The hyperspace of noncut subcontinua of a hairy dendrite

Rodrigo Hernández-Gutiérrez¹ Jorge E. Vega²

¹Department of Mathematics Universidad Autónoma Metropolitana, Iztapalapa

²Instituto de Matemáticas Universidad Nacional Autónoma de México

36th Summer Topology Conference Vienna, Austria, July 19, 2022

-

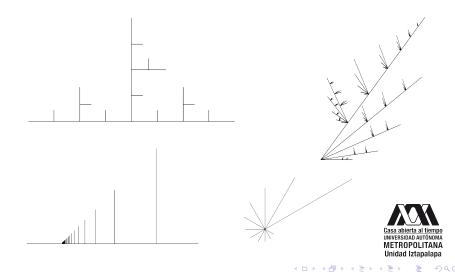
・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Joint work with Jorge Vega

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ● ●

Dendrites

A **dendrite** is a locally connected metric continuum that does not contain simple closed curves.



Menger-Urysohn order

Let X be a dendrite and $p \in X$. The **Menger-Urysohn order** of p in X is the number of components of $X \setminus \{p\}$ and is denoted by $\operatorname{ord}(p, X)$.

・ロット (雪) ・ (日) ・ (日) ・ (日)

Menger-Urysohn order

Let X be a dendrite and $p \in X$. The **Menger-Urysohn order** of p in X is the number of components of $X \setminus \{p\}$ and is denoted by $\operatorname{ord}(p, X)$.

$$\begin{split} E(X) &= \{p \in X : \operatorname{ord}(p, X) = 1\} & \text{endpoints} \\ O(X) &= \{p \in X : \operatorname{ord}(p, X) = 2\} & \text{ordinary points} \\ R(X) &= \{p \in X : \operatorname{ord}(p, X) \geq 3\} & \text{ramification points} \end{split}$$

・ロット (雪) ・ (日) ・ (日) ・ (日)

Menger-Urysohn order

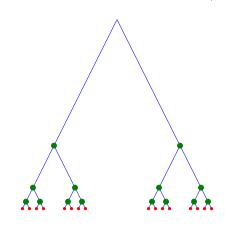
Let X be a dendrite and $p \in X$. The **Menger-Urysohn order** of p in X is the number of components of $X \setminus \{p\}$ and is denoted by $\operatorname{ord}(p, X)$.

$$\begin{split} E(X) &= \{p \in X : \operatorname{ord}(p, X) = 1\} & \text{endpoints} \\ O(X) &= \{p \in X : \operatorname{ord}(p, X) = 2\} & \text{ordinary points} \\ R(X) &= \{p \in X : \operatorname{ord}(p, X) \geq 3\} & \text{ramification points} \end{split}$$

Important: For dendrites, ord(p, X) can be any finite number or ω .

・ロト ・ 同ト ・ ヨト ・ ヨト

Example: points by their order



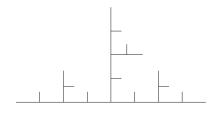
Ξ 9 Q (P

・ロト ・四ト ・ヨト ・ヨト

"Hairy" dendrites

Lemma (J. Chatatonik, W. Charatonik and J. Prajs, 1994) For a dendrite X, the following are equivalent.

- 1. E(X) is dense,
- 2. R(X) is dense, and
- 3. if α is an arc in X, then $\alpha \cap R(X)$ is dense.



Non-cut subcontinua

Let X be a metric continuum; then

$$2^{X} = \{A \subset X : A \text{ is closed and nonempty}\},\$$
$$C(X) = \{A \in 2^{X} : A \text{ is a continuum}\}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Non-cut subcontinua

Let X be a metric continuum; then

$$2^{X} = \{A \subset X : A \text{ is closed and nonempty}\},\$$
$$C(X) = \{A \in 2^{X} : A \text{ is a continuum}\}.$$

It is known that 2^X and C(X) are non-degenerate metric continua if X is non-degenerate.

(日)

Non-cut subcontinua

Let X be a metric continuum; then

$$2^X = \{A \subset X : A \text{ is closed and nonempty}\},\$$

 $C(X) = \{A \in 2^X : A \text{ is a continuum}\}.$

It is known that 2^X and C(X) are non-degenerate metric continua if X is non-degenerate.

 $NC^*(X) = \{A \in C(X) \colon X \setminus A \text{ is connected}\}.$

A D > A P > A B > A B >

Total disconnected and ... ?

Theorem (Jorge Martinez-Montejano, Verónica Martinez-de-la-Vega and Jorge Vega) If X is a dendrite where R(X) is dense, then $NC^*(X)$ is totally disconnected.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Jorge Martinez-Montejano, Verónica Martinez-de-la-Vega and Jorge Vega) If X is a dendrite where R(X) is dense, then $NC^*(X)$ is totally disconnected.

Theorem (HG and Vega) If X is a dendrite where R(X) is dense, then $NC^*(X) \approx \mathbb{R} \setminus \mathbb{Q}$.

A D > A P > A B > A B >

Characterization of $\mathbb{R} \setminus \mathbb{Q}$

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

- $X \approx \mathbb{R} \setminus \mathbb{Q}$, and
- > X is Polish, zero dimensional and nowhere locally compact.

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Characterization of $\mathbb{R} \setminus \mathbb{Q}$

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

- $X \approx \mathbb{R} \setminus \mathbb{Q}$, and
- > X is Polish, zero dimensional and nowhere locally compact.

Theorem (Krupski and Samulewicz, 2017)

If X is a locally connected continuum, then the family S(X) of all compacta that separate X is an F_{σ} -subset of 2^{X} .

A D > A P > A B > A B >

Characterization of $\mathbb{R} \setminus \mathbb{Q}$

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

- $X \approx \mathbb{R} \setminus \mathbb{Q}$, and
- > X is Polish, zero dimensional and nowhere locally compact.

Theorem (Krupski and Samulewicz, 2017)

If X is a locally connected continuum, then the family S(X) of all compacta that separate X is an F_{σ} -subset of 2^{X} .

$$NC^*(X) = C(X) \setminus S(X)$$

A D > A P > A B > A B >

Elements of $NC^*(X)$ when X is a dendrite

Theorem (Martinez-Montejano, Martinez-de-la-Vega and Vega)

Let X be a dendrite and let $A \in C(X)$. Then $A \in NC^*(X)$ if and only if one of the following holds:

•
$$A = \{e\}$$
 for some $e \in E(X)$, or

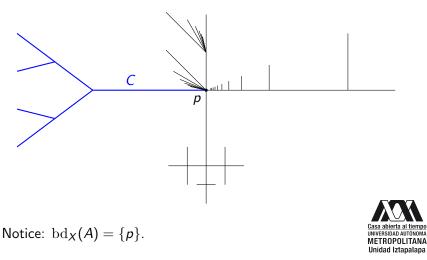
 $\blacktriangleright A = X$

• $A = X \setminus C$, where C is a component of $X \setminus \{p\}$ with $p \in X \setminus E(X)$.

(日)

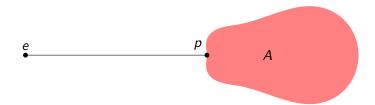
Example of $A \in NC^*(X)$.

$$A = X \setminus C$$



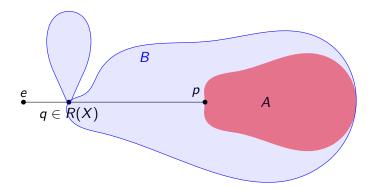
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $A \in NC^*(X)$.



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

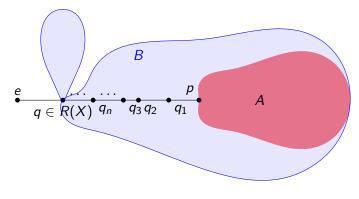
Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.



æ

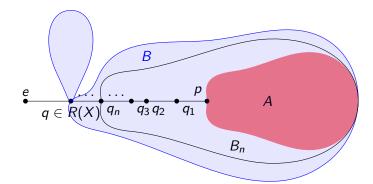
<ロト <回ト < 注ト < 注ト

Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.



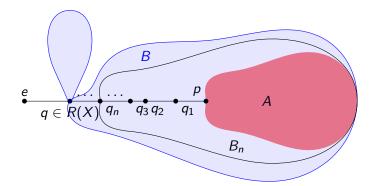
<ロト <回ト < 注ト < 注ト

Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.



<ロト <回ト < 注ト < 注ト

Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.



Then $\{B_n : n \in \mathbb{N}\}$ is closed and discrete in $NC^*(X)$.


```
Clopen sets in NC^*(X)
```

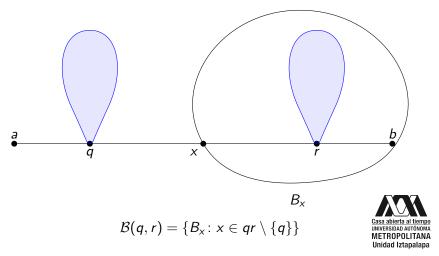
Let $q, r \in [ab \setminus \{a, b\}] \cap R(X)$.

$$\mathcal{B}(q,r) = \{B_x \colon x \in qr \setminus \{q\}\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Clopen sets in $NC^*(X)$

Let $q, r \in [ab \setminus \{a, b\}] \cap R(X)$.



Question

In general, what space is $NC^*(X)$ when X is a dendroid?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

In general, what space is $NC^*(X)$ when X is a dendroid?

More interesting question (for me):

(日) (四) (日) (日) (日)

Question

In general, what space is $NC^*(X)$ when X is a dendroid?

More interesting question (for me):

Question

Is there a dendroid X such that $NC^*(X)$ is totally disconnected but not zero dimensional?

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Question

In general, what space is $NC^*(X)$ when X is a dendroid?

More interesting question (for me):

Question

Is there a dendroid X such that $NC^*(X)$ is totally disconnected but not zero dimensional?

Question

If X is the Mohler-Nikiel universal smooth dendroid, is $NC^*(X)$ totally disconnected and not zero-dimensional?

A D > A P > A B > A B >

Thank you

Preprint available at: https://arxiv.org/abs/2108.06020

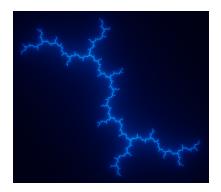


Figure: The Julia set of $z \mapsto z^2 + i$ is homeomorphic to D_3 . https://sciencedemos.org.uk/julia.php

・ロト ・ 理 ト ・ ヨ ト ・