1 On the Hilbert Cube

The (countable) Hilbert cube is defined as the (countable) cartesian product of the (euclidean) unit interval $[0,1]$ with itself:

$$
\mathcal{H}=[0,1]^{\mathbb{N}}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}: x_{n} \in[0,1] \text { for all } n \in \mathbb{N}\right\} .
$$

We equip \mathcal{H} is product topology, that is the topology determined by the basis

$$
\mathcal{B}_{0}:=\left\{B \subset \mathcal{H}: \exists N \in \mathbb{N} \exists \text { open } U_{j} \text { for } j \leq N \text { such that }\left(x_{n}\right) \in B \Leftrightarrow x_{j} \in U_{j} \text { for } j \leq N\right\} .
$$

Hence there are no restriction for the coordinates x_{j} with $j>N$. Since open sets in $[0,1]$ are unions of open intervals (in the relative topology, so e.g. [0, $1 / 2$) is open too), a simpler basis is $\mathcal{B}:=\left\{B \subset \mathcal{H}: \exists N \in \mathbb{N} \exists\right.$ open intervals I_{j} for $j \leq N$ such that $\left(x_{n}\right) \in B \Leftrightarrow x_{j} \in I_{j}$ for $\left.j \leq N\right\}$. A subbasis for this \mathcal{B}^{\prime} is the following:

$$
\begin{aligned}
\mathcal{S}= & \left\{S \subset \mathcal{H}: \exists N \in \mathbb{N} \exists a \in[0,1) \text { such that }\left(x_{n}\right) \in B \Leftrightarrow x_{N} \in(a, 1]\right\} \\
& \cup\left\{S \subset \mathcal{H}: \exists N \in \mathbb{N} \exists b \in(0,1] \text { such that }\left(x_{n}\right) \in B \Leftrightarrow x_{N} \in[0, b)\right\} .
\end{aligned}
$$

The Hilbert cube with product topology is metric. A valid metric, that generated this topology, is

$$
d_{\text {prod }}(x, y)=\sum_{n \in \mathbb{N}} 2^{-n}\left|x_{n}-y_{n}\right| .
$$

To show that this metric indeed produces the product topology, first observe that open balls $B_{\varepsilon}(x)$ in the metric $d_{\text {prod }}$ are open set. Indeed, given $\varepsilon>0$, there is N such that $2^{N} \varepsilon>2$. For $y \in B_{\varepsilon}(x), d_{\text {prod }}(x, y)<\sum_{n>N} 2^{-n}$, so for $j \leq N$ we can find open intervals $I_{j} \ni y_{j}$ of length $\left(\varepsilon-d_{\text {prod }}(x, y)\right) / 3$. Then

$$
y \in B:=I_{0} \times I_{1} \times I_{2} \times \ldots I_{N} \times[0,1]^{\mathbb{N} \backslash\{0,1, \ldots, N\}} \in \mathcal{B} \quad \text { and } \quad B \subset B_{\varepsilon}(x)
$$

Conversely, let $B=I_{0} \times I_{1} \times \cdots \times I_{N} \times[0,1]^{\mathbb{N} \backslash\{0,1, \ldots, N\}} \in \mathcal{B}$, and take $x \in B$ arbitrary. Take $\varepsilon_{j}>0$ for all $0 \leq J \leq N$ so small that the euclidean balls $B_{\varepsilon_{j}}\left(x_{j}\right) \subset I_{j}$, and $\varepsilon=\min \left\{\varepsilon_{j}: 0 \leq j \leq N\right\}$. For the metric $d_{\text {prod }}$ this means that $B_{\varepsilon}(x) \subset B$, so every point in B is interior.

Lemma 1 The Hilbert cube is compact.
For the proof, we use the characterization of compact sets given by Alexander:
Theorem 2 (Theorem of Alexander) Let (X, τ) be a topological space with a subbasis \mathcal{S}. Then $A \subset X$ is compact if and only if every cover of A using only sets in \mathcal{S} has a finite subcover.

Proof of Lemma 1. Let $\mathcal{U} \subset \mathcal{S}$ be an open cover of \mathcal{H}. Write

$$
U_{N, a}^{-}:=[0,1]^{N-1} \times(a, 1] \times[0,1]^{\mathbb{N} \backslash\{0,1, \ldots, N\}} \quad \text { and } \quad U_{N, b}^{+}:=[0,1]^{N-1} \times[0, b) \times[0,1]^{\mathbb{N} \backslash\{0,1, \ldots, N\}}
$$

for the elements of \mathcal{S}. Now let

$$
a_{N}=\inf \left\{a: U_{N, a}^{-} \in \mathcal{U}\right\} \quad \text { and } \quad b_{N}=\sup \left\{b: U_{N, a}^{+} \in \mathcal{U}\right\} .
$$

If there is N such that $a_{N}<b_{N}$, then we can find $a_{N} \leq a<b \leq b_{N}$ such that both $U_{N, a}^{-}, U_{N, b}^{+} \in$ \mathcal{U}. But then $\left\{U_{N, a}^{-}, U_{N, b}^{+}\right\}$forms a finite subcover of \mathcal{H}, and we are done.

Otherwise, $x=\left(a_{0}, a_{1}, a_{2}, \ldots\right) \notin \bigcup_{U \in \mathcal{U}} U$, contradicting that \mathcal{U} is a cover.
Compactness of the Hilbert cube holds in the product topology, but not in the topology that comes from the sup-metric $d_{\infty}(x, y)=\sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right|$. Indeed, let $B_{\varepsilon}^{\infty}\left(e_{n}\right)$ be the open ε-ball in the metric d_{∞} around the n-th basic vector $e_{n}=(0,0,0, \ldots, 0,1,0, \ldots)$, with the 1 at place n. Then $\left\{B_{1 / 2}^{\infty}\left(e_{n}\right)\right\}_{n \in \mathbb{N}} \cup\left\{\mathcal{H} \backslash \cup_{n \in \mathbb{N}} B_{1 / 4}^{\infty}\left(e_{n}\right)\right\}$ is an open cover of \mathcal{H}, but since all the balls $B_{1 / 2}\left(e_{n}\right)$ are pairwise disjoint, there is no finite subcover.

Note also that for example $B_{1 / 2}^{\infty}\left(e_{1}\right)$ is not open in the product topology, because it restricts all (infinitely many) coordinates. Indeed, if $B_{1 / 2}^{\infty}\left(e_{1}\right)$ was open in the product topology, then it should be possible to write it as union of elements in \mathcal{B}. However, every $B \in \mathcal{B}$ contains a sequence x for which $x_{n}=1$ for n sufficiently large. So $B \not \subset B_{1 / 2}^{\infty}\left(e_{1}\right)$.

