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Dendrites
A dendrite is a locally connected metric continuum that does not
contain simple closed curves.



Menger-Urysohn order

Let X be a dendrite and p ∈ X . The Menger-Urysohn order of p
in X is the number of components of X \ {p} and is denoted by
ord(p,X ).

E (X ) = {p ∈ X : ord(p,X ) = 1} endpoints

O(X ) = {p ∈ X : ord(p,X ) = 2} ordinary points

R(X ) = {p ∈ X : ord(p,X ) ≥ 3} ramification points

Important: For dendrites, ord(p,X ) can be any finite number or ω.
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Example: points by their order



“Hairy” dendrites

Lemma (J. Chatatonik, W. Charatonik and J. Prajs, 1994)

For a dendrite X , the following are equivalent.

1. E (X ) is dense,

2. R(X ) is dense, and

3. if α is an arc in X , then α ∩ R(X ) is dense.



Non-cut subcontinua

Let X be a metric continuum; then

2X = {A ⊂ X : A is closed and nonempty},

C (X ) = {A ∈ 2X : A is a continuum}.

It is known that 2X and C (X ) are non-degenerate metric continua
if X is non-degenerate.

NC ∗(X ) = {A ∈ C (X ) : X \ A is connected}.
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Total disconnected and ... ?

Theorem (Jorge Martinez-Montejano, Verónica
Martinez-de-la-Vega and Jorge Vega)

If X is a dendrite where R(X ) is dense, then NC ∗(X ) is totally
disconnected.

Theorem (HG and Vega)

If X is a dendrite where R(X ) is dense, then NC ∗(X ) ≈ R \Q.
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Characterization of R \Q

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

I X ≈ R \Q, and

I X is Polish, zero dimensional and nowhere locally compact.

Theorem (Krupski and Samulewicz, 2017)

If X is a locally connected continuum, then the family S(X ) of all
compacta that separate X is an Fσ-subset of 2X .

NC ∗(X ) = C (X ) \ S(X )
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Elements of NC ∗(X ) when X is a dendrite

Theorem (Martinez-Montejano, Martinez-de-la-Vega and
Vega)

Let X be a dendrite and let A ∈ C (X ). Then A ∈ NC ∗(X ) if and
only if one of the following holds:

I A = X,

I A = {e} for some e ∈ E (X ), or

I A = X \ C, where C is a component of X \ {p} with
p ∈ X \ E (X ).



Example of A ∈ NC ∗(X ).

A = X \ C

C
p

Notice: bdX (A) = {p}.



Some closed discrete sets

Let A ∈ NC ∗(X ).

Choose B ∈ NC ∗(X ) close to A such that
q ∈ R(X ).

e
A

p

q ∈ R(X )

B

q1q2q3

. . .
qn

. . .

Bn

Then {Bn : n ∈ N} is closed and discrete in NC ∗(X ).
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Clopen sets in NC ∗(X )

Let q, r ∈ [ab \ {a, b}] ∩ R(X ).

a b
q r

x

Bx

B(q, r) = {Bx : x ∈ qr \ {q}}
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Open questions

Question
In general, what space is NC ∗(X ) when X is a dendroid?

More interesting question (for me):

Question
Is there a dendroid X such that NC ∗(X ) is totally disconnected
but not zero dimensional?

Question
If X is the Mohler-Nikiel universal smooth dendroid, is NC ∗(X )
totally disconnected and not zero-dimensional?
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Thank you
Preprint available at:

https://arxiv.org/abs/2108.06020

Figure: The Julia set of z 7→ z2 + i is homeomorphic to D3.
https://sciencedemos.org.uk/julia.php
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