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Motivation

Question

The typical property of quasicrystal structures is that the

diffraction pattern has a strong component of Bragg peaks which

lacks periodic order.

1. What structures show the diffraction pattern consisting only of

Bragg peaks?

2. Are their structures coming from projecting certain sections of

high dimensional lattice structures?
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Background



Background

1. [Hof ‘98] and [Schlottmann ‘00] has shown that

a regular model set in Rd has pure point spectrum.

2. [Baake-Moody ‘04], [Baake-Lenz-Moody ‘07], [Strungaru ‘17] have

discussed the relation between regular model sets and pure point

spectrum.

3. [Dekking ‘78], [Lee-Moody ‘01], [Lee-Moody-Solomyak ‘03] have

shown an equivalence between regular model sets and pure point

spectrum in lattice substitution tilings on Rd .

4. [Barge-Kwapisz ’06] has shown an equivalence between regular

model sets and pure point spectrum in unimodular substitution

tilings on R.
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Background

5. [Minervino-Thuswaldner ‘14] has shown an equivalence between

regular model sets and pure point spectrum in substitution tilings

on R.

6. [Lee ‘07] has shown an equivalence between inter model sets and

pure point spectrum in substitution tilings on Rd .

7. [Lee-Akiyama-Lee ‘20] has shown an equivalence between regular

model sets and pure point spectrum in unimodular substitution

tilings on Rd with diagonalizable expansion map φ.
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Question

Question

Can we say an equivalence between regular model sets and pure

point spectrum in non-unimodular substitution tilings on Rd with

diagonalizable expansion map φ?
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Main Theorem

We assume that

1. T is a repetitive primitive substitution tiling on Rd with

expansion map φ,

2. φ is diagonalizable,

3. all the eigenvalues of φ are algebraically conjugate with the

same multiplicity,

4. T has a rigid structure.

Then T has pure point spectrum iff a control point set of T is a

regular model set in a CPS with an internal space which is a

product of a Euclidean space and a profinite group.
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Pure point spectrum

X : a collection of tilings made of tiles in T ,

XT := {x + T : x ∈ Rd} with a local topology on X .

(XT ,Rd) : Rd -action by translations.

Assume ∃ unique invariant probability measure µ.

For f ∈ L2(XT , µ), define Ug f (ξ) = f (ξ − g) for g ∈ Rd , ξ ∈ XT .

If ∃ α ∈ Rd : Ug f = e2πi〈α,g〉f for all g ∈ Rd , then f is an

eigenfunction for the Rd -action.

T is said to have pure point (dynamical) spectrum if the

eigenfunctions span a dense subspace of L2(XT , µ).
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Cut-and-project scheme and regular model sets

A cut-and-project scheme (CPS) is a collection of spaces and mappings

for which

Rd π1←− Rd ×K π2−→ K
∪

L ←− L̃ −→ L∗

x ←− [ (x , x∗) 7−→ x∗ ,

(1)

where

(1) K is a locally compact Abelian group,

(2) L̃ is a lattice in Rd ×K,

(3) π1 and π2 are canonical projections such that π1|L̃ is injective and

π2(L̃) is dense in K.

Here we denote by ∗ the mapping π2 · (π1|L̃)−1 : L→ K.
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Regular model sets

f(V ) := {π1(x) ∈ Rd : x ∈ L̃, π2(x) ∈ V }, where V ⊂ K.

Γ ⊂ Rd is a model set if Γ = f(W ) where W ◦ 6= ∅ and W is

compact in K.

A model set Γ is regular if µ(∂W ) = 0 with a Haar measure µ.
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Substitution tilings

그림 1: 2-dimension Fibonacci substitution tiling (b is the golden ratio)
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Substitution tilings

• Let A = {T1, . . . ,Tκ} be a finite set of tiles in Rd with Ti = (Ai , i) and

PA be the set of patches made of tiles in A.

• We say that ω : A → PA is a substitution with expansion (linear) map φ

if ∃ compact sets Ai ’s with Ai = A◦i 6= ∅ and finite sets Dij such that

ω(Tj) = {u + Ti : u ∈ Dij , i ≤ κ}

with

φ(Aj) =
⋃̇

i≤κ
(Ai +Dij), for j ≤ κ

where all sets in the right-hand side have disjoint interiors.

• When T is a tiling and ω(T ) = T , we say that T is a substitution tiling.

• We say that φ is unimodular if the minimal polynomial of φ over Z has

constant term ±1. Otherwise we say that φ is non-unimodular.
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Rigid structure

For a tiling T , define Ξ(T ) := {x ∈ Rd : T = x + T ′,T ,T ′ ∈ T }.

Theorem (Kenyon ’94, Solomyak ’06)

Let T be a primitive substitution tiling in Rd with FLC for which

φ(= θ) is a similarity map for which |θ| > 1. Then

Ξ(T ) ⊂ Z[θ]α1 + · · ·+ Z[θ]αd

for some basis {α1, · · · , αd} in Rd .
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Rigid structure for T

Theorem [Lee-Solomyak ’12]

Let T be a primitive substitution tiling in Rd with an expansion map φ for

which T has FLC. Assume that

(1) φ is diagonalizable over C

(2) all the eigenvalues of φ are algebraically conjugate with the same

multiplicity J.

Then ∃ an isomorphism ρ : Rd → Rd such that

ρφ = φρ and Ξ(T ) ⊂ ρ(Z[φ]α1 + · · ·+ Z[φ]αJ),

where m is the number of different eigenvalues of φ (d = mJ) and

(αj)n =

{
1 if (j − 1)m + 1 ≤ n ≤ jm;

0 else.

(We call this rigid structure).
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Frank-Robinson substitution tiling (Rigid structure)

φA1 = (A1 + (2, 2)) ∪ (A2 + (2, 0)) ∪ (A2 + (2, 1)) ∪ (A2 + (0, b + 2))

∪(A3 + (0, 2)) ∪ (A3 + (1, 2)) ∪ (A3 + (b + 2, 0)) ∪ A4 ∪ (A4 + (1, 0))

∪(A4 + (0, 1)) ∪ (A4 + (1, 1)) ∪ (A4 + (b + 2, b)) ∪ (A4 + (b + 2, b + 1))

∪(A4 + (b + 2, b + 2)) ∪ (A4 + (b + 1, b + 2)) ∪ (A4 + (b, b + 2))

φA2 = A1 ∪ (A3 + (b, 0)) ∪ (A3 + (b + 1, 0)) ∪ (A3 + (b + 2, 0))

φA3 = A1 ∪ (A2 + (0, b)) ∪ (A2 + (0, b + 1)) ∪ (A2 + (0, b + 2))

φA4 = A1 ,

where b is the largest root of x2 − x − 3 = 0 (not a Pisot number) and φ =

(
b 0

0 b

)
.

Note that Ξ(T ) ⊂ Z[φ](1, 0) + Z[φ](0, 1). (Rigid structure)
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Kenyon substitution tiling (Not rigid structure)

φ =

(
3 0

0 3

)
: expansion map and

D = {(0,−1), (0, 0), (0, 1), (−1,−1), (−1, 0), (−1, 1), (1,−1 + a), (1, a), (1, 1 + a)}: digit set,

where a ∈ R\Q.

Note that Ξ(T ) ⊂ Z[φ](1, 0) + Z[φ](0, 1) + Z[φ](0, a).

(Not rigid structure)
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Control point sets

Define a tile map γ : T → T such that ∀ T ∈ T , choose a tile

γT on the patch ω(T ); for all tiles of the same type, choose γT

with the same relative position.

Define the control point for a tile T ∈ T by

{c(T )} =
∞⋂

m=0

φ−m(γmT ). (2)

The control points satisfy :

(a) T ′ = T + c(T ′)− c(T ), for any tiles T ,T ′ of the same type;

(b) φ(c(T )) = c(γT ), for T ∈ T .

Let C := C(T ) = {c(T ) : T ∈ T } be a set of control points of the

tiling T in Rd .
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Substitution tilings

그림 2: 2-dimension Fibonacci substitution tiling (b is the golden ratio)
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Control point sets

It is important to start with a control point set satisfying the

following inclusion

φ〈
⋃
i≤κ
Ci 〉Z ⊂ 〈Ξ(T )〉Z . (3)

For any given primitive substitution tilings, it is always possible to

choose the control point set satisfying (3).
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Control point sets

Consider a two letter substitution:

a→ aba b → bab .

· · · babababab|ababababa · · · .

Give a unit length interval for each letter, take the left end point of each

tile and get a substitution point set

Λa = 2Z,Λb = 1 + 2Z,Λa ∪ Λb = Z.

Construct a CPS with an internal space which is a 3-adic completion
←
Z3

of Z.

Since x + 3nZ * 2Z, ∀ x ∈ Z and n ∈ N, Λa and Λb cannot be described

as a model set using the internal space
←
Z3 for a CPS.

Note that the condition (3) is not satisfied.
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Control point sets

However, take a tile map γ : T → T for which

γ(T ) = 3x + Ta and γ(S) = 3y + 1 + Ta,

where T = x + Ta, S = y + Tb ∈ T , x ∈ 2Z, and y ∈ 1 + 2Z.

The control point set C(T ) = (Ci )i∈{a,b} is Ca = 2Z and

Cb = 4
3 + 2Z. Let

L := 〈Ca, Cb〉Z =
2Z
3
.

Note that 3L ⊂ Ξ(T )(= 2Z) which satisfys the condition (3).
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Control point sets

Consider 3-adic completion
←
L 3 of L

←
L 3 := lim

←k
L/3kL

=

(
2Z
3

)
/2Z←

(
2Z
3

)
/3 · 2Z←

(
2Z
3

)
/32 · 2Z← · · · .

So

Ca = 2Z = f(3 ·
←
L 3), Cb = 4

3 + 2Z = f(43 + 3 ·
←
L 3) .

Therefore C(T ) can be described as a model set.
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Main result



Main Theorem

We assume that

1. T is a repetitive primitive substitution tiling on Rd with

expansion map φ,

2. φ is diagonalizable,

3. all the eigenvalues of φ are algebraically conjugate with the

same multiplicity,

4. T has a rigid structure.

Then T has pure point spectrum iff a control point set of T is a

regular model set in CPS with an internal space which is a product

of a Euclidean space and a profinite group.
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Example (Construction of a CPS)



Example

Consider a substitution:

a→ aab b → abab .

The substitution matrix (
2 2

1 2

)

has the Perron-Frobenius eigenvalue λ := 2 +
√

2 and x2 − 4x + 2

is the minimal polynomial of λ over Z.

The substitution is non-unimodular.
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Example

λA1 = A1 ∪ (A1 + 1) ∪ (A2 + 2)

λA2 = A1 ∪ (A2 + 1) ∪ (A1 + 1 +
√

2) ∪ (A2 + 2 +
√

2)

0 1

A1

→ 0 1
. 2. 2 +

√
2

0
√

2

A2

→ . . .0 1 1 +
√
2 2 +

√
2 2 + 2

√
2

0 1

0 1. 2. 2 +
√
2

0 1 2 2 +
√
2 3 +

√
2. . . . . . . . . . . .
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Example

[Baake-Moody-Schlottmann ‘98] has shown that this two letter

substitution tiling has pure point spectrum.

One can also check the pure point spectrum by algorithmic

computation given in [Akiyama-Lee ‘11].
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Example (Construction of a CPS)

Let C(T ) be a representative point set of T .

It is possible to take C(T ) satisfying

C(T ) ⊂ Z[λ] = {a + bλ | a, b ∈ Z} =: L.

Since

λ(1) = 0 · 1 + 1 · λ

λ(λ) = λ2 = 4λ− 2 = −2 · 1 + 4 · λ ,

we get

M =

(
0 −2

1 4

)
.
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Example (Construction of a CPS)

We identify L with a lattice Z2 on R2 by the folllowing map

π : L→ Z2, π(c1 + c2λ) = (c1, c2), (4)

where L = Z[λ] and c1, c2 ∈ Z. Then

π(λv) = Mπ(v), ∀ v ∈ L.

Since it is non-unimodular case, MZ2 ( Z2.

Thus the following M-adic completion of Z2 is not trivial.
←−
Z2
M := lim

←k
Z2/MkZ2 (5)

= Z2/MZ2 ← Z2/M2Z2 ← Z2/M3Z2 ← · · ·

= {(x1 + MZ2, x2 + M2Z2, x3 + M3Z2, . . . ) |

x1 ∈ Z2, xk ∈ xk−1 + Mk−1Z2 for each integer k ≥ 2}.
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Example (Construction of a CPS)

Note that
←−
Z2
M contains a canonical copy of Z2 via the mapping

ı : Z2 →
←−
Z2
M such that x 7→ (x + MZ2, x + M2Z2, x + M3Z2, . . . ).

We identify Z2 with its image in
←−
Z2
M .
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Example (Construction of a CPS)

Let

Ψ : Z[λ] → R×
←−
Z2
M

P(λ) 7→ (P(λ), (ι ◦ π)(P(λ))), (6)

where P(x) ∈ Z[x ], λ = 2−
√

2.
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Example (Construction of a CPS)

Consider a cut-and-project scheme(CPS):

R π1←− R× (R×
←−
Z2
M)

π2−→ R×
←−
Z2
M

∪
L ←− L̃ −→ Ψ(L)

∈
x ←− [ (x ,Ψ(x)) 7−→ Ψ(x) ,

(7)

where π1 and π2 are canonical projections, and

L̃ = {(x ,Ψ(x)) : x ∈ L}.
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Example (Construction of a CPS)

Lemma

1. π1|L̃ is injective.

2. π2(L̃)(= Ψ(L)) is dense in R×
←−
Z2
M .

3. L̃ is a lattice in R× (R×
←−
Z2
M).
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THANK YOU!
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