
Notes on Information Theory and Coding.

Henk Bruin

December 15, 2020

1 Automata

In this section we discuss Turing machines and variations of it, and ask the question
what languages they can recognize or generate. The terminology is not entirely consis-
tent in the literature, so some of the below notions may be called differently depending
on which book you read.

1.1 Turing Machines

A Turing machine is a formal description of a simple type of computer, named after
the British mathematician Alan Turing (1912-1954). He used this in theoretic papers
to explore the limits what is computable by computers and what is not. For us, the
size of a Turing machine that can recognize words in a language L(X), or reject words
that don’t belong to L(X), is a measure for how complicated a subshift is. In fact, a
subshift is called regularly enumerable in the Chomsky hierarchy if its language can
be recognized by a Turing machine.

Figure 1: Alan Turing (1912-1954) and his machine.

A Turing machine has the following components:

• A tape on which the input is written as a word in the alphabet {0, 1}.

• A reading device, that can read a symbol at one position on the tape at the time.
It can also erase the symbol and write a new one, and it can move to the next or
previous position on the tape.

1

• A finite collection of states S1, . . . , SN , so N is the size of the Turing machine.
Each state comes with a short list of instructions:

– read the symbol;

– replace the symbol or not;

– move to the left or right position;

– move to another (or the same) state.

One state, say S1, is the initial state. One (or several) states are halting states.
When one of these is reached, the machine stops.

Example 1.1. The following Turing machine rejects tape inputs that do not belong to
the language of the Fibonacci shift. Let s be the symbol read at the current position of
the tape, starting at the first position. We describe the states:

S1: If s = 0, move to the right and go to State S1. If s = 1, move to the right and go
to State S2.

S2: If s = 0, move to the right and go to State S1. If s = 1, go to State S3.

S3: Halt. The word is rejected, see Figure 2.

S1 S2 S3

s = 1
move right

s = 0
move right

s = 0
move right

s = 1

Figure 2: A Turing machine accepting words from the Fibonacci shift.

Rather than an actual computing devise, Turing machines are a theoretical tool to
study which types of problems are in principle solvable by a computer. For instance,
we call a sequence (xn)n≥0 automatic if there is a Turing machine that produces xn
hen the binary expansion of n is written on the input tape. A number is automatic
if its digits form an automatic sequence. Given that there are only countably many
Turing machines, there are only countably many automatic numbers. Most reals are
not automatic: no algorithm exists that can produce all its digits.

Another question to ask about Turing machines, or any computer program in gen-
eral, is whether it will stop in finite time for a given input. This is the halting problem.
Using an advanced version of the Russell paradox, Turing proved in 1936 [28] that a
general algorithm to solve the halting problem for all possible program-input pairs can-
not exist. However, in theory it is possible to create a universal Turing machine
that does the work of all Turing machines together. Quoting Turing [28, page 241-242]:

2

It is possible to invent a single machine which can be used to compute any
computable sequence. If this machine U is supplied with the tape on the
beginning of which is written the string of quintuples separated by semicolons
of some computing machine M, then U will compute the same sequence as
M.

For this U doesn’t need to combine the programs of the countably many separate Turing
machine. Instead, the separate Turing machines M are to be encoded on the tape in
some standardized way, and they will be read by U together with the input of for
U . The program of U then interpret M and executes it. Universal Turing machines
didn’t stay theoretical altogether. Shannon posed the question how small universal
Turing machines can be. Marvin Minsky [19] constructed a version on a four-letter
alphabet with seven states. Later construction emerged from cellular automata. This
was improved to a 3-letter alphabet by Alex Smith in 2007, but his prove is in dispute.
A smaller alphabet is impossible [20]1.

Exercise 1.2. Suppose two positive integers m and n are coded on a tape by first
putting m ones, then a zero, then n ones, and then infinitely many zeros. Design
Turing machines that compute m + n, |m − n| and mn so that the outcome is a tape
with a single block of ones of that particular length, and zeros otherwise.

1.2 Finite Automata

A finite automaton (FA) is a simplified type of Turing machine that can only read a
tape from left to right, and not write on it. The components are

M = {Q,A, q0, q,f} (1)

where

Q = collection of states the machine can be in.

A = the alphabet in which the tape is written.

q0 = the initial state in Q.

H = collection of halting states in Q; the FA halts when it reaches one.

f = is the rule how to go from one state to the next when reading

a symbol a ∈ A on the tape. Formally it is a function Q×A → Q.

A language is regular if it can be recognized by a finite automaton.

Example 1.3. The even shift is recognized by the following finite automaton with Q =
{q0, q1, q2, q3} with initial state q0 and final states q2 (rejection) and q3 (acceptance).
The tape is written in the alphabet A = {0, 1, b} where b stands for a blank at the end
of the input word. The arrow qi → qj labeled a ∈ A represents f(qi, a) = qj.

1This proof by Morgenstern is based on an unpublished result by L. Pavlotskaya from 1973.

3

q3

q2q1q0

1

1

0

0

b b

Figure 3: Transition graph for a finite automaton recognizing the even shift.

This example demonstrates how to assign a edged-labeled transition graph to a finite
automaton, and it is clear from this that the regular languages are precisely the sofic
languages.

It is frequently easier, for proofs or constructing compact examples, to allow finite
automata with multiple outgoing arrows with the same label. So, if we are in state
q, read symbol a on the input tape, and there is more than one outgoing arrow with
label a, then we need to make choice. For computers, making choices is somewhat
problematic - we don’t want to go into the theoretical subtleties of random number
generators - but if you take the viewpoint of probability theory, you can simply assign
equal probability to every valid choice, and independent of the choices you may have
to make elsewhere in the process. The underlying stochastic process is then a discrete
Markov process.

Automata of this type are called non-deterministic finite automata (NFA), as
opposed to deterministic finite automata (DFA), where never a choice needs to be
made. A word is accepted by an NFA if there is a positive probability that choices are
made that parse the word until the end without halting or reaching a rejecting state.

We mention without proof (see [13, page 22] or [2, Chapter 4]):

Theorem 1.4. Let L be a language that is accepted by a non-deterministic finite au-
tomaton. Then there is a deterministic finite automaton that accepts L as well.

Corollary 1.5. Let wR = wn . . . w1 stand for the reverse of a word w = w1 . . . wn. If
a language L is recognized by a finite automaton, then so is its reverse LR = {wR : w ∈
L}.

Proof. Let (G,A) the edge-labeled directed graph representing the FA for L. Reverse
all the arrows. Clearly the reverse graph (GR,A) in which the directions of all arrows
are reversed and the final states become initial states and vice versa, recognizes LR.
However, even if in G, every outgoing arrow has a different label (so the FA is deter-
ministic), this is no longer true for (GR,A). But by Theorem 1.4 there is also an DFA
that recognizes LR.

Sometimes it is easier, again for proofs or constructing compact examples, to allow
finite automata to have transitions in the graph without reading the symbol on the

4

q3

q2q1q0

1

2

b

0

1

2

b b

2

q2q1q00

ε ε

2

1

Figure 4: Finite automata recognizing L = {0k1l2m : k, l,m ≥ 0}.

input take (and moving to the next symbol). Such transitions are called ε-moves.
Automata with ε-moves are almost always non-deterministic, because if a state q has
an outgoing arrow with label a and an outgoing arrow with label ε, and the input tape
reads a, then still there is the choice to follow that a-arrow or the ε-arrow.

Example 1.6. The follow automata accept the language L = {0k1l2m : k, l,m ≥ 0},
see Figure 4. The first is with ε-moves, and it stops when the end of the input is reached
(regardless which state it is in). That is , if the FA doesn’t halt before the end of the
word, then the word is accepted. The second is deterministic, but uses a blank b at the
end of the input. In either case q0 is the initial state.

Again without proof (see [13, page 22]):

Theorem 1.7. Let L be a language that is accepted by a finite automaton with ε-moves.
Then there is a non-deterministic finite automaton without ε-moves that accepts L as
well.

A deterministic finite automaton with output (DFAO) is an septuple

MO = {Q,A, q0, H, f, τ,B}, (2)

where the first five components are the same as for an FA in (1), and τ : Q→ B is an
output function that gives a symbol associated to each state in Q. It can be the writing
device for a Turing machine. For a word w ∈ A∗, we let τ(q0, w) := t(q) be the symbol
that is read off when the last letter of w is read (or when the automaton halts).

The following central notion was originally due to Büchi [4], see also the monograph
by Allouche & Shallit [2].

5

Definition 1.8. Let A = {0, 1, . . . , N − 1}, and let [n]A denote the integer n expressed
in base N . A sequence x ∈ BN is called an N-automatic sequence if xn = τ(q0, [n]A)
for all n ∈ N.

Example 1.9. The automaton in Figure 5 assigns the symbol 1 to every word w ∈
L(Xeven) of the one-sided even shift and the symbol 0 to words w ∈ {0, 1}N \ L(Xeven).
The output function τ : Q→ {0, 1} is indicated by the second symbol at each state. The
only halting state is q3.

q2/0q1/0q0/1

1

1

0

0

Figure 5: The DFAO for the even shift.

As such, the sequence x ∈ {0, 1}N defined as

xn =

{
1 n contains only even blocks of 1 in its binary expansion,

0 otherwise,

is an automatic sequence.

All sequence that are eventually periodic are automatic. In [2, Section 5.1], the
Thue-Morse sequence ρTM = 0110 1001 10010110 10 . . . is used as an example of an auto-
matic sequence, because of its characterization as xn = #{1s in the binary expansion of n−
1} mod 2, see Figure 6.

q0/0 q1/1

1

1

0 0

Figure 6: The DFAO for the Thue-Morse sequence.

Sturmian sequences are in general not; only if they are of the form xn = bnα +
βc mod N for some α ∈ Q, see [1]. Some further results on automatic sequences are
due to Cobham. The first is Cobham’s Little Theorem see [3, 5].

Theorem 1.10. The fixed point ρ of a substitution χ on A = {0, . . . , N − 1} is an
N-automatic sequence, and so is ψ(ρ) for any substitution ψ : A → B∗.

The other is Cobham’s Theorem see [5, 15].

6

Theorem 1.11. If 2 ≤ M,N ∈ N are multiplicative independent, i.e., logM
logN

/∈ Q,
then the only sequences which are both M-automatic and N-automatic are eventually
periodic.

Since all automatic sequence can basically written as in Theorem 1.10 (cf. [17]), this
gives retrospectively information on substitution shifts, see Durand [6, 8, 7]

2 Data Compression

The wish to shorten texts is as old as writing itself. For example, tomb stones were
seldom large enough to contain the intended message, so people resorted to (standard)
abbreviations, see Figure 7. In the middle ages, vellum was expensive (it still is), so
also here a variety of abbreviations was in use.

G(aius) Lovesius Papir(ia) (tribu) Inc(i)p(it) vita sci (= sancti)
Cadarus Emerita mil(es) Martini episcopi et confessor(is).
Leg(ionis) XX V(aleriae) V(ictricis) Igitur Martinus Sabbariae
an(norum) XXV stip(endiorum) IIX Pannoniaru(m) oppido oriundus fuit,
Frontinius Aquilo h(eres) sed intra Italiam Ticini altus e(st).
f(aciendum) c(uravit) parentibus secundum saeculi . . .

Figure 7: A Roman tombstone and Carolingian manuscript.

Naturally, writing itself is a means of coding messages, but over the years other
methods of coding have been developed for special purposes, such as data compression,
storage and transmission by computers (including bar-codes and two-dimensional bar-
codes), for secrecy and many other needs.

In 1821, Louis Braille developed the system of now named after him, after an earlier
scheme that Charles Barbier devised for military use (Napoleon wanted a method for
his soldiers to communicate in silence and without (day)light). Braille, who was a
teacher at the Royal Institute for the Blind in Paris, designed his code of raised dots

7

in 2× 3-cells that you can feel sliding your finger over the paper. There is a version of
Braille, designed by Abraham Nemeth in 1952 (but with later revisions), intended to
read mathematical texts. Compared to Braille, some symbols are coded differently (see
Figure 8) and for more complicated symbols or expressions multiple six-dot patterns
are combined.

Figure 8: Louis Braille (1809 – 1852) and his code.

When paper eventually became cheap and widely available in the 19th century, data
compression of this sort wasn’t important anymore, but stenography (for taking speedy
dictation or making eye-witness reports to be worked out in full later) was probably
the most common form of data compression. With the advent of telegraphy and radio,
there as a new reason to compress messages again. In Morse code (see Figure 9), the
codes of the most frequently used letters are the shortest.

Morse code was developed in 1836 by Samuel Morse for telegraph2 (and after its
invention also radio) communication. It encodes every letter, digit and some punctua-
tion marks by strings of short and long sounds, with silences between the letters, see
Figure 9.

The lengths of the codes were chosen to be inverse proportional to the frequency
the letters in the English language, so that the most frequent letter, E and T, get the
shortest codes • and ••••, also to see that for other languages than English, Morse code is
not optimal. This is one of the first attempts at data compression. The variable length
of codes means, however, that Morse code is not quite a sliding block code.

Mechanization of the world increased the need for coding. The first computers
in the middle of the 20th century were used for breaking codes in WWII. A little
later, Shannon thought about optimizing codes for data transmission, naturally for

2In fact, Morse collaborated with Joseph Henry and Alfred Vail on the development of the telegraph,
and they were not the only team. For example, in Göttingen, Gauß and Weber were working on early
telegraph and telegraph codes since 1833.

8

Figure 9: Samuel Morse (1791 – 1872) and his code.

telegraph and telephone usage, see Section 2. But he was visionary enough to imagine
that computers would soon become the main purpose of coding. In fact, he would
see a large part of his predictions come true because he lived until 2001. The digital
representation of text, that is representing letters as strings of zeros and ones, was
standardized in the 1960s. ASCII stands for American Standard Code for Information
Interchange. Developed in 1963, it assigns a word in {0, 1}7 to every symbol on the
keyboard, including several control codes such as tab, carriage return, most of which
are by now obsolete. These seven digit codes allow for 27 = 128 symbols, and this
suffices for most purposes of data transmission and storage. Different versions were
developed for different countries and makes of computers, but as in Braille, a text is
coded in symbol strings, letter by letter, or in other words by a sliding block code of
window size 1.

By this time bank transactions started to be done by telephone line, from computer
to computer, and cryptography became in integral part of commerce, also in peace-
time. Sound and music recordings became digital, with digital radio and CD- and
DVD-players, and this cannot go without error correcting codes. For CD’s, a cross
interleaved Reed-Somolon code is used, to correct errors that are inevitably caused by
micro-scratches on the disc. CDs are particularly prone to burst errors, which are longer
scratches in the direction of the track, which wipe out longer strings of code. For this
reason, the information is put twice on the disc, a few seconds apart (this is what the
“interleaved” stands for), which causes the little pause before a CD starts to play.

9

2.1 Shannon’s Source Code Theorem

This “most frequent⇔ shortest code” is the basic principle that was developed mathe-
matically in the 1940s. The pioneer of this new area of information theory was Claude
Shannon (1916–2001) and his research greatly contributed to the mathematical notion
of entropy.

Figure 10: Claude Shannon (1916–2001) and Robert Fano (1917–2016).

In his influential paper [26], Shannon set out the basic principles of information
theory and illustrated the notions of entropy and conditional entropy from this point of
view. The question is here how to efficiently transmit messages through a channel and
more complicated cluster of channels. Signals are here strings of symbols, each with
potentially its own transmission time and conditions.

Definition 2.1. Let W (t) be the allowed number of different signals that can be trans-
mitted in time t. The capacity of the channel is defined as

Cap = lim
t→∞

1

t
logW (t). (3)

Note that if X = A∗ is the collection of signals, and every symbol takes τ time
units to be transmitted, then W (t) = #Abt/τc and Cap = 1

τ
log #A. This W (t) doesn’t

mean the number of signals that can indeed be transmitted together in a time interval
of length t, just the total number of signals each of which can be transmitted in a time
interval of length t. We see thus that the capacity of a channel is the same as the entropy
of the language of signals, but only if each symbol needs the same unit transmission
time. If, on the other hand, the possible symbols s1, . . . , sn have transmission times
t1, . . . , tn, then

W (t) = W (t− t1) + · · ·+W (t− tn),

where the j-th term on the right hand side indicates the possible transmissions after
first transmitting sj. Using the ansatz W (t) = axt for some x ≥ 1, we get that the
leading solution λ of the equation

1 = x−t1 + · · ·+ x−tn ,

solves the ansatz, and therefore Cap = log λ. A more general result is the following:

10

Theorem 2.2. Suppose the transmission is done by an automaton with d states, and
from each state i any signal from a different group Si,j can be transmitted with trans-
mission time tsi,j, after which the automaton reaches state j, see Figure 11. Then the
capacity of the channel is Cap = log λ where λ is the leading root of the equation

det

∑
s∈Si,j

x−t
s
i,j − δi,j

 = 0,

where δi,j indicates the Kronecker delta.

31

S1,2

S2,1

2

S2,3

S3,2S1,1

S3,3

S1,3

Figure 11: A transmission automaton.

Proof. Let Wj(t) denote the number of possible signals of length t ending at state j, so

Wj(t) =
∑

i,s∈Si,j

Wi(t− tsi,j). (4)

Use the ansatz Wj(t) = ajx
t. Then (4) gives∑

i,s∈Si,j

ai
(
x−t

s
i,j − δi,j

)
for all j ≤ d.

These equations can only have a simultaneous nontrivial solution (a1, . . . , aR) if

det

∑
s∈Si,j

x−t
s
i,j − δi,j

 = 0.

Therefore Cap = limt→∞
1
t

∑d
j=1 ajx

t = log x.

It makes sense to expand this idea of transmission automaton to a Markov chain,
where each transmission s ∈ Si,j happens with a certain probability psi,j such that∑R

j=1

∑
s∈Si,j p

s
i,j = 1 for every 1 ≤ i ≤ d. For example, if the states i ∈ A are the

letters in the English alphabet, the transmissions are single letters j ∈ A and the
probabilities pji,j are the diagram frequencies of ij, conditioned to the first letter i.

11

Ergodicity is guaranteed if the graph of this automaton is strongly connected. Also, if
πj is the stationary probability of being in state j ∈ {1, . . . , d}, then

πj =
d∑
i=1

πi
∑
s∈Si,j

psi,j for all j ∈ {1, . . . , d},

see the Perron-Frobenius Theorem.
Shannon introduced an uncertainty function H = H(p1, . . . , pd) as a measure of

the amount of uncertainty of the state we are in, if only the probabilities p1, . . . , pd of
the events leading to this state are known. This function should satisfy the following
rules:

1. H is continuous in all of its arguments;

2. If pi = 1
d

for all d ∈ N and i ∈ {1, . . . , d}, then d 7→ E(d) := H(1
d
, . . . , 1

d
) is

increasing;

3. If the tree of events leading to the present state is broken up into subtrees, the
uncertainty H is the weighted average of the uncertainties of the subtrees (see
Figure 12):

H(p1, . . . , pd) = H(p1 + p2, p3, . . . , pd) + (p1 + p2)H(p, 1− p).

•

•p1

•p2

•p3

......

...

• pd−1

•pd

•

•
p1 + p2

• p

• 1− p

•p3

......

...

• pd−1

•pd

Figure 12: Illustrating rule (3) of the uncertainty function.

Theorem 2.3. EFor every uncertainty function satisfying rules (1)-(3) is of the form

H(p1, . . . , pd) = −c
d∑
i=1

pi log pi

for some c ≥ 0.

12

In particular, E(d) = c log d andH(p1, . . . , pd) = 0 if pi ∈ {0, 1} for each i. Assuming
that the total number of transmission words is indeed d, then it is a natural to normalize,
i.e., take c = 1/ log d, or equivalently, to compute logarithms in base d.

Proof. If we break up an equal choice of d2 possibilities into first d equal possibilities
followed by d equal possibilities, we obtain

E(d2) := H(
1

d2
, . . . ,

1

d2
) = H(

1

d
, . . . ,

1

d
) +

d∑
i=1

1

d
H(

1

d
, . . . ,

1

d
) = 2E(d).

Induction gives E(dr) = rE(d). Now choose 2 ≤ a, b ∈ N and r, s ∈ N such that
ar ≤ bs < ar+1. Taking logarithms gives r

s
≤ log b

log a
≤ r+1

s
. The monotonicity of rule (2)

also gives
rE(a) = E(ar) ≤ E(bs) = sE(b),

so taking logarithms again, we obtain r
s
≤ E(b)

E(a)
≤ r+1

s
. Combining the two, we obtain∣∣∣∣E(b)

E(a)
− log b

log a

∣∣∣∣ ≤ 2

s
.

Since s ∈ N can be taken arbitrarily large, it follows that

E(b) = c log b for c =
E(a)

log a
. (5)

The monotonicity of rule (2) implies that c ≥ 0.
Now assume that pi = ni/N for integers ni and N =

∑d
i=1 ni. By splitting the

choice into N equal possibilities into d possibilities with probability pi, each of which
is split into ni equal possibilities, by (3), we get

E(N) = H(p1, . . . , pd) +
d∑
i=1

piE(ni).

Inserting (5), we obtain

H(p1, . . . , pd) = −c
d∑
i=1

pi(log ni − logN) = −c
d∑
i=1

pi log
ni
N

= −c
d∑
i=1

pi log pi.

This proves the theorem for all rational choices of (p1, . . . , pd). The continuity of rule
(1) implies the result for all real probability vectors.

Suppose we compose messages of n symbols in {0, 1}, and each symbol has proba-
bility p0 of being a 0 and p1 = 1 − p0 of being a 1, independently of everything else.
Then the bulk of such messages has np0 zeros and np1 ones. The exponential growth
rate of the number of such words is, by Stirling’s formula

lim
n→∞

1

n
log

(
n

np0

)
= lim

n→∞

1

n
log

nne−n
√

2πn

(np0)np0e−np0
√

2πnp0 (np0)np0e−np0
√

2πnp0

= −p0 log p0 − p1 log p1 = H(p0, p1).

13

Exercise 2.4. Show that you get the same result for the exponential growth rate if
A = {1, . . . , d} and the probability of transmitting a ∈ A is pa.

Recall the convenience of using logarithms base d if the alphabet A = {1, 2, . . . , d}
has d letters. In this base, the exponential growth rate is H(p1, . . . , pd) ≤ 1 with equality
if and only if all pa = 1/d. Thus the number of the most common words (in the sense
of the frequencies of a ∈ A deviating very little from pa) is roughly dnH(p1,...,pd). This
suggests that one could recode the bulk of the possible message with words of length
nH(p1, . . . , pd) rather than n. Said differently, the bulk of the words x1 . . . xn have
measure

p(x1, . . . xn) =
n∏
i=1

pxi ≈ e−nH(p1,...,pd).

By the Strong Law of Large Numbers, for all ε, δ > 0 there is N ∈ N such that for all
n ≥ N , up to a set of measure ε, all words x1 . . . xn satisfy∣∣∣∣− 1

n
logd p(x1 . . . xn)−H(p1, . . . , pd)

∣∣∣∣ < δ.

Thus, such δ-typical words can be recoded using at most n(H(p1, . . . , pd) + o(1)) letters
for large n, and the compression rate is H(p1, . . . , pd) + o(1) as n → ∞. Stronger
compression is impossible. This is the content of Shannon’s Source Coding Theorem:

Theorem 2.5. For a source code of entropy H and a channel with capacity Cap, it is
possible, for any ε > 0, to design an encoding such that the transmission rate satisfies

Cap

H
− ε ≤ E(R) ≤ Cap

H
. (6)

No encoding achieves E(R) > Cap
H

.

That is, for every ε > 0 there is N0 such that for very N ≥ N0, we can compress a
message of N letter with negligible loss of information into a message of N(H+ ε) bits,
but compressing it in fewer bit is impossible without loss of information.

Proof. Assume that the source messages are in alphabet {1, . . . , d} and letters si appear
independently with probability pi, so the entropy of the source is H = −

∑
i pi log pi.

For the upper bound, assume that the ith letter from the source alphabet require ti
bits to be transmitted.

The expected rate E(R) should be interpreted as the average number of bits that a
bit of a “typical” source message requires to be transmitted. Let LN be the collection
of N -letter words in the source, and µN be the N -fold Bernoulli product measures with
probability vector p = (p1, . . . , pd}. Let

AN,p,ε = {s ∈ LN : | |s|i
N
− pi| < ε for i = 1, . . . , d}.

14

By the Law of Large Numbers, for any δ, ε > 0 there is N0 such that µN(AN,p,ε) > 1− δ
for all N ≥ N0. This suggests that a source message s being “typical” means s ∈ AN,p,ε,
and the transmission length of s is therefore approximately

∑
i pitiN . Thus typical

words s ∈ LN require approximately t =
∑

i pitiN bits transmission time, and the
expected rate is E(R) = (

∑
i piti)

−1.
For the capacity, the number of possible transmissions of t bits is at least the cardi-

nality of AN,p,ε, which is the multinomial coefficient
(

N
p1N,...,pdN

)
. Therefore, by Stirling’s

Formula,

Cap ≥ 1

t
log

(
N

p1N, . . . , pdN

)
≥ 1∑

i pitiN
log

(
(
√

2πN)1−d
d∏
i=1

p
−(piN+ 1

2
)

i

)

=
−
∑

i pi log pi∑
i piti

−
∑

i log pi
2
∑

i pitiN
+

d−1
2

log 2πN∑
i pitiN

≥ E(R)H,

proving the upper bound (with equality in the limit N →∞).
The coding achieving the lower bound in (6) that was used in Shannon’s proof

resembled one designed by Fano [9]. It is now known as the Shannon-Fano code and
works as follows:

For the lower bound, let again LN be the collection of words B of length N in
the source, occurring with probability pB. The Shannon-McMillan-Breiman Theorem
implies that for every ε > 0 there is N0 such that for all N ≥ N0,

| − 1

N
log pB −H| < ε for all B ∈ LN except for a set of measure < ε.

Thus the average

GN := − 1

N

∑
B∈LN

pB log pB → H as N →∞.

If we define the conditional entropy of symbol a in the source alphabet following a word
in LN as

FN+1 = H(Ba|B) = −
∑
B∈LN

∑
a∈S

pBa log2

pBa
pB

,

then after rewriting the logarithms, we get (using telescoping series) FN+1 = (N +
1)GN+1 −NGN , so GN = 1

N

∑N−1
n=0 Fn+1. The conditional entropy is decreasing as the

words B get longer. Thus FN is decreases in N and GN is a decreasing sequence as
well.

Assume that the words B1, B2, . . . , Bn ∈ LN are arranged such that pB1 ≥ pB2 ≥
· · · ≥ pBn . Shannon encodes the words Bi in binary as follows. Let Ps =

∑
i<s pBi , and

choose ms = d− log pBse, encode Bs as the first ms digit of the binary expansion of Ps,
see Table 1. Because Ps+1 ≥ Ps + 2−ms , the encoding of Bs+1 differs by at least one in
the digits of the encoding of Bs. Therefore all codes are different.

15

The average number of bits per symbol is H ′ = 1
N

∑
smspBs , so

GN = − 1

N

∑
s

pBs log pBs ≤ H ′ < − 1

N

∑
s

pBs(log pBs − 1) = GN +
1

N
.

Therefore the average rate of transmission is

Cap

H ′
∈
[

Cap

GN + 1
N

,
Cap

GN

]
.

Since GN decreases to the entropy H, the above tends to Cap /H as required.

pBs Ps ms Shannon Fano

8
36

28
36

3 110 11
7
36

21
36

3 101 101
6
36

21
36

3 011 100
5
36

15
36

3 010 011
4
36

6
36

4 0010 010
3
36

3
36

4 0001 001
2
36

1
36

5 00001 0001
1
36

0
36

6 00000(0) 0000

Table 1: An example of encoding using Shannon code and Fano code.

Fano [9] used a different and slightly more efficient encoding, but with the same
effect (the difference negligible for large values of N). He divides LN into two groups
of mass as equal to 1/2 as possible. The first group gets first symbol 1 in its code, the
other group 0. Next divide each group into two subgroups of mass as equal to 1/2×
probability of the group as possible. The first subgroups get second symbol 1, the other
subgroup 0, etc. See Table 1.

2.2 Data Compression over Noisy Channels

Shannon’s Source Code Theorem 2.5 extends to noisy transmission channels, i.e., chan-
nels through which a certain percentage of the transmissions arrive in damaged form.
The only thing to changed in the statement of the theorem is the definition of capacity.
For example, imagine a binary message, with symbol probabilities 0 and p1 = 1− p0, is
transmitted and a fraction q of all the symbols is distorted from 0 to 1 and vice versa.
This means that symbol i in the received signal y has a chance

P = P(x = i|y = i) = pi(1− q) + (1− pi)q
0 0

q
1 1

q
1− q

1− q
(7)

16

in the sent signal x. If q = 1
2
, then P = 1

2
, so every bit of information will be transmitted

with total unreliability. But also if q is small, P can be very different from P(y = i).
For example, if p0 = q = 0.1, then P = 0.1(1 − 0.01) + (1 − 0.1)0.1 = 0.18. The key
notion to measure this uncertainty of sent symbol is the conditional entropy of x
given that y is received:

H(x|y) = −
∑
i,j

P(xi ∧ yj) log
P(xi ∧ yj)
P(yj)

were the sum is over all possible sent message xi and received messages yj. This
uncertainty H(x|y) is called the equivocation. If there is no noise, then knowing y
gives full certainty about x, so the equivocation H(x|y) = 0, but also q = 1, i.e., every
symbol is received distorted, knowing y gives full knowledge of x and H(x|y) = 0. In
the above example:

H(x|y) = −p0(1− q) log2

p0(1− q)
p0(1− q) + p1q

− p1q log2

p0q

p0(1− q) + p1q

−p1(1− q) log2

p1(1− q)
p0q + p1(1− q)

− p0q log2

p0q

p0q + p1(1− q)
. (8)

The actual information transmitted, known as the mutual information, is defined as

I(X|Y) = H(x)−H(x|y)

In, say, the binary alphabet, we can interpret 2H(x)n+o(n) as the approximate possible
number of length n source messages, up to a set of measure ε, that tends to with an
error that tends to zero as n→∞. For each source message x, the number of received
messages y generated from x via transmission errors is 2H(y|x)n+o(n), see Figure 13.
Analogous interpretations hold for 2H(y)n+o(n) and 2H(x|y)n+o(n).
The total number of non-negligible edges in Figure 13 is therefore approximately

2H(x)n+o(n) · 2H(y|x)n+o(n) ≈ 2H(y)n+o(n) · 2H(x|y)n+o(n) ≈ 2H(x∨y)n+o(n).

Taking logarithms, dividing by −n, taking the limit n→∞ and finally adding H(x) +
H(y) gives the helpful relations

I(X|Y) = H(x)−H(x|y) = H(y)−H(y|x) = H(x) +H(y)−H(x ∨ y). (9)

If the noiseless channel capacity Capnoiseless is less than the equivocation, then it
is impossible to transmit the message with any reliable information retained. Simply,
uncertainty is produced faster than the channel can transmit. If the equivocation is less
than the capacity, then by adding (otherwise superfluous) duplicates of the message,
or control symbols, the message can be transmitted such that it can be reconstructed
afterwards if negligible errors. However, the smaller the difference Capnoiseless−H(x|y),

17

2H(x)n high
probability
messages

2H(y)n high
probability

received signals

••
••
••
••
••
••
••
••
••

••
••
••
••
••
••
••
••
•

2H(x|y)n high
probability

causes for y

2H(y|x)n high
probability

effects of x

Figure 13: Interpreting 2H(x)n, 2H(y)n, 2H(x|y)n and 2H(y|x)n

the more duplicates and/or control symbols have to be send to allow for reconstruction.
It turns out that the correct way to define the capacity of a noisy channel is

Capnoisy = max
x

I(X|Y) = max
x

H(x)−H(x|y)

where the maximum is taken over all possible source messages only, because the distri-
bution of the received messages can be derived from x and knowledge to what extent
the channel distorts messages. The distribution of x that achieves the maximum is
called the optimal input distribution. To compute Capnoisy in the example of (8) we
need to maximize H(x)−H(x|y) over p0 (because p1 = 1− p0 and q is fixed). Due to
symmetry, the maximum is achieved at p = 1

2
, and we get

Capnoisy = log2 2 + q log2 q + (1− q) log2(1− q). (10)

This confirms full capacity 1 = log2 2 if there is no noise and Capnoisy = 0 if q = 1
2
.

Let Q = (qij) be the probability matrix where qij stands for the probabiity that
symbol i ∈ S is received as j ∈ A. Thus if S = A, then qii is the probability that
symbol i is transmitted correctly.

Proposition 2.6. Assuming that Q is an invertible square matrix with inverse Q−1 =
(q−1ij), the optimal probability for this noisy channel is

pi =
∑
t

q−1ti exp

(
−Capnoisy

∑
s

q−1ts +
∑
s,j

q−1ts qsj log qsj

)
,

where the noisy capasity Capnoisy should be chosen such that
∑

i pi = 1.

18

Proof. We maximize

I(X|Y) = −
∑
i

pi log pi +
∑
i,j

piqij log
piqij∑
k pkqkj

=
∑
i,j

piqij log qij −
∑
i,j

piqij log
∑
k

pkqkj

over pi subject to
∑

i pi = 1 using Lagrange multipliers. This gives∑
j

qsj log
qsj∑
k pkqkj

= µ for all s ∈ S. (11)

Multiply the equations (11) with ps (with
∑

s ps = 1) and sum over s to get

µ =
∑
s,j

psqsj log
qsj∑
k pkqkj

= Capnoisy .

Now multiply (11) with q−1ts , sum over s and take the exponential. This gives∑
k

pkqkt = exp

(∑
s,j

q−1ts qsj log qsj − Capnoisy

∑
s

q−1ts

)
.

Therefore

pi =
∑
t

q−1ti exp

(∑
s,j

q−1ts qsj log qsj − Capnoisy

∑
s

q−1ts

)
,

as claimed.

Remark 2.7. Suppose that the matrix Q has a diagonal block structure, i.e., the
source alphabet can be divided into groups g with symbols in separate groups never
mistaken for one another. Then Capnoisy = log2

∑
g 2Capg , where Capg is the noisy ca-

pacity of the group g. The optimal probability for all symbols in group g together is
Pg = 2Capg/

∑
g′ 2Capg′ .

Exercise 2.8. The noisy typewriter is a transmission channel for the alphabet {a, b, c, . . . , z,−},
where − stands for the space. Imagine a circular keyboard on which typing a letter re-
sults in that latter or to one of its neighbors, all three with probability 1/3.

1. Compute the capacity Capnoisy of this channel and an optimal input distribution.

2. Find an optimal input distribution so that the received message can be decoded
without errors.

Going back to Figure 13, assume that among the most likely transmissions, we
choose a maximal subcollection that have disjoint sets of most likely received messages.
The cardinality of this subcollection is approximately

2H(y)n

2H(y|x)n = 2(H(y)−H(y|x))n ≤ 2nCapnoisy .

19

Then such received messages can be decoded with a negligible amount of error. Maxi-
mizing over all input distributions, we obtain that a message can be transmitted virtu-
ally error-free at a rate of C bits per transmitted bit. This is a heuristic argument for
Shannon’s Noisy Source Code Theorem.

Theorem 2.9. For transmission of a message of entropy H through a noisy channel
with capacity Capnoisy and any ε > 0, there is N0 ∈ N such that every message of length
N ≥ N0 can be transmitted through the channel at expected rate E(R) arbitrarily close

to
Capnoisy

H
such that the proportion of errors is at most ε.

If we allow a proportion of errors δ, the expected rate for this proportion of errors

is E(R(δ)) can be made arbitrarily close to
Capnoisy

H(1−h2(δ))
, for the entropy function h2(δ) =

−δ log2 δ−(1−δ) log2(1−δ). Faster rates at this proportion of errors cannot be achieved.

Proof. We will give the proof for the binary channel of (7), so the channel capacity is
Capnoisy = 1 + q log2 q + (1− q) log2(1− q) =: 1− h2(q) as in (10). This gives no loss of
generality, because we can always recode the source (of entropy H) into binary in an
entropy preserving way3. By the Noiseless Source Code Theorem 2.9, the rate “gains” a
factor 1/H because the compression from the source alphabet into the binary alphabet
occurs at a noiseless capacity Cap = limt

1
t

log 2t = 1. This factor we have to multiply
the rate with at the end of the proof.

Also we will use linear codes such as Hamming codes4 which postdate Shannon’s
proof, but shows that already an elementary linear code suffices to achieve the claim of
the theorem.

Assume that the source messages have length K, which we enlarge by M parity
check symbols to a source code x of length N = K + M . This is done by a Hamming
code in the form of an M ×N matrix L ∈ FM×N2 of which the right M ×M submatrix
is the parity check matrix. When x is transmitted over the noisy binary channel,
approximately Nq errors appear, i.e., Nq symbols are flipped, and the received word
is y = x + w, where w stands for the noise. It is a sample of N Bernoulli trials with
success (i.e., error) chance q, occurring with probability q|w|1(1− q)|w|0 .

For an arbitrary ε > 0, there is some constant Cε such that the noise words w with
|w|1 > (N +Cε

√
N)q have total probability < ε/2. The number of noise words w with

|w|1 ≤ (N + C
√
N)q is ≤ 2(N+Cε

√
N)h2(q).

The choice of a Hamming code defines the actual transmission, so we can decide
to choose x according to the optimal input distribution. This will give an output
distribution satisfying H(y)−H(y|x) = Capnoisy, and we can select a subset of “typical”
outcomes Ytyp as those produce from some source x and a non-typical noise w. The
probability of not being in Ytyp is less than ε/2.

There are altogether 2M syndromes, i.e., outcomes of S(y) = yLT ∈ {0, 1}M . The
Hamming encoding satisfies S(x) = 0, so S(y) = S(x+w) = S(w). The sets {y ∈ Ytyp :

3Note that we may have to use blocks of 0s and 1s instead of single symbols if the entropy is larger
than log 2.

4For this proof we would like to acknowledge the online lectures by Jacob Foerster (Cambridge
University) https://www.youtube.com/watch?v=KSV8KnF38bs, based in turn on the text book [18].

20

S(y) = z} are the 2M disjoint subsets of Ytyp from which x can be reconstructed, by
subtracting the coset leader of S(y) from y. This is error-free except (possibly) if

1. y /∈ Ytyp, but this happens with probability ≤ ε/2, independently of the choice of
Hamming encoding;

2. there is some other ỹ = x̃+ w̃ ∈ Ytyp such that S(ỹ) = S(y), i.e., S(w̃ − w) = 0.

The probability that the latter happens∑
y=x+w∈Ytyp

P(w)1{∃ w̃ 6=w ỹ∈Ytyp(w̃−w)LT=0} ≤
∑
w

P(w)
∑
w̃ 6=w

1{(w̃−w)LT=0}.

is difficult to compute. However, we can average over all 2M
2

possible M ×N -matrices
L, occurring with probability P(L). This gives an average failure probability less than∑

L

P(L)
∑
w

P(w)
∑
w̃ 6=w

1{(w̃−w)LT=0} ≤
∑
w

P(w)
∑
w̃ 6=w

∑
L

P(L)1{(w̃−w)LT=0}.

The inner sum, however, equals 2−M because the probability of any entry of (w̃−w)LT

being zero is 1/2, independent of all other entries. Since there are 2(N+Cε
√
N)h2(q) possible

noises w̃ such that ỹ ∈ Ytyp, the average failure probability over all Hamming codes is

≤ 2(N+Cε
√
N)h2(q)2−M . Assuming that N(h2(q) + 2ε) > M ≥ N(h2(q) + ε) > N ,

this probability is ≤ 2−Nε < ε/2. Therefore the failure probability averaged over all
Hamming codes is at most ε, and therefore there must exist at least one (probably many)
Hamming code that achieves the required failure rate. But h2(q)+2ε > M/N ≥ h2(q)+ε
implies that the transmission rate for this Hamming code satisfies

Capnoisy−2ε <
K

N
= 1− M

N
= 1− h2(q)− ε ≤ Capnoisy−ε,

as claimed.
For the second statement, that is, if we allow a proportion δ of errors, we use the

Hamming code of the first part of the proof in reverse. We chop the source message
into blocks of length N and consider each block as a code word of which the last M bits
play the role of parity check symbols (although they really aren’t) and the first K bits
play the role of actual information. For typical messages (i.e., all up to an error ε of all
the possible blocks in LN), we can use a Hamming code for which M = dh2(δ)Ne, and
then we throw these symbols simply away. We choose the initial block size N that he
remaining K = N−M = N(1−h2(δ)) bits are at the capacity of the noisy channel, i.e.,
these K bits take Capnoisy K bits to transmit, virtually error-free. But then a typical

original N bits message takes
Capnoisy

1−h2(δ)
N bits to transmit at an error proportion δ, so the

expected noisy rate E(R(δ)) =
Capnoisy
1−h2(δ)

, proving the second part.

Let us now argue that the rate R cannot exceed the capacity Capnoisy, following [22].
We will use a code of n-letter code words on a two-letter alphabet; the loss of generality

21

in this choice becomes negligible as nto∞. There are thus 2nR code words among 2n

n-letter words in total, and for this rate th code is optimally used if all the code words
have probability 2−nR of occurring, and hence the entropy of code words Xn chosen
according uniform distribution is H(Xn) = nR. The received message Y n is also an
n-letter word, and since Xn is sent letter by letter, with errors occurring independently
in each letter,

P(Y n|Xn) = P(y1y2 . . . yn|x1x2 . . . xn) =
n∏
i=1

P(yi|xi).

Hence the conditional entropy, being the average of minus the logarithm of the above
quantity, satisfies

H(Y n|Xn) = −
n∑
i=1

P(yi|xi) logP(yi|xi) =
n∑
i=1

H(uyi|xi).

Entropy is subadditive, so the mutual information is

I(Y n|Xn) = H(Y n)−H(Y n|Xn) ≤
n∑

i−=1

H(yi)−H(yi|xi) =
n∑
i=1

I(yi|xi) ≤ nCapnoisy,

(12)
because Capnoisy is the mutual information maximized over all input distributions. By
the symmetry of (9), also

I(Y n|Xn) = H(Xn)−H(Xn|Y n) = nR−H(Xn|Y n) =
n∑
i=1

I(yi|xi) ≤ nCapnoisy, (13)

Reliably decoding the received message means that 1
n
H(Xn|Y n) → 0 as n → ∞.

Hence, combining (13) and (12) gives R ≤ Capnoisy +o(1) as n → ∞. This gives the
upper bound R ≤ Capnoisy.

2.3 Symbol Codes

Shannon’s Source Code Theorem 2.5 gives the theoretical optimal bounds for encoding
messages in the shortest way. Suppose that a source S is an ensemble from which the
elements s ∈ S are produced with frequencies ps, so the source entropy is H(S) =∑

s∈S ps log ps. Translating Shannon’s Theorem, assuming that the channel is simple
such that the capacity is logd d = 1, for every ε > 0 there exists a code that turns a
string s1 . . . sn of sampled symbols such into a code word c(s1 . . . sn) where

nH(S) ≤ |c(s1 . . . sn)| ≤ n(H(S) + ε) as n→∞, (14)

and no code performs better (without losing information) that nH(S). What are prac-
tical codes that achieve this? That is, an code c that:

22

1. turns every string s1 . . . sn from the source into a string a1 . . . ak in the code
alphabet A;

2. is uniquely decodable (or lossless, i.e., can be inverted;

3. achieves (14) with ε as small as possible;

4. is easily computable, i.e., cheap, quick and preferably without the use of a huge
memory.

The first thing to try is a symbol code, i.e, c assigns a string c(s) ∈ A∗ of to each
s ∈ S, and extend this by concatenation. That is, a symbol code is a substitution,
except that it is not necessarily stationary. The rule encode si in the source string is
allowed to depend on the context, or rather the history si−1, si−2, . . .

Definition 2.10. A prefix (suffix) code is a code c such that no code word c(s) is a
prefix (suffix) of any other code words c(s′).

It is easy to verify that Shannon code and Fano code are both prefix (but not suffix)
codes.

Lemma 2.11. Every prefix and suffix code is uniquely decodable.

Proof. Suppose c is a prefix code and c(s1 . . . sn) = a1 . . . ak. Start parsing from the
left, until you find the first a1 . . . aj = c(s) for some s ∈ S. Since c(s) is not the prefix
of any other c(s′), we must have s = s1. Continue parsing from symbol aj+1, etc. For
suffix codes we do the same, only parsing from right to left.

Since it is uncommon to parse from right to left (in the direction messages are
transmitted), we always prefer prefix codes over suffix codes. In this, decodable is
different from the notion recognizable in substitution shift, because decoding algorithms
cannot depend on future digits. Any prefix code can be represented as an edge-labeled
subtree of the binary tree (or d-adic tree if d = #A) in which each code word is the
label of a path from the root to a leaf (i.e, a non-root vertex that has only one edge
connected to it), see Figure 14.

The following condition, called the Kraft inequality, is a necessary condition for
a symbol code to be uniquely decodable.

Proposition 2.12. A uniquely decodable code with codewords c(s) in alphabet A with
d = #A satisfies ∑

s∈S

d−|c(s)| ≤ 1, (15)

Proof. Let d = #A and `s = |c(s)|, so 1 ≤ `s ≤ `max for the maximum code word
length `max. Let K =

∑
s d
−`s , and therefore

Kn =

(∑
s

d−`s

)n

=
`max∑
s1=1

· · ·
`max∑
sn=1

d−(`s1+···+`sn)

23

•

• •

• •

• • •

• •

root

0 1

0 1

0 1 1

0 1

Used codewords:
0
100
101
1110
1111

Figure 14: An example of a tree representing prefix code.

But each word is uniquely decodable, so to every string x of length ` ≤ n`max, there is
at most one choice of s1, . . . , sn such that x = c(s1) . . . c(sn). Since there at at most n`

words of this length, we get

Kn ≤
n`max∑
`=n

d`d−` ≤ n`max.

Taking the n-th root on both sides and th limit n→∞, we get K ≤ 1.

If equality holds in (15), then we say that the code is complete. For a complete
code, the average frequencies of each a ∈ Amust be 1/d (and there cannot be correlation
between digits), because otherwise the entropy of the encoding is not maximal and we
could encode it further.

Prefix/suffix codes that fill the subtree entirely are complete. Indeed, such a code
has d− 1 words of length k and d words of the maximal length n, so∑

s

d−c(s) ≤ (d− 1)
n−1∑
k=1

d−k + d · d−n = 1.

Every unique decodable code c is equivalent to a prefix code. To see this, order s ∈ S
according to their code word lengths, and then recode them lexicographically, main-
taining code length, and avoiding prefixes. Due to the Kraft inequality, there is always
space for this.

For the next result, we need the Gibbs inequality

Lemma 2.13. If (ps) and (qs) are probability vectors, then the Gibbs inequality∑
ps logd ps/qs ≥ 0 (16)

holds with equality only if qs = ps for all s.

24

Proof. Indeed, since log x ≤ x− 1 for all x > 0 (with equality only if x = 1), we have∑
s

ps logd
ps
qs

=
−1

log d

∑
s

ps log
qs
ps

≥ −1

log d

∑
s

ps(
qs
ps
− 1) =

1

log d
(1−

∑
s

qs) = 0,

with equality only if ps = qs for all s.

Theorem 2.14. Let S be an ensemble with probabilities ps for s ∈ S. Suppose that c
is a prefix code such that |c(s)| = dlog 1/pie. Then the expect length of c satisfies

H(S) ≤ E(L) ≤ H(S) + 1,

and no symbol code has a shorter expected length that H(S).

Proof. Let qs = d−|c(s)|/Z, where d = #A is the alphabet size, and Z :=
∑

s d
−|c(s)|

is the normalizing factor. By the Kraft inequality Z ≤ 1, with equality if the code is
complete. Now the expected length of the code word is∑

s

ps|c(s)| =
∑
s

ps logd
1

qs
= −

∑
s

ps logd ps +
∑
s

ps logd
ps
qs
− logZ

= H(S) +
∑
s

ps logd
ps
qs︸ ︷︷ ︸

≥0 by Gibbs ineq.

− logZ︸ ︷︷ ︸
≥0 by Kraft ineq.

≥ H(S),

with equality only if the code is complete with codeword lengths equal to − logd ps.
Conversely, if we make a code such that |c(s)| = dlogd 1/qse, then∑

s

ps|c(s)| ≤
∑
s

ps(logd
1

ps
+ 1) = H(S) + 1,

as required.

Hence this coding exceeds the theoretical lower bound by not more than 1. For very
short codes, for instance if every letter of the message is encoded separately, this +1
is relatively large compared to the entropy. Also symbol codes do not compress at all
if the alphabet of he source and the encoding are the same. One solution is therefore
to encode entire blocks B, say of length n, of message letters, each according to their
frequency of occurrence. The corresponding entropy is

H(Sn) = −
∑

s1,...,sn∈S

ps1 · · · psn log ps1 · · · psn

= −
∑

s1,...,sn∈S

ps1 · · · psn (log ps1 + · · ·+ log psn)

= −

(∑
s1

ps1 log ps1 + · · ·+
∑
s1

psn log psn

)
= nH(S).

25

In this way we achieve

1

n

∑
s∈S

ps`s ≤
1

n
(H(Sn) + 1) = H(S) +

1

n
.

and by taking n large, we can get arbitrarily close to H(S). A disadvantage of block
codes, however, is that they tend to use a lot of memory.

The Huffman code [14] is a prefix code that achieves (14) and it has a very simple
algorithm to produce it, see Figure 15. We construct a tree starting with #S leaves,
i.e., vertices labeled with ps. Take the two vertices with the smallest probabilities and
connected each of them with a new vertex with label the sum of these probabilities.
Repeat this rule with the yet unconnected vertices and the newly created vertices, until
all vertices are connected in a single tree, and its root has the total probability as label.

0.1 0.15

0 1

0.25

0.2 0.22

0 1

0.42

0.33

1 0

0.58

1 0

1.0

Figure 15: An edge-labeled tree illustrating the Huffman algorithm.

Huffman codes are used in PKzip, JPEG and MP3 encryption algorithms. It
widespread use is aided by its simplicity, and the fact that, contrary to several other
data compression algorithms, its patent ran out in 2010.

Proposition 2.15. The Huffman code achieves (14); in fact, it performs at least as
good as any symbol code.

Proof. Suppose by contradiction that the optimal code c id different from and has
shorter expected code length than the Huffman code h. Without loss of generality, we
can assume that c is a prefix code, and that there are at least two symbols in S with the
same longest code length. Let s, s′ ∈ S have the smallest frequencies ps ad ps′. In the
Huffman code, |h(s)| = |h(s′)|. Suppose that |c(s)| < |c(s′)|, then there is yet a third
s′′ ∈ S with larger frequency ps′′ such that |c(s′′)| ≥ |c(s′)| > |c(s)|. Thus swapping the
code words of s and s′′ make c more efficient, contradicting that c is already the most
efficient code. Thus |c(s)| = |c(s′)|.

26

Replace s and s′ with a single symbol with frequency ps + ps′ and repeat the argu-
ment.

At any moment in the encoding of the string, say at symbol si, the Huffman code
can be easily adapted to changes in the probability vector (ps)s∈S . For example,

• if the precise vector (ps)s∈S is unknown, it can be estimated by the occurrence
frequencies of the symbols s ∈ S in the message up to symbol sk;

• we can let it depend on the previously read symbol. After all, the letter ’q’ is
almost always followed by a “u’, and vowels are more likely to follow consonants
and vice versa. Such ideas of letting the letter frequency depend on the symbols
read in a previous window is called prediction by partial matching (PPM).
It can easily be combined with other compression algorithms too.

For the case that the frequency of letters s ∈ S = {0, . . . , N} has a geometric
distribution with ps = 2−s+1 for 0 < s < N and pN = 2−N , then the Huffman code
reduces to the unary code, i.e., c(s) = 1s0 for 0 < s < N and c(N) = 1N . In 1966,
Solomon Golomb [10] used this fact to create a code that works best for letter frequencies
ps that are geometric districally distributed with some rate ρ, but not necessarily equal
to 1/2. However, because the computer use of base 2, this base is not simply replace
by d1/re. Instead, if ρ is close to 2−1/m for some integer m, it uses use m different code
words with the same length and unary prefix. Take k ∈ N such that 2k−1 < m ≤ 2k,
and set s = qm+ r. Then q is encoded in a unary way (with zero at the end) and the
remainder r is encoded roughly in binary. The detailed algorithm is

1. q = bs/mc; r = q (mod m); k = blog2mc;

2. Start with code 1q0;

3. If r ≤ 2k −m then encode r in binary and attach to 1q0;
Otherwise encode r + 2k −m in binary and attach to 1q0.

In the 1970s, Robert Rice [23] picked up the idea again. His encoding coincides with
Golomb encoding, for m = 2k only. Indeed, if m = 2k, then line 3. in the above
algorithm reduces to: encode r in binary and attach to 1q0. In table form:

Golomb m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8
Rice k = 0 k = 1 k = 2 k = 3

s = 0 0 00 00 000 000 000 000 0000
1 10 01 010 001 001 001 0010 0001
2 110 100 011 010 010 0100 0011 0010
3 1110 101 100 011 0110 0101 0100 0011
4 11110 1100 1010 1000 0111 0110 0101 0100
5 111110 1101 1011 1001 1000 0111 0110 0101
6 1111110 11100 1100 1010 1001 1000 0111 0110
7 11111110 11101 11010 1011 1010 1001 1000 0111
8 111111110 111100 11011 11000 10110 10100 10010 10000

27

Golomb-Rice encoding is used in several audio-encoding systems, such as MPEG-4 ALS.

2.4 Arithmetic Coding

In a way, arithmetic coding is an application of Lochs’ Theorem (which in turn is an
application of the Shannon-McMillan-Breiman Theorem, but this connection is rarely
flagged up. It was invented by Elias, and further described in [21, 24, 25, 30]5. Arith-
metic coding works well with any source or coding alphabet, is adapted to changing
probability vectors (ps)s∈S and gives results extremely close to the theoretic limit. It
works by encoding strings instead of letters, and the performance is independent on
the string length, so using longer strings, or directly the whole message, is no problem,
maybe even preferable. The downside is that arithmetic coding requires extreme com-
putation precision, because it needs to compute real numbers with excessive accuracy.

The idea is as follows. Divide the unit interval into #S intervals Js1 , labeled by
the letters s1 ∈ S and of lengths ps1 . Then each interval s1 is divided in into #S
intervals, labeled as s1s2, s2 ∈ S, and of relative lengths ps2 , that is: actual length
ps1ps2 . Continuing this way for n steps, we have a very fine partition into intervals,
labeled by strings of length n. In practice, we only need to compute the interval J
of the string s1 . . . sn we want to encode, and this interval has length |J | = ps1 · · · psn .
Now find the largest dyadic interval D (or d-adic if #A = d) that is contain in J . This
interval is labeled by a string a1 . . . ak ∈ Ak (which indicate the first k digits (base d) of
the real numbers contained in D. This string a1 . . . a−k = c(s1dotssn) is the encoding
of s1 . . . sn. By Lochs’ Theorem.

k

n
∼ H(S)

H(1
d
, . . . , 1

d
)

=
h(S)

logd d
= H(S),

for the vast majority of the strings6. Thus we get compression by a factor H(S), with
maybe 2 bits excess to make sure that D ⊂ J , rather than taking the first k digits of
some x ∈ J .

The algorithm describe here, can be performed using two maps on the unit interval,
Td(x) = dx (mod 1) and

Tp(x) =
1

ps
(x− `s) if x ∈ Js,

where Js := [`s, rs) is the interval of the first partition belonging to symbol s. That
is, if we order the s ∈ S, the `s =

∑
s′<s ps′ and rs = `s + ps. Next, with input string

s1 . . . sn ∈ Sn perform the following steps:

1. x := 0; y := 1;

2. For i = 1 to n do:
x := T−1p (x) ∩ Jsi ; y := T−1p (y) ∩ Jsi ;

5Indeed, without mentioning Lochs.
6For Lebesgue almost every x ∈ [0, 1], if J 3 x, then k/n ∼ H(S).

28

x = 0

y = 1

Tp T2

Figure 16: The maps Tp and Td for p = (1
4
, 2
3
, 1
12

) and d = 2.

3. If x and y are already expressed in base d, take the longest common prefix of the
expansions of x and y as c(s1 . . . sn)

4. Otherwise continue as follows: k := 1;

5. While i
d
/∈ [x, y] for every i ∈ {1, . . . , d− 1} do:

ak := bdxc; k := k + 1; x := Td(x); y := Td(y);

6. Set c(s1 . . . sn) = a1 . . . ak−1.

As with the Huffman coding, arithmetic coding is easily adapted to changing the
probability vector (ps)s∈S ; we only have to adapt the map Tp in each step of the al-
gorithm. Arithmetic coding is used in arithmetic codes, JBIG, dejavu and also an
automatic writing tool called Dasher7 designed for disabled people, among others.

2.5 ZLV Coding

The Lempel-Ziv-Welch [29] encoding algorithm (ZLV) was designed in 1984 after an
earlier version by the first two authors [32, 33]. It encodes the source using a dictionary
of labeled words, initially containing only the one-letter words. As the source is read,
new labeled words are added to the dictionary which can have the structure of a binary
(or d-ary if #A = d) tree for easy searching. The message is scanned left-to-right until
a word is found that is not yet in the dictionary. This word is necessarily one letter, say
a, longer than the best fit w in the dictionary so far, and the new word wa is put in the
dictionary with the next available label. Instead of transmitting the whole dictionary,
only the labels and the single ”extra“ letters are transmitted, that is, only the label of
w and a are transmitted.

As an example, we use the Feigenbaum sequence as source and the initial dictionary
if 0 and 1 with labels 0000and 0001 respectively. We use 4-bit labels, for longer messages
longer (frequently 12-bit) labels are necessary. This leads to Tabel 2.

7See http://www.inference.org.uk/dasher/

29

ρfeig 10 11 101 01 011 1011 10111 010 101110 1010
label 2 3 4 5 6 7 8 9 10 11

transmit 1 0 1 1 2 1 0 1 5 1 4 1 7 1 5 0 8 0 4 0
in binary 0001 0 0001 1 0010 1 0000 1 0101 1 0100 1 0111 1 0101 0 1000 1 0100 0

Table 2: Encoding the Feigenbaum sequence by ZLV.

We see that this 34 bit message is transmitted using 50 bits, but the true (and
asymptotically optimal) compression kicks after some time. The compression is best if
there are many repetitions in the message. In particular, sources of zero entropy work
well: the smaller the word-complexity p(n), the better.

For the decoding, the dictionary is build at the decoding end, again with initial
dictionary 0 and 1 with labels 0000 and 0001 respectively, see Table 3.

code 0001 0 0001 1 0010 1 0000 1 0101 1 0100 1 0111 1 0101 0 1000 1 0100 0
label 2 3 4 5 6 7 8 9 10 11

label + letter 1 0 1 1 2 1 0 1 5 1 4 1 7 1 5 0 8 0 4 0
decoded 10 11 101 01 011 1011 10111 010 101110 1010

Table 3: Decoding the Feigenbaum sequence by ZLV.

ZLV encoding doesn’t rely on a particular alphabet, letter frequencies or adapted
letter frequencies. It was initially used in GIF-compression, but more frequently in
other application (e.g. the UNIX compression tool, in gzip, PKZIP, and occasional for
pdf-file compression in Acrobat reader) when the initial patents ran out.

References

[1] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Se-
quences and their applications, (Singapore, 1998), 1–16, Springer Ser. Dis-
crete Math. Theor. Comput. Sci., Springer, London, 1999.

[2] J.-P. Allouche, J. Shallit, Automatic sequences: theory, applications, gener-
alizations, Cambridge Univ. Press, 2nd. edition, Cambridge (2003).

[3] J. Berstel, A. Lauve, C. Reutenauer, F. Saliola, Combinatorics on words.
Christoffel words and repetitions in words, CRM Monograph Series 27
(2009), Providence, RI: Amer. Math. Soc.

[4] J. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundlagen Math. 6 (1960), 66–92.

[5] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972): 164–
192.

[6] F. Durand, A generalization of Cobham’s theorem, Theory of Computing
Sys. 31 (1998), 169–185.

30

[7] F. Durand, M. Rigo, On Cobham’s theorem, Chapter in Automata: from
Mathematics to Applications, Eur. Math. Soc., Editor J.-E. Pin,

[8] F. Durand, Cobham’s theorem for substitutions, J. Eur. Math. Soc. 13
(2011), 1797–1812.

[9] R. Fano, The transmission of information, MIT Technical Report no. 65
(196).

[10] S. Golomb, Run-length encodings, IEEE Transactions on Information The-
ory, 12 (1966), 399–401.

[11] V. Goppa, A new class of linear error correcting codes, Probl. Peredach.
Inform. 6 (1970), 24–30.

[12] V. Goppa, Rational representation of codes and (L, g) codes, Probl.
Peredach. Inform. 7 (1971), 41–49.

[13] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and
Computation, Addision-Wesley Publ. ISBN 0-201-02988-X

[14] D. Huffman, A method for construction of minimum-redundancy codes,
Proc. of IRE 40 (1952), 1098–1101.

[15] T. Krebs, A more reasonable proof of Cobham’s theorem, Preprint (2018)
arXiv:1801.06704

[16] S. Ling, C. Xing, Coding theory; a first course, Cambridge Univ. Press,
ISBN 978-0-521=52923-5, Cambridge, 2004.

[17] M. Lothaire, Applied combinatorics on words, Encyclopedia of Mathematics
and Its Applications 105 (2005) 524–.

[18] D. MacKay, Information theory, inference, and learning algorithms, Cam-
bridge University Press, 2003.

[19] M. Minsky, Universality of (p = 2) tag systems and a 4 symbol 7 state
universal Turing machine, 1962 Technical Report, Massachusetts Institute
of Technology 201 Cambridge, MA.

[20] M. Morgenstern, Turing machines with two letters and two states, Complex
Systems 19 (2010) 29–43.

[21] R. Pasco, —em Source coding algorithms for fast data compression, Ph.D.
thesis, Dept. of Electrical Engineering, Stanford Univ., Stanford, Calif.
(1976).

31

[22] J. Preskill, Quantum information and computation, Lecture Notes for
Physics 229, CreateSpace Independent Publishing Platform (2015), see also
Chapter 10 on arXiv:1604.07450.

[23] R. Rice, Some practical universal noiseless coding techniques, Technical Re-
port 79/22, Jet Propulsion Laboratory, 1979.

[24] J. Rissanen, Generalized Kraft inequality and arithmetic coding, IBM 1. Res.
Dev. 20 (1976), 198–203. Another early exposition of the idea of arithmetic
coding.

[25] J. Rissanen, Arithmetic codings as number representations, Acta Polytech.
Stand. Math. 31 (1979), 44–51.

[26] C. Shannon, A mathematical theory of communication, Bell System Tech-
nical Journal, (1948), 379–423 & 623–656.

[27] M. Tsfasman, S. Vlǎduţ, Th. Zink, Modular curves, Shimura curves, and
Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr. 109
(1982), 21–28.

[28] A. Turing, On Computable Numbers, with an Application to the Entschei-
dungsproblem, Proc. London Math. Soc. 42 (1937), 230–65.

[29] T. Welch, A technique for high-performance data compression, Computer
17 (1984), 8–19.

[30] I. Witten, R. Neal, J. Cleary, J Arithmetic Coding for Data Compression,
Communications of the ACM. 30 (1987), 520–540.

[31] S. Wolfram, Cellular automata and complexity: collected papers, Westview
Press, Boulder Colorado (1994).

[32] J. Ziv, A universal algorithm for sequential data compression, IEEE Trans-
actions on Information Theory, 23 (1977), 337–343.

[33] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate
coding, IEEE Transactions on Information Theory 24 (1978), 530.

32

