions of \mathbb{Q} .

0.010101010101...

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 \cdot x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := \text{set of rational numbers with finite binary expansion as above.}$

respect to standard metric.

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to 'mirrored' metric.

 \mathbb{R}, \mathbb{Q}_2 field extensions of \mathbb{Q} .

0.010101010101...

01010101011 0

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Remark (Basic Idea of dyadic numbers \mathbb{Q}_2)

For
$$(x_k)_{k=-m}^n$$
 in $\{0,1\}$:

$$x_n \dots x_1 \cdot x_0 x_{(-1)} \dots x_{(-m)} := \sum_{k=-m}^{m} x_k 2^k.$$

 $\mathbb{Z}[1/2] := set of rational numbers with finite binary expansion as above.$

 \mathbb{R} 'completion' of $\mathbb{Z}[1/2]$ with \mathbb{Q}_2 'completion' of $\mathbb{Z}[1/2]$ with respect to standard metric. respect to 'mirrored' metric.

 \mathbb{R}, \mathbb{Q}_2 field extensions of \mathbb{Q} .

$$0.010101010101\dots = \frac{1}{3} = \dots 01010101011\dots$$

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Definition (Delone set)

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d . \mathbb{R}^d . \mathbb{T}^d

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Definition (Delone set)

 $\omega \subseteq G$ uniformly discrete, whenever there is an open neighbourhood $V \subseteq G$ such that $\{V + x; x \in \omega\}$ is a disjoint family.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Definition (Delone set)

 $\omega \subseteq G$ uniformly discrete, whenever there is an open neighbourhood $V \subseteq G$ such that $\{V + x; x \in \omega\}$ is a disjoint family.

 $\omega \subseteq G$ relatively dense, whenever there is a compact subset $K \subseteq G$ such that $\bigcup_{x \in \omega} (K + x) = G$.

Setting

G σ -compact locally compact Abelian group (σ -cpt. LCA group).

Example

 \mathbb{Z}^d , \mathbb{R}^d , \mathbb{T}^d , ...

Example

Additive group of 2-adic numbers \mathbb{Q}_2 .

Definition (Delone set)

 $\omega \subseteq G$ uniformly discrete, whenever there is an open neighbourhood $V \subseteq G$ such that $\{V + x; x \in \omega\}$ is a disjoint family.

 $\omega \subseteq G$ relatively dense, whenever there is a compact subset $K \subseteq G$ such that $\bigcup_{x \in \omega} (K + x) = G$.

 $\omega \subseteq G$ *Delone*, whenever ω uniformly discrete and relatively dense.

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the *set* of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the set of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the set of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

Definition (Patches)

Let $\omega\subseteq G$ be a Delone set. For compact subsets $A\subseteq G$ we define the *set* of A-patches as

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}.$$

• •

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega\subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A\subseteq G$.

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega \subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A \subseteq G$.

Example

 $\mathbb{Z} \subseteq \mathbb{R}$ is a FLC Delone set.

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega \subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A \subseteq G$.

Example

 $\mathbb{Z}\subseteq\mathbb{R}$ is a FLC Delone set.

Example

 $\{n+1/n;\ n\in\mathbb{Z}\setminus\{0\}\}\subseteq\mathbb{R}$ is a Delone set but not FLC.

Definition (Patches)

$$\mathsf{Pat}_{\omega}(A) := \{(\omega - g) \cap A; \ g \in \omega\}$$

Definition (FLC)

 $\omega \subseteq G$ is called *FLC* (of finite local complexity), if $\operatorname{Pat}_{\omega}(A)$ is finite for all compact subsets $A \subseteq G$.

Example

 $\mathbb{Z} \subseteq \mathbb{R}$ is a FLC Delone set.

Example

 $\{n+1/n;\ n\in\mathbb{Z}\setminus\{0\}\}\subseteq\mathbb{R}$ is a Delone set but not FLC.

Example

FLC Delone set:

Definition: pure point diffraction and entropy

Setting

$$G = \mathbb{Q}_2$$
, or $G = \mathbb{R}^d$.

Definition: pure point diffraction and entropy

Setting

$$G = \mathbb{Q}_2$$
, or $G = \mathbb{R}^d$.

Definition (Pure point diffraction)

A FLC Delone set ω is called *pure point diffractive* (PPD), whenever

- (i) $\frac{1}{\vartheta(B_n)} \sum_{g \in (B_n \cap \omega) (B_n \cap \omega)} \delta_g$ converges in the weak*-topology (to γ).
- (ii) The Fourier transform $\hat{\gamma}$ of γ is a pure point measure.

Definition: pure point diffraction and entropy

Setting

$$G = \mathbb{Q}_2$$
, or $G = \mathbb{R}^d$.

Definition (Pure point diffraction)

A FLC Delone set ω is called *pure point diffractive* (PPD), whenever

- (i) $\frac{1}{\vartheta(B_n)} \sum_{g \in (B_n \cap \omega) (B_n \cap \omega)} \delta_g$ converges in the weak*-topology (to γ).
- (ii) The Fourier transform $\hat{\gamma}$ of γ is a pure point measure.

Definition (Patch counting entropy)

We define the patch counting entropy of a FLC Delone set $\omega \subseteq G$ as

$$h_{pat}(\omega) := \limsup_{n \to \infty} \frac{\log |\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}.$$

Theorem (J. Lagarias., T.H.)

For any FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to $h_{pat}(\omega) < \infty$.

Theorem (J. Lagarias., T.H.)

For any FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to $h_{pat}(\omega) < \infty$.

Theorem (M. Baake, D. Lenz, C. Richard)

For any PPD FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (J. Lagarias., T.H.)

For any FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to $h_{pat}(\omega) < \infty$.

Theorem (M. Baake, D. Lenz, C. Richard)

For any PPD FLC Delone set $\omega \subset \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (H. 2022)

For $0 \le s \le r \le \infty$ there exists a PPD FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

- (i) $h_{pat}(\omega) = r$,
- (i) $\liminf_{n\to\infty} \frac{\log |\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)} = s$.

Remark

(i) non-existence of the limit.

Theorem (J. Lagarias., T.H.)

For any FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to $h_{pat}(\omega) < \infty$.

Theorem (M. Baake, D. Lenz, C. Richard)

For any PPD FLC Delone set $\omega \subset \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (H. 2022)

For $0 \le s \le r \le \infty$ there exists a PPD FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

- (i) $h_{pat}(\omega) = r$,
- (i) $\liminf_{n\to\infty} \frac{\log |\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)} = s$.

Remark

- (i) non-existence of the limit.
- (ii) $h_{pat}(\omega) = \infty$ possible.

Theorem (J. Lagarias., T.H.)

For any FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to $h_{pat}(\omega) < \infty$.

Theorem (M. Baake, D. Lenz, C. Richard)

For any PPD FLC Delone set $\omega \subseteq \mathbb{R}^d$

$$\left(\frac{\log|\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)}\right)_{n\in\mathbb{N}}$$

converges to 0.

Theorem (H. 2022)

For $0 \le s \le r \le \infty$ there exists a PPD FLC Delone set $\omega \subseteq \mathbb{Q}_2$ such that

- (i) $h_{pat}(\omega) = r$,
- (i) $\liminf_{n\to\infty} \frac{\log |\operatorname{Pat}_{\omega}(B_n)|}{\vartheta(B_n)} = s$.

Remark

- (i) non-existence of the limit.
- (ii) $h_{pat}(\omega) = \infty$ possible.
- (iii) 'regular model sets' $\omega \subseteq \mathbb{Q}_2$ satisfy $h_{pat}(\omega) = 0$ [C. Huck, C. Richard].

Definition

 ω Delone set. $B\subseteq G$ compact, V open neighbourhood of 0. $F\subseteq \omega$ is called a B-patch representation at scale V for ω , whenever

$$\forall g \in G \exists f \in F : (\omega - f) \cap B \subseteq (\omega - g) + V \text{ and v.v..}$$

 $\mathsf{pat}_{\omega}(B,V) := \mathsf{minimal} \ \mathsf{cardinality} \ \mathsf{of} \ \mathsf{such} \ \mathsf{a} \ \mathsf{representation}.$

Definition

 ω Delone set. $B \subseteq G$ compact, V open neighbourhood of 0.

 $F\subseteq\omega$ is called a *B-patch representation at scale V for* ω , whenever

$$\forall g \in G \exists f \in F : (\omega - f) \cap B \subseteq (\omega - g) + V \text{ and v.v.}.$$

 $\mathsf{pat}_{\omega}(B,V) := \mathsf{minimal} \ \mathsf{cardinality} \ \mathsf{of} \ \mathsf{such} \ \mathsf{a} \ \mathsf{representation}.$

Definition

$$h'_{pat}(\omega) := \sup_V \limsup_{n \to \infty} rac{\log \operatorname{pat}_{\omega}(\mathcal{B}_n, V)}{\vartheta(\mathcal{B}_n)}.$$

Definition

 ω Delone set. $B \subseteq G$ compact, V open neighbourhood of 0.

 $F\subseteq \omega$ is called a *B-patch representation at scale* V *for* ω , whenever

$$\forall g \in G \exists f \in F : (\omega - f) \cap B \subseteq (\omega - g) + V \text{ and v.v.}.$$

 $\mathsf{pat}_{\omega}(B,V) := \mathsf{minimal} \ \mathsf{cardinality} \ \mathsf{of} \ \mathsf{such} \ \mathsf{a} \ \mathsf{representation}.$

Definition

$$h'_{pat}(\omega) := \sup_V \limsup_{n \to \infty} rac{\log \operatorname{pat}_{\omega}(\mathcal{B}_n, V)}{\vartheta(\mathcal{B}_n)}.$$

Remark

All FLC Delone sets in \mathbb{R}^d satisfy $h_{pat}(\omega) = h'_{pat}(\omega)$.

Definition

 ω Delone set. $B \subseteq G$ compact, V open neighbourhood of 0.

 $\mathit{F} \subseteq \omega$ is called a $\mathit{B-patch}$ representation at scale V for ω , whenever

$$\forall g \in G \exists f \in F : (\omega - f) \cap B \subseteq (\omega - g) + V \text{ and v.v..}$$

 $\mathsf{pat}_{\omega}(B,V) := \mathsf{minimal}\ \mathsf{cardinality}\ \mathsf{of}\ \mathsf{such}\ \mathsf{a}\ \mathsf{representation}.$

Definition

$$h_{\mathit{pat}}'(\omega) := \sup_V \limsup_{n \to \infty} rac{\log \mathsf{pat}_\omega(\mathcal{B}_n, V)}{\vartheta(\mathcal{B}_n)}.$$

Remark

All FLC Delone sets in \mathbb{R}^d satisfy $h_{pat}(\omega) = h'_{pat}(\omega)$.

Theorem (T.H.)

All PPD FLC Delone sets in \mathbb{Q}_2 satisfy $h'_{nat}(\omega) = 0$.