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0. Introduction

The abbreviation LCS means locally convex space.
All topological spaces are assumed to be Tychonoff and all
vector spaces are over the field of real numbers R.

By Ck (X ) and Cp(X ) we mean the space C(X ) of real-valued
continuous functions defined on a Tychonoff space X equipped
with the compact-open and pointwise convergence topology,
respectively.

For a LCS E we denote by w the weak topology w = σ(E ,E∗)
of E . The w∗-topology of the dual E∗ is denoted by w∗.
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Eberlein-Grothendieck topological space

The following significant statement which is intentionally
formulated below in a simplified form is due to A. Grothendieck.

Theorem 0.0.

Let X be a compact space, and let A be a countably compact
set in Cp(X ). Then the closure of A in Cp(X ) is compact.

Definition 0.1.

Following to A. V. Arkhangel’skii, a topological space Y is called
an Eberlein-Grothendieck space, if there exists a
homeomorphic embedding of Y into the space Cp(K ) for some
compact space K .
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1 A compact space is Eberlein-Grothendieck iff it is an
Eberlein compact.

2 Every metrizable space is Eberlein-Grothendieck.
3 Every Eberlein-Grothendieck topological space Y has

countable tightness.
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For a normed space E there exists even a canonical linear
embedding T : (E ,w)→ Cp(K ), where K is the closed unit ball
in E∗ endowed with the weak∗-topology w∗. Being motivated by
this simple observation we introduce the following

Definition 0.2.

For a LCS E the space (E ,w) is called a linearly
Eberlein-Grothendieck space if (E ,w) can be linearly
embedded into Cp(K ) for some compact space K .

In our work we undertake a systematic study of those lcs E
such that (E ,w) is Eberlein-Grothendieck / linearly
Eberlein-Grothendieck space.
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Eberlein-Grothendieck spaces Cp(X )

Both results below are due to O. Okunev.

Theorem 0.3.

If a LCS H is a continuous open image of a subspace of Cp(K )
for some compact space K , then the dual lcs (H∗,w∗) is
σ-compact.

Corollary 0.4.

A LCS Cp(X ) is Eberlein-Grothendieck if and only if X is
σ-compact.
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1. Eberlein-Grothendieck LCS

Proposition 1.1.

For every LCS E the following are equivalent
(a) (E ,w) is Eberlein-Grothendieck.
(b) The dual lcs (E∗,w∗) is σ-compact.

Proposition 1.2.

For every metrizable LCS E , the space (E ,w) is
Eberlein-Grothendieck.
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The class of LCS E with Eberlein-Grothendieck (E ,w) is
invariant under certain basic topological operations.

Proposition 1.3.

(a) Let (E ,w) be an Eberlein-Grothendieck LCS. If there is a
linear continuous quotient mapping π from E onto a LCS
F , then (F ,w) is also Eberlein-Grothendieck.

(b) Let (E ,w) be an Eberlein-Grothendieck LCS. Then (F ,w)
is Eberlein-Grothendieck for every linear subspace F ⊂ E .

(c) Let (En,w) be an Eberlein-Grothendieck LCS, where
n ∈ ω. Then the countable product E =

∏
n∈ω En also has

the property that (E ,w) is Eberlein-Grothendieck.
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Remark 1.4.

Inductive limit of the countable sequence of lcs (En)n, where
each (En,w) is Eberlein-Grothendieck, does not have to satisfy
the same property. Denote by ϕ the ℵ0-dimensional vector
space endowed with the finest locally convex topology. The
space ϕ can be identified with the strict inductive limit of the
sequence of Euclidean spaces Rn, but (ϕ,w) is not
Eberlein-Grothendieck.
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2. Eberlein-Grothendieck LCS Ck(X )

For the brevity let us denote by EGk the class of spaces X such
that a LCS (Ck (X ),w) is Eberlein-Grothendieck.

Theorem 2.1.

If X ∈ EGk , then X is σ-compact.

Proof

We observe that X is homeomorphic to a closed subspace of
(Ck (X )∗,w∗).
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Recall that a space X is said to be hemicompact if there is a
sequence {Kn : n ∈ ω} of compact subsets of X with the
following property: if K ⊂ X is compact then K ⊂ Kn for some
n ∈ ω.

It is known that Ck (X ) is metrizable if and only if X is
hemicompact.
So, if X is hemicompact, then X ∈ EGk .
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Main Problem

Is the converse true, i.e. are the following properties equivalent:
(1) (Ck (X ),w) is an Eberlein-Grothendieck lcs

and
(2) X is hemicompact?

We show that the answer to that Main Problem is positive for all
first-countable spaces X .
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Theorem 2.2.

Let X be a first-countable space. The following are equivalent
(a) X is hemicompact.
(b) X is both σ-compact and locally compact.
(c) Ck (X ) is metrizable.
(d) X ∈ EGk , i.e. (Ck (X ),w) is Eberlein-Grothendieck.
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Idea of the proof

In order to prove (d) =⇒ (b) it suffices to show that X ∈ EGk
implies that X is locally compact. If X ∈ EGk then X is
σ-compact, hence X is paracompact. A first-countable
paracompact space is locally compact if and only if it does not
contain a closed subspace homeomorphic to the metric fan M.
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Metric fan

The metric fan M is a metrizable space defined as follows. As a
set, M is the union of countably many disjoint countable
sequences Mi = {xin : n ∈ N}, i ∈ N plus a point p ”at infinity”;
all points besides p are isolated in M, and a basic neighborhood
Un of p consists of p and all points from Mi such that n ≤ i .
Thus, the metric fan M can be represented as a countable
union of disjoint closed discrete layers Mi , and a single
non-isolated point p such that for every choice yi ∈ Mi the
sequence (yi)i converges to p in M.
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Idea of the proof

On the contrary, assume that X is not locally compact. Then X
contains a closed copy of M and consequently M ∈ EGk . This
is equivalent to the claim that (Ck (M)∗,w∗) is σ-compact. Then
we show that the opposite is true: (Ck (M)∗,w∗) is not
σ-compact because it contains a closed copy of the space of
irrationals J ∼= NN, which is not σ-compact.
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Theorem 2.3.

Let X be a metrizable space. The following are equivalent
(a) X is hemicompact.
(b) Either X is compact, or there is a metrizable compact K

such that X is homeomorphic to K \ {p}, where p is a
non-isolated point of K .

(c) Ck (X ) is metrizable.
(d) X ∈ EGk , i.e. (Ck (X ),w) is Eberlein-Grothendieck.
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3. Linearly Eberlein-Grothendieck LCS

Definition 3.1.

By analogy with topological groups, a topological vector space
L is called compactly generated if L has a compact basis K ,
meaning that the linear span of K is equal to L.

We will show that compactly generated LCS play an important
role in our study.

Theorem 3.2.

For every E , a LCS (E ,w) is linearly Eberlein-Grothendieck if
and only if the dual LCS (E∗,w∗) is compactly generated.
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A closed subgroup of an arbitrary compactly generated abelian
group in general does not have to be compactly generated.
Even a compactly generated free topological vector space
V [0,1] contains a closed linear subspace which is not
compactly generated. However, for LCS we have

Theorem 3.3.

Every closed linear subspace of a compactly generated LCS is
also compactly generated.

Theorem 3.4.

Let (E ,w) be a linearly Eberlein-Grothendieck LCS. If there is a
linear continuous quotient mapping π from E onto a LCS F ,
then (F ,w) is also linearly Eberlein-Grothendieck.
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Proposition 3.5.

Let E be a Fréchet space. Then (E ,w) is linearly
Eberlein-Grothendieck if and only if the metric of E can be
generated by a complete norm, i.e. E is isomorphic to a
Banach space.

A LCS that is a locally convex inductive limit of a countable
inductive system of Fréchet spaces is called a (LF)-space.

Proposition 3.6.

Let E be an (LF)-space. Then (E ,w) is linearly
Eberlein-Grothendieck if and only if E is normable.
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Theorem 3.7.

For any Tychonoff space X the following conditions are
equivalent:
(a) X is compact;
(b) Cp(X ) is linearly Eberlein-Grothendieck;
(c) (Ck (X ),w) is linearly Eberlein-Grothendieck.
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Idea of the proof

Assuming (b) we deduce that X is σ-compact. On the other
hand, X must be pseudocompact because otherwise Cp(X )
would contain an isomorphic copy of Rω, which is not linearly
Eberlein-Grothendieck. Every σ-compact and pseudocompact
space is compact and the proof of (a) is finished.
As before, assuming (c) we deduce that X is σ-compact.
Similarly to the earlier case, X must be pseudocompact
because otherwise Ck (X ) would contain an isomorphic copy of
Rω.
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Example 3.8.

If Ω ⊂ Rn is an open set, then the space of test functions D(Ω)
is a complete Montel (LF )-space. As usual, D′(Ω) denotes its
strong dual, the space of distributions. Not D(Ω) nor D′(Ω) is
metrizable, they are not even sequential. One can show that
(E ,w) is not Eberlein-Grothendieck for E both D(Ω) and D′(Ω).
Also both D(Ω) and D′(Ω) considered with the original
topologies are not Eberlein-Grothendieck.
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Example 3.9.

Let E be the lcs l∞ = {(xn) ∈ RN : supn |xn| <∞} equipped with
the topology of pointwise convergence. If we consider the
canonical linear mapping π of restriction from Cp(βN) into RN,
then the image of π is exactly E . Since the mapping π is not
quotient, by this way we cannot decide whether E is linearly
Eberlein-Grothendieck. However, it has been proved that the
space Cp(βN) admits (another) linear continuous and quotient
mapping onto E . Hence E is linearly Eberlein-Grothendieck.
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Thank you !
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