G-maps over the homogeneous space G/H as equivariant fibrations

Aura Lucina Kantún-Montiel

Universidad del Papaloapan, México

36th Summer Topology Conference

July 18-22, 2022

4 **A b b b b b b**

э

イロト イポト イヨト イヨト

• A *G-space* is a topological space X with a continuous action $: G \times X \to X$ of G on X.

As usual we write $g \cdot x$ or gx for the image of the pair (g, x) under the action.

• • • • • • • • • • • • •

• A *G-space* is a topological space X with a continuous action $: G \times X \to X$ of G on X.

As usual we write $g \cdot x$ or gx for the image of the pair (g, x) under the action.

A continuous map φ : X → Y, where X and Y are G-spaces, is called a G-map or an equivariant map if φ(gx) = gφ(x) for every x ∈ X and g ∈ G.

< ロ > < 同 > < 回 > < 回 >

• A *G-space* is a topological space X with a continuous action $: : G \times X \to X$ of G on X.

As usual we write $g \cdot x$ or gx for the image of the pair (g, x) under the action.

A continuous map φ : X → Y, where X and Y are G-spaces, is called a G-map or an equivariant map if φ(gx) = gφ(x) for every x ∈ X and g ∈ G.

We work in the category *G*-*TOP* of *G*-spaces and *G*-maps.

Example

• G is a G-space with the action by left translations $g \cdot g' = gg'$.

Example

- G is a G-space with the action by left translations $g \cdot g' = gg'$.
- If H is a closed subgroup of G, the coset space

$$G/H = \{gH \mid g \in G\}$$

is considered as a *G*-space with the action by left translations:

$$g \cdot g' H = gg' H.$$

• • • • • • • • • • • •

Example

- G is a G-space with the action by left translations $g \cdot g' = gg'$.
- If H is a closed subgroup of G, the coset space

$$G/H = \{gH \mid g \in G\}$$

is considered as a G-space with the action by left translations:

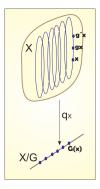
$$g \cdot g' H = gg' H.$$

If H is a closed subgroup of G, G can be considered as an H-space with the conjugation action:

$$h * g = hgh^{-1}$$
.

4 D K 4 B K 4 B K 4

The *G*-subset $G(x) = \{gx \mid g \in G\}$ is called the *G*-orbit of *x*.



Given a *G*-space, the set of its *G*-orbits, endowed with the quotient topology with respect to the canonical projection $X \rightarrow X/G$, is called the *G*-orbit space of *X* and is denoted by X/G.

< ロ > < 同 > < 回 > < 回 >

Let *G* be a topological group and *H* a closed subgroup of *G*. If *X* is an *H*-space, then we can consider $G \times X$ as an *H*-space with the action

$$h\cdot(g,x)=(gh^{-1},hx).$$

The twisted product $G \times_H X$ is defined as the corresponding orbit space

$$G \times_H X = (G \times X)/H.$$

The *H*-orbit of the point (g, x) is denoted by [g, x].

G acts on $G imes_H X$ by $g' \cdot [g, x] = [g'g, x],$

hence, $G \times_H X$ is a *G*-space.

< ロ > < 同 > < 回 > < 回 > < 回 >

Almost connected groups

Definition

A locally compact group *G* is called <u>almost connected</u> whenever its quotient space of connected components is compact.

Definition

A locally compact group *G* is called <u>almost connected</u> whenever its quotient space of connected components is compact.

Proposition (Glushkov)

Let *G* be an almost connected group, then for any neighborhood *U* of the identity, there exists a compact normal subgroup $N \subset U$, such that the quotient G/N is a Lie group.

< ロ > < 同 > < 回 > < 回 >

Definition

A locally compact group *G* is called <u>almost connected</u> whenever its quotient space of connected components is compact.

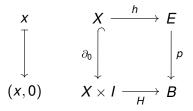
Proposition (Glushkov)

Let *G* be an almost connected group, then for any neighborhood *U* of the identity, there exists a compact normal subgroup $N \subset U$, such that the quotient G/N is a Lie group.

Proposition (Antonyan)

Let *H* be a compact subgroup of an almost connected group *G* such that G/H is locally connected and finite-dimensional, then there exists a compact normal subgroup *N* of *G* such that $N \subset H$ and G/N is a Lie group.

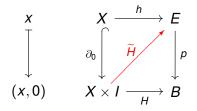
A G-map $p: E \rightarrow B$ is called G-fibration if it has the equivariant homotopy lifting property (EHLP) with respect to all G-spaces X i.e. if for every commutative diagram of G-maps



there exists a *G*-homotopy $\widetilde{H}: X \times I \to E$ as a filler.

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

A G-map $p: E \rightarrow B$ is called G-fibration if it has the equivariant homotopy lifting property (EHLP) with respect to all G-spaces X i.e. if for every commutative diagram of G-maps

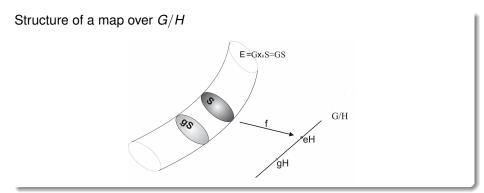


there exists a *G*-homotopy $\widetilde{H} : X \times I \to E$ as a filler.

Let *H* be a closed subgroup of a compact Lie group *G* and *E* a *G*-space. Then any *G*-map $p : E \to G/H$ is a *G*-fibration.

< ロ > < 同 > < 回 > < 回 >

Let *H* be a closed subgroup of a compact Lie group *G* and *E* a *G*-space. Then any *G*-map $p : E \to G/H$ is a *G*-fibration.



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Skljarenko)

Let *G* be a locally compact group, *H* and *K* be closed subgroups of *G* such that $K \subseteq H$. The projection $q: G/K \to G/H$ has the covering homotopy property for arbitrary spaces.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proposition

Let *H* be a closed subgroup of a locally compact group *G*. Then the projection $\pi : G \to G/H$, $g \mapsto gH$, is a *G*-fibration where both spaces are endowed with the actions defined by left translations.

< ロ > < 同 > < 回 > < 回 >

Proposition

Let *H* be a closed subgroup of a locally compact group *G*. Then the projection $\pi : G \to G/H$, $g \mapsto gH$, is a *G*-fibration where both spaces are endowed with the actions defined by left translations.

Corollary

Let *N* and *H* be closed subgroups of a locally compact group *G* such that *N* is a normal subgroup of *G* and $N \subseteq H$. Then the projection $q: G/N \to G/H, gN \mapsto gH$ is a *G*-fibration.

Lemma (Lashof)

Let *H* be a closed subgroup of a compact Lie group *G*. If *G* is considered as an *H*-space by conjugation with the action $h * g = hgh^{-1}$, and *H* acts on *G*/*H* by $h \cdot gH = hgH$, then the projection $q : G \to G/H$, $g \mapsto gH$, is an *H*-fibration.

Lemma (Lashof)

Let *H* be a closed subgroup of a compact Lie group *G*. If *G* is considered as an *H*-space by conjugation with the action $h * g = hgh^{-1}$, and *H* acts on *G*/*H* by $h \cdot gH = hgH$, then the projection $q : G \to G/H$, $g \mapsto gH$, is an *H*-fibration.

Proposition (Lashof)

Let *H* be a closed subgroup of a compact Lie group *G*. Let *X* be a *G*-space and *A* an *H*-space such that there is a *G*-homeomorphism $\eta : X \times I \to G \times_H A$, then *A* is *H*-homeomorphic to $A_0 \times I$, where $A_0 = X \times \{0\} \cap \eta^{-1}([e, A])$.

< 日 > < 同 > < 回 > < 回 > < □ > <

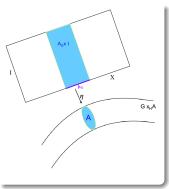
Lemma Let *H* be a compact subgroup of a Lie group *G*. If *G* is considered as an *H*-space by conjugation with the action $h * g = hgh^{-1}$, and *H* acts on *G/H* by $h \cdot gH = hgH$, then the projection $q : G \to G/H, g \mapsto gH$, is an *H*-fibration.

イロト イポト イラト イラ

Proposition

Let $X \times I \rightarrow G \times_H A$ be a *G*-homeomorphism, then *A* is *H*-homeomorphic to $A_0 \times I$ if either of the following conditions holds:

- *G* is a Lie group and *H* is its compact subgroup.
- *G* is an almost connected group and *H* is a compact subgroup such that *G*/*H* is a smooth manifold.

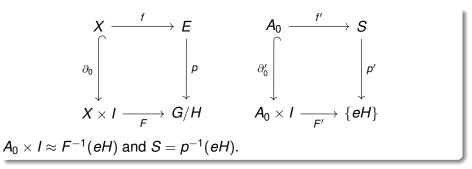


4 D K 4 B K 4 B K 4

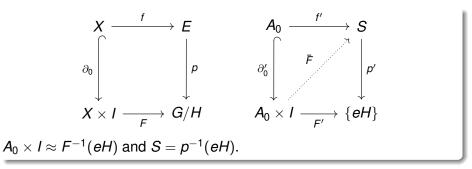
Let *H* be a compact subgroup of a Lie group *G* and *E* a *G*-space. Then any *G*-map $p : E \to G/H$ is a *G*-fibration.

< ロ > < 同 > < 回 > < 回 > < 回 >

Let *H* be a compact subgroup of a Lie group *G* and *E* a *G*-space. Then any *G*-map $p : E \to G/H$ is a *G*-fibration.

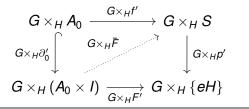


Let *H* be a compact subgroup of a Lie group *G* and *E* a *G*-space. Then any *G*-map $p: E \rightarrow G/H$ is a *G*-fibration.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *H* be a compact subgroup of a Lie group *G* and *E* a *G*-space. Then any *G*-map $p : E \to G/H$ is a *G*-fibration.



・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Theorem (Bykov)

Let *H* be a closed subgroup of a compact metrizable group *G*. Then any *G*-map $p: E \to G/H$ is a *G*-fibration

< ロ > < 同 > < 回 > < 回 > < 回 >

Theorem (Bykov)

Let *H* be a closed subgroup of a compact metrizable group *G*. Then any *G*-map $p: E \rightarrow G/H$ is a *G*-fibration

Theorem (Bykov)

Let *H* be a closed subgroup of a compact metrizable group *G*. If $p: E \to B$ is an *H*-fibration, then the *G*-map $G \times_H p: G \times_H E \to G \times_H B$ is a *G*-fibration.

4 D K 4 B K 4 B K 4

Proposition (Bykov)

Let *G* and *K* be compact Lie groups related by the homomorphism $\alpha : G \rightarrow Aut(K)$. Let *E* be a metrizable left *G*-space equipped also with a right free action of the group *K* such that

 $g(yk) = (gy)\alpha_g(k)$

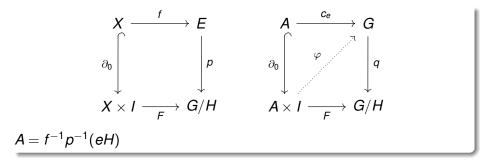
holds for all $g \in G$, $k \in K$, $y \in E$, and $\alpha_g = \alpha(g) : K \to K$. Then the *K*-orbit map $p : E \to E/K$ is a regular *G*-fibration, where the *K*-orbit space is regarded as a *G*-space with the action $g \cdot yK = (gy)K$.

Proposition

Let *H* be a compact subgroup of an almost connected metrizable group *G*. If *G* is considered as an *H*-space by conjugation with the action $h * g = hgh^{-1}$, and the action on *G*/*H* is given by $h \cdot gH = hgH$, then the projection $q : G \to G/H$, $g \mapsto gH$, is an *H*-fibration.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *H* be a compact subgroup of an almost connected metrizable group *G*. Then any *G*-map $p : E \to G/H$ is a *G*-fibration.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Every homomorphism of topological groups $\alpha : G' \to G$ induces the *restriction functor*

$$res_{\alpha}$$
 : G-TOP \rightarrow G'-TOP.

If X is a G-space, it can be considered as a G'-space via α , this is, with the action * of G' given by $g' * x = \alpha(g') \cdot x$, for all $g' \in G'$, $x \in X$.

And is right adjoint of the *functor of twisted product via* α :

$$G \times_{\alpha} - : G' \text{-} TOP \rightarrow G \text{-} TOP$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Every homomorphism of topological groups $\alpha : G' \to G$ induces the *restriction functor*

$$res_{\alpha}$$
 : G-TOP \rightarrow G'-TOP.

If X is a G-space, it can be considered as a G'-space via α , this is, with the action * of G' given by $g' * x = \alpha(g') \cdot x$, for all $g' \in G'$, $x \in X$.

And is right adjoint of the *functor of twisted product via* α :

$$G \times_{\alpha} - : G' \text{-} TOP \rightarrow G \text{-} TOP.$$

In particular, if *H* is a closed subgroup of *G*, for the inclusion $i: H \hookrightarrow G$, the restriction functor *res* : *G*-*TOP* \rightarrow *H*-*TOP*, is right adjoint of the functor of twisted product $G \times_H - : H$ -*TOP* $\rightarrow G$ -*TOP*.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Proposition

Let H be a compact subgroup of G. If $p : E \to B$ is a G-fibration then p is an H-fibration.

< ロ > < 同 > < 回 > < 回 >

Proposition

Let H be a compact subgroup of G. If $p : E \to B$ is a G-fibration then p is an H-fibration.

Theorem

Let H be a compact subgroup of a group G. If $p : E \to B$ is an H-fibration, then the G-map

$$G \times_H p : G \times_H E \to G \times_H B$$

is a G-fibration if one of the following conditions holds:

- G is a compact Lie group.
- Is a compact metrizable group. (Bykov)
- G is a Lie group.
- G is an almost connected metrizable group.

э

References

- S.A. Antonyan, Equivariant extension properties of coset spaces of locally compact groups and approximate slices, Toplogy Appl. 159 (2012) 2235-2247.
- A. Bykov, R. Juárez Flores, G-fibrations and twisted products, Topology Appl. 196(2015) 379-397.
- A. Bykov, A.L. Kantún-Montiel, *Strong G-fibrations and orbit projections*, Topology Appl. 163 (2014) 46-65.
- V.M. Glushkov, *The structure of locally compact groups and Hilbert's fifth problem*, Amer. Math. Soc. Transl. **15** (2), (1960) 59–93.
- A.L. Kantún-Montiel, *Canonical projections of Lie groups as equivariant fibrations*, Topology Proc. 54(2019) 361-369.

R.K. Lashof, Equivariant bundles, Illinois Journal of Mathematics, 26(2) (1982) 257-271.