
1 On the Hilbert Cube

The (countable) Hilbert cube is defined as the (countable) cartesian product of the (euclidean)
unit interval [0, 1] with itself:

H = [0, 1]N = {(xn)n∈N : xn ∈ [0, 1] for all n ∈ N}.

We equip H is product topology, that is the topology determined by the basis

B0 := {B ⊂ H : ∃N ∈ N ∃ open Uj for j ≤ N such that (xn) ∈ B ⇔ xj ∈ Uj for j ≤ N}.

Hence there are no restriction for the coordinates xj with j > N . Since open sets in [0, 1] are
unions of open intervals (in the relative topology, so e.g. [0, 1/2) is open too), a simpler basis is

B := {B ⊂ H : ∃N ∈ N ∃ open intervals Ij for j ≤ N such that (xn) ∈ B ⇔ xj ∈ Ij for j ≤ N}.

A subbasis for this B′ is the following:

S = {S ⊂ H : ∃N ∈ N ∃a ∈ [0, 1) such that (xn) ∈ B ⇔ xN ∈ (a, 1]}
∪ {S ⊂ H : ∃N ∈ N ∃b ∈ (0, 1] such that (xn) ∈ B ⇔ xN ∈ [0, b)}.

The Hilbert cube with product topology is metric. A valid metric, that generated this
topology, is

dprod(x, y) =
∑
n∈N

2−n|xn − yn|.

To show that this metric indeed produces the product topology, first observe that open balls
Bε(x) in the metric dprod are open set. Indeed, given ε > 0, there is N such that 2Nε > 2. For
y ∈ Bε(x), dprod(x, y) <

∑
n>N 2−n, so for j ≤ N we can find open intervals Ij 3 yj of length

(ε− dprod(x, y))/3. Then

y ∈ B := I0 × I1 × I2 × . . . IN × [0, 1]N\{0,1,...,N} ∈ B and B ⊂ Bε(x).

Conversely, let B = I0×I1×· · ·×IN×[0, 1]N\{0,1,...,N} ∈ B, and take x ∈ B arbitrary. Take εj > 0
for all 0 ≤ J ≤ N so small that the euclidean balls Bεj(xj) ⊂ Ij, and ε = min{εj : 0 ≤ j ≤ N}.
For the metric dprod this means that Bε(x) ⊂ B, so every point in B is interior.

Lemma 1 The Hilbert cube is compact.

For the proof, we use the characterization of compact sets given by Alexander:

Theorem 2 (Theorem of Alexander) Let (X, τ) be a topological space with a subbasis S.
Then A ⊂ X is compact if and only if every cover of A using only sets in S has a finite subcover.

Proof of Lemma 1. Let U ⊂ S be an open cover of H. Write

U−N,a := [0, 1]N−1 × (a, 1]× [0, 1]N\{0,1,...,N} and U+
N,b := [0, 1]N−1 × [0, b)× [0, 1]N\{0,1,...,N}

for the elements of S. Now let

aN = inf{a : U−N,a ∈ U} and bN = sup{b : U+
N,a ∈ U}.



If there is N such that aN < bN , then we can find aN ≤ a < b ≤ bN such that both U−N,a, U
+
N,b ∈

U . But then {U−N,a, U
+
N,b} forms a finite subcover of H, and we are done.

Otherwise, x = (a0, a1, a2, . . . ) /∈
⋃

U∈U U , contradicting that U is a cover. �

Compactness of the Hilbert cube holds in the product topology, but not in the topology
that comes from the sup-metric d∞(x, y) = supn∈N |xn − yn|. Indeed, let B∞ε (en) be the open
ε-ball in the metric d∞ around the n-th basic vector en = (0, 0, 0, . . . , 0, 1, 0, . . . ), with the 1 at
place n. Then {B∞1/2(en)}n∈N∪{H\∪n∈NB∞1/4(en)} is an open cover of H, but since all the balls

B1/2(en) are pairwise disjoint, there is no finite subcover.
Note also that for example B∞1/2(e1) is not open in the product topology, because it restricts

all (infinitely many) coordinates. Indeed, if B∞1/2(e1) was open in the product topology, then
it should be possible to write it as union of elements in B. However, every B ∈ B contains a
sequence x for which xn = 1 for n sufficiently large. So B 6⊂ B∞1/2(e1).


