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A Bratteli diagram is an infinite

directed graph B = (V ,E):

▸ vertex set V = ⊔i≥0 Vi ,

▸ edge set E = ⊔i≥0 Ei ,

▸ V0 = {v0} is a single point,

▸ Vi and Ei are finite sets,

▸ edges Ei connect Vi to Vi+1

▸ every v ∈ V has an outgoing

edge and every v ∈ V ∖V0 has

and incoming edge.

Vi is called the i-th level of the

diagram.

XB is the set of all infinite paths

that start at v0.
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▸ Take a vertex v ∈ V ∖V0.

▸ Consider the set of all

edges that end in v .

▸ Enumerate edges from

this set.

▸ Do the same for every

vertex.
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▸ An infinite path x = (xn)
is called maximal if for

every n, xn is maximal

among all edges that

end in the same vertex

as xn.
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▸ An infinite path x = (xn)
is called maximal if for

every n, xn is maximal

among all edges that

end in the same vertex

as xn.

▸ The sets Xmax and Xmin

of all maximal and

minimal paths are

non-empty and closed.
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Define the Vershik map

ϕB ∶ XB ∖Xmax → XB ∖Xmin ∶

Fix x = {xk}∞k=1 ∈ XB ∖Xmax.

Find the first k with xk

non-maximal.

Take the successor xk of xk .

Connect s(xk) to the top vertex

V0 by the minimal path.

ϕB is defined everywhere on

XB ∖Xmax,

ϕB(XB ∖Xmax) = XB ∖Xmin

If the map ϕB can be extended to a homeomorphism of XB

such that ϕB(Xmax) = Xmin, then (XB, ϕB) is called a

Bratteli-Vershik system and ϕB is called the Vershik map.



Motivation

▸ Bratteli diagrams (Bratteli, 1972): classification of

C∗-algebras

▸ Bratteli-Vershik models
▸ measurable dynamics (Vershik, 1980’s)
▸ Cantor (compact zero-dimensional) dynamics

(Herman-Putnam-Skau, 1992, Medynets, 2006,

Shimomura, 2018, Downarowicz-K., 2019)
▸ Borel dynamics (Bezuglyi-Dooley-Kwiatkowski, 2006)

▸ classification of Cantor dynamical systems
▸ Kakutani equivalence (Herman-Putnam-Skau, 1992)
▸ orbit equivalence (Giordano-Putnam-Skau, 1995)

▸ characterization of particular classes of Cantor dynamical

systems (substitution dynamical systems, interval

exchange transformations, Toeplitz systems, etc.)

▸ describing the simplex of probability invariant measures



Invariant measures on Bratteli diagrams
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Two infinite paths are called tail (cofinal)

equivalent if they coincide starting from

some level.

A measure µ on XB is called invariant if

µ([e]) = µ([e′]) for any two cylinders [e]
and [e′], such that the finite paths e and

e
′

have the same range.

Continuous Vershik map does not always

exist on a Bratteli diagram (Medynets

(2006); Bezuglyi-Kwiatkowski-Yassawi

(2014), Bezuglyi-Yassawi (2017))
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The n-th incidence matrix

Fn = (f (n)v ,w), n ≥ 0, is a ∣Vn+1∣ × ∣Vn∣
matrix such that f

(n)
v ,w is the number

of edges between v ∈ Vn+1 and

w ∈ Vn.

F0 = (11) ,

F1 = (1 1

1 2
) ,

F2 =
⎛⎜⎝

1 1

1 3

1 1

⎞⎟⎠ .



Stationary Bratteli diagrams

A Bratteli diagram is called stationary if Fn = F for all n ≥ 1.

There is a one-to-one correspondence between non-negative

(right) eigenvectors of A = F T and finite ergodic invariant

measures on XB (Bezuglyi-Kwiatkowski-Medynets-Solomyak,

2010).

Let Ax = λx , where x is a non-negative probability vector. Then

the corresponding measure µ satisfies the relation:

p
(n)
w =

xw

λn−1
,

where p
(n)
w is a measure of a cylinder set corresponding to a

finite path between v0 and w ∈ Vn.



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

A = F T =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ(1) =

3 +
√

5

2
,

x(1) = (3 −
√

5

2
,

√
5 − 1

2
,0)T

,

λ(2) = 3, x(2) = (1

4
,
1

2
,
1

4
)T

.



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

4

A = F T =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2
A =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

4

A =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

4 ⋅ 3

A =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

4 ⋅ 3

A =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2 ⋅ 3

A =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

4 ⋅ 32

A =
⎛⎜⎝

1 1 0

1 2 1

0 0 3

⎞⎟⎠
λ = 3

x = (1

4
,
1

2
,
1

4
)T



A Borel dynamical system is a pair (X ,T ), where X = (X ,B) is

a (uncountable) standard Borel space with the σ-algebra B of

Borel sets, and T is a Borel automorphism of X .

A generalized Bratteli diagram is an infinite directed graph

B = (V ,E) such that:

▸ vertex set V = ⊔i≥0 Vi , edge set E = ⊔i≥0 Ei ,

▸ V0 = Vi is an infinite countable set for all i ≥ 1,

▸ edges Ei connect Vi to Vi+1,

▸ every w ∈ V has an outgoing edge e (s(e) = w) and every

v ∈ V ∖V0 has and incoming edge e′ (r(e′) = v ),

▸ for every w ∈ Vi and v ∈ Vi+1, the set of edges E(w ,v)
between w and v is finite, ∣E(w ,v)∣ = f

(i)
vw ,

▸ matrices Fi have only finitely many non-zero entries in

each row (for any v ∈ V ∖V0, r−1(v) is finite).



V0 . . . . . .

V1 . . . . . .

V2 . . . . . .

. . . . . . . . . . . . . . . .

Figure: Example of a generalized Bratteli diagram

Theorem (Bezuglyi-Dooley-Kwiatkowski, 2006)

Every aperiodic Borel automorphism of a standard Borel space

is isomorphic to the Vershik map acting on the path space of an

ordered generalized Bratteli diagram.



Perron-Frobenius Theory for infinite matrices

A non-negative infinite matrix A = (aij) is called irreducible if for

any i , j there exists n > 0 such that (An)ij > 0.

Fix i ∈ Z, let p(i) = gcd{n ∶ (An)ii > 0}. If A is irreducible then

p(i) = p for all i . If p = 1 then A is aperiodic.

Lemma
Let A be a real, non-negative, irreducible and aperiodic infinite

matrix. Then for all i , λ = lim
n→∞

n
√(An)ii = sup

n∈N

n
√(An)ii ≤∞.

λ is called the Perron eigenvalue of A. Assume λ <∞.

∞

∑
n=0

(An)ii
λn

=∞⇐⇒ A is recurrent

∞

∑
n=0

(An)ii
λn

<∞⇐⇒ A is transient



Perron-Frobenius Theory for infinite matrices

Theorem (Generalized Perron-Frobenius theorem)

Let A be a real, non-negative, irreducible, aperiodic and

recurrent infinite matrix with Perron eigenvalue λ. Then

▸ there exist strictly positive eigenvectors η, ξ such that

ηA = λη, Aξ = λξ;

▸ η and ξ are unique up to constant multiples;

▸ η ⋅ ξ <∞⇐⇒ A is positive recurrent

▸ if A is positive recurrent and ηξ = 1 then

lim
n→∞

An

λn
= ξη.



Theorem (Bezuglyi-Jorgensen, 2021)

Let B be a stationary generalized Bratteli diagram with

irreducible, aperiodic and recurrent matrix A transpose to the

incidence matrix. Then

1. there exists a tail invariant measure µ on the path space

XB, defined as follows : let e(w ,v) denote a finite path that

begins at w ∈ V0 and ends at v ∈ Vn, n ∈ N. For the

corresponding cylinder set [e(w ,v)], we set

µ([e(w ,v)]) = ξv

λn
.

Here ξ = (ξv) is the right eigenvector corresponding to the

Perron eigenvalue λ for A;

2. measure µ is finite if and only if

∑
v

ξv <∞.



Invariant measures for generalized Bratteli diagrams

Theorem (Bezuglyi-Jorgensen-K.-Sanadhya)

Let B be an ordered stationary generalized Bratteli diagram

with the matrix A = F T transpose to the incidence matrix and a

Vershik map ϕB. Let A be irreducible, aperiodic and positive

recurrent. Let λ be the Perron eigenvalue for A and ξ = (ξi) be

the corresponding right eigenvector with ∑ ξi = 1.

Then the measure µ defined as follows: for a cylinder set[e] = (e0, . . . ,en−1) with r(en−1) = w:

µ([e]) = ξw

λn

is a unique probability invariant measure for ϕB which is

positive on cylinder sets.



Sketch of proof
Suppose ν is a probability ergodic ϕB-invariant measure which

is positive on cylinder sets. Denote by p
(n)
w the measure ν of a

cylinder set [e] = (e0, . . . ,en−1) with r(en−1) = w . Then by

Birkhoff ergodic theorem,

p
(n)
w = lim

N→∞

∣E(w ,v)∣
h
(N)
v

.

Then using Perron-Frobenius theorem we obtain

ν([e]) = p
(n)
w = lim

N→∞

(AN−n)wv

∑u∈V0
(AN)uv

=
ξw ⋅ ηv

∑u∈V0
ξu ⋅ ηv ⋅ λn

=
ξw

λn
= µ([e])



Invariant measures for generalized Bratteli diagrams

Theorem (Bezuglyi-Jorgensen-K.-Sanadhya)

Let B be an ordered stationary generalized Bratteli diagram

with matrix A = F T transpose to the incidence matrix and

Vershik map ϕB. Let A be irreducible, aperiodic and positive

recurrent. Let λ be a Perron eigenvalue of A and ξ = (ξi) be the

corresponding right eigenvector with ∑ ξi =∞.

Let µ be an ergodic ϕB-invariant infinite σ-finite measure such

that (X ,B, ϕB, µ) is conservative and µ takes finite positive

values on cylinder sets. Then µ is unique up to a constant

multiple and can be defined as follows: for a cylinder set[e] = (e0, . . . ,en−1) with r(en−1) = w:

µ([e]) = ξw

λn
.



Sketch of proof

Consider two cylinder sets [e1], [e2] ⊂ XB such that

r(e1) = w1 ∈ Vn1
and r(e2) = w2 ∈ Vn2

.

For some N > max{n1,n2}, let v ∈ VN such that the sets

E(w1,v) and E(w2,v) are non-empty. By Hopf’s ratio ergodic

theorem,

m([e1])
m([e2]) = lim

N→∞

∣E(w1,v)∣∣E(w2,v)∣ = lim
N→∞

A
(N−n1)
w1v

A
(N−n2)
w2v

=
ξw1

ξw2

λ(n2−n1).



A = F T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰

⋯ 2b 0 a 0 0 0 0 0 0 0 ⋯

⋯ 0 2b 0 a 0 0 0 0 0 0 ⋯

⋯ 0 0 2b 0 b 0 0 0 0 0 ⋯

⋯ 0 0 0 2b a b 0 0 0 0 ⋯

⋯ 0 0 0 0 b a 2b 0 0 0 ⋯

⋯ 0 0 0 0 0 b 0 2b 0 0 ⋯

⋯ 0 0 0 0 0 0 a 0 2b 0 ⋯

⋯ 0 0 0 0 0 0 0 a 0 2b ⋯

⋰ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Aξ = λξ, λ = a + 2b

ξ = (. . . , 1

23
(a

b
)2

,
1

22
(a

b
) , 1

2
,1,1,

1

2
,

1

22
(a

b
) , 1

23
(a

b
)2

, . . .)T

∑
i∈Z

ξi <∞⇐⇒ a < 2b



Example (Bobok-Bruin, 2016)

A = F T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰

⋯ 0 b 0 0 0 ⋯

⋯ a 0 b 0 0 ⋯

⋯ 0 a 0 b 0 ⋯

⋯ 0 0 a 0 b ⋯

⋯ 0 0 0 a 0 ⋯

⋰ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Aξ = λξ, λ = a + b, ξ = (ξi) = (. . . ,1,1,1 . . .)T , ∑
i∈Z

ξi =∞;

Ax = λAx , λA = 2
√

ab, x = (xi), xi = (a

b
)

i
2
, ∑

i∈Z

xi =∞.



Stochastic matrices and random walks

Assume that the matrix A is a real non-negative irreducible and

aperiodic infinite matrix and there exists a positive right

eigenvector ξ for some λ <∞:

Aξ = λξ.

Define the matrix P = (pw ,v)w ,v∈V as follows:

pw ,v =
aw ,v ξv

λξw
.

It is easy to see that matrix P is row stochastic.

Theorem (BJKS, Thiago Costa Raszeja)

A is positive recurrent (null recurrent, transient) if and only if P

is positive recurrent (null recurrent, transient).



Random walks

For the example by Bobok-Bruin: for all k ∈ Z we have

pk ,k−1 =
a

a + b
; pk ,k+1 =

b

a + b
.

All other entries of P are zero.

The matrices P and A are transient for a ≠ b and null recurrent

for a = b.



Random walks

For the example with λ = a + 2b and

ξ = (. . . , 1

23
(a

b
)2

,
1

22
(a

b
) , 1

2
,1,1,

1

2
,

1

22
(a

b
) , 1

23
(a

b
)2

, . . .)T

:

p0,0 = p−1,−1 =
a

a + 2b
; p0,−1 = p0,1 = p−1,−2 = p−1,0 =

b

a + 2b
;

for k ≥ 1 we have

pk ,k−1 =
2b

a + 2b
; pk ,k+1 =

a

a + 2b
;

and for k ≤ −2:

pk ,k−1 =
a

a + 2b
; pk ,k+1 =

2b

a + 2b
.

All other entries of P are zero.



. . .

. . .

. . .

⋮ ⋮ ⋮

Figure: A generalized Bratteli diagram with no finite ergodic invariant

measure.
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Fn

Vn

Vn+1

v0

v

Let h
(n)
w be the number of all finite

paths between v0 and w ∈ Vn (the

“height”).

Then

h
(n+1)
v = ∑

w∈Vn

f
(n)
v ,wh

(n)
w .

X
(n)
w is the set of all infinite paths

which pass through w ∈ Vn (the

“tower”).



Theorem (Bezuglyi-Jorgensen-K.-Sanadhya)

Let B be a stationary generalized Bratteli diagram with the

matrix A = F T transpose to the incidence matrix. Let A be

irreducible, aperiodic and positive recurrent. Let λ be the Perron

eigenvalue of A and ξ = (ξi), η = (ηi) be the corresponding right

and left eigenvectors normalized such that ∑ ξi = 1 and ηξ = 1.

Then for every n ∈ N, every w ∈ Vn and every v ∈ Vn+1

µ(X (n)w )→ ηwξw as n →∞

and
h
(n)
w

h
(n+1)
v

→
ηw

ληv
as n →∞.



Proof.

µ(X (n)w ) = ξw

λn ∑
t

a
(n)
t ,w = ξw∑

t

a
(n)
t ,w

λn
ÐÐÐ→
n→∞

ξw∑
t

ξtηw = ξwηw .

h
(n)
w

h
(n+1)
v

=
∑t a

(n)
tw

∑t a
(n+1)
tv

=
∑t a

(n)
tw λn+1

∑t a
(n+1)
tv λnλ

ÐÐÐ→
n→∞

ηw

ληv
.



Bratteli diagrams of bounded size

Definition
A generalized Bratteli diagram B with incidence matrices

Fn = (f (n)vw ) is called of bounded size if there exist a sequence of

pairs of natural numbers (tn,Ln) such that for all n ∈ N0 and all

v ∈ Vn+1

s(r−1(v)) ∈ {v − tn, . . . ,v + tn} and ∑
w∈Vn

f
(n)
vw ≤ Ln.

We will assume that E(v − tn,v) and E(v + tn,v) are non-empty.



Bratteli diagrams of bounded size

Let B be a generalized Bratteli diagram of bounded size and

w ∈ Vn. Then all paths passing through w lie inside a

subdiagram of the form of a “cone” with v being the vertex of

the cone.



Bratteli diagrams of bounded size

Fix w ∈ V0. Define a slanting set Z+w :

Z+w = {x = (xn) ∈ XB ∶ s(x0) ≥ w and r(xn) ≥ w +
n

∑
i=0

ti for n ∈ N0} .

Theorem (Bezuglyi-Jorgensen-K.-Sanadhya)

The slanting sets Z+w , Z−w are R-invariant closed nowhere dense

sets with respect to the topology generated by cylinder sets.



Topological properties of tail equivalence relation

Theorem (Bezuglyi-Jorgensen-K.-Sanadhya)

Let B be a generalized stationary Bratteli diagram with an

irreducible aperiodic incidence matrix F = (fij)i,j∈Z. Then the tail

equivalence relation R is topologically transitive.

Moreover, if B is of bounded size then R is not minimal.

Idea of the proof.

A generalized stationary Bratteli diagram with an irreducible

aperiodic incidence matrix always has “vertical” paths, which

are topologically transitive points.

For generalized Bratteli diagrams of bounded size, the

“slanting” paths do not have dense orbits.



For all i , j there exists l such that (F l)ij > 0.

For all j there exists s = s(j) such that (F m)jj > 0 for all m ≥ s.

V0 i

j

Vn

V2n

Vkn

VN

VN+M = Vkn−l

. . . . . . . . . . . . . . . .



Thank you for

your attention!



Frobenius normal form

Let B be a stationary Bratteli diagram and A the matrix

transpose to the incidence matrix of B. Then A can be

transformed to the Frobenius normal form:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 0 ⋯ 0 Y1,s+1 ⋯ Y1,m

0 A2 ⋯ 0 Y2,s+1 ⋯ Y2,m

⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮

0 0 ⋯ As Ys,s+1 ⋯ Ys,m

0 0 ⋯ 0 As+1 ⋯ Ys+1,m

⋮ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 ⋯ Am

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where all Ai are primitive matrices, A1, ...,As determine minimal

components of R, non-zero matrices Yi,j show how

non-minimal components “interact” with minimal ones.



Stochastic incidence matrices

⋮

Fn

Vn

Vn+1

v0

v

Let h
(n)
w be the number of all finite

paths between v0 and w ∈ Vn

(“height”).

Then

h
(n+1)
v = ∑

w∈Vn

f
(n)
v ,wh

(n)
w .

A stochastic incidence matrix F̃n:

f̃
(n)
vw =

f
(n)
vw h

(n)
w

h
(n+1)
v

,



Invariant measures on Bratteli diagrams

Theorem (Bezuglyi-Karpel-Kwiatkowski, 2019)

A Bratteli diagram B = (V ,E) is uniquely ergodic if and only if

there exists a telescoping B′ of B such that

lim
n→∞

max
v ,v ′∈Vn+1

⎛
⎝ ∑w∈Vn

∣̃f (n)vw − f̃
(n)
v ′w ∣⎞⎠ = 0,

where f
(n)
vw are the entries of the stochastic matrix F̃n defined by

the diagram B′.

(recall the formula p(n) = F T
n p(n+1), where p(n) = (p(n)w ∶ w ∈ Vn)

and p
(n)
w is a measure of a cylinder set corresponding to a finite

path between v0 and w ∈ Vn.)



Invariant measures on Bratteli diagrams

Theorem (Adamska-Bezuglyi-K.-Kwiatkowski, 2017)

Let B = (V ,E) be a Bratteli diagram of rank k with incidence

matrices Fn = (f (n)vw )v∈Vn+1,w∈Vn
such that for every n and every

v ∈ Vn+1 we have ∑w∈Vn
f
(n)
vw = rn with rn ≥ 2. Let detFn ≠ 0 for

every n and denote

z(n) = det

⎛⎜⎜⎜⎜⎝

f
(n)
1,1

rn
. . .

f
(n)
1,k−1

rn
1

⋮ ⋱ ⋮ ⋮

f
(n)
k,1

rn
. . .

f
(n)
k,k−1

rn
1

⎞⎟⎟⎟⎟⎠
.

Then there exist exactly k ergodic invariant measures on B if

and only if
∞

∏
n=1

∣z(n)∣ > 0.



Bratteli-Vershik models for homeomorphisms of a

Cantor set

A Bratteli diagram is called simple if for any level n there exists

m > n such that each pair of vertices (v ,w) ∈ (Vn,Vm) is

connected by a finite path.

Theorem (Herman-Putnam-Skau, 1992)

Every minimal homeomorphism of a Cantor space can be

represented as a Vershik map acting on the path space of an

ordered simple Bratteli diagram, which has a unique minimal

and a unique maximal paths.



Bratteli-Vershik models for homeomorphisms of a

Cantor set

▸ K. Medynets (2006): Bratteli-Vershik models for aperiodic

homeomorphisms of a Cantor space;

▸ T. Shimomura (2020): Bratteli-Vershik models for arbitrary

zero-dimensional dynamical systems.

Theorem (Downarowicz-K, 2019)

A (compact, invertible) zero-dimensional system (X ,T ) is

“Bratteli-Vershikizable” (i.e. ϕB can be prolonged uniquely to

Xmax ) if and only if the set of aperiodic points is dense, or its

closure misses one periodic orbit.



Theorem (Adamska-Bezuglyi-K.-Kwiatkowski, 2017)

Let B be a Bratteli diagram with 2 × 2 incidence matrices Fn

such that

Fn = (an cn

dn bn
) ,

where an + cn = dn + bn = rn for every n. Then

(1) There are two finite ergodic invariant measures if and only if

∞

∑
n=1

(1 − ∣an − dn∣
rn

) <∞,

In this case, one can point out explicitly the subdiagrams that

support these measures.

(2) There is a unique invariant measure µ on B if and only if

∞

∑
n=1

(1 − ∣an − dn∣
rn

) =∞.


