K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

Applications

K-theory of two-dimensional substitution tiling spaces from *AF*-algebras

Jianlong Liu

University of Maryland

SumTopo 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tiling Spaces

K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications A tiling T in \mathbb{R}^2 is a partition into sets of finite area, called *tiles*.

A prototile is an equivalence class of tiles, up to translation.

The associated *tiling space* Ω_T is $\overline{\{T - v : v \in \mathbb{R}^2\}}^d$ under an appropriate metric.

The topology is generated by cylinder sets of the form of patches.

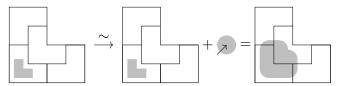
K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications There is an action $\mathbb{R}^2 \odot \Omega_T$ with $T \mapsto T - v$.

Definition

This action gives a topological groupoid, the unstable groupoid, $G^{u} = \{(T', T' - v) \in \Omega^{2}_{T}\}.$

Basic open sets: $(cylinder, cylinder - B_r(v)) = B_r(v) \times cylinder.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

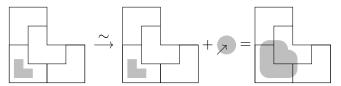
K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications There is an action $\mathbb{R}^2 \odot \Omega_T$ with $T \mapsto T - v$.

Definition

This action gives a topological groupoid, the unstable groupoid, $G^{u} = \{(T', T'_{-} v) \in \Omega^{2}_{T}\}.$

Basic open sets: (cylinder, cylinder $-B_r(v)$) = $B_r(v) \times$ cylinder.



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

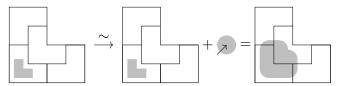
K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications There is an action $\mathbb{R}^2 \odot \Omega_T$ with $T \mapsto T - v$.

Definition

This action gives a topological groupoid, the unstable groupoid, $G^{u} = \{(T', T' - v) \in \Omega^{2}_{T}\}.$

Basic open sets: (cylinder, cylinder $-B_r(v)) = B_r(v) \times$ cylinder.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

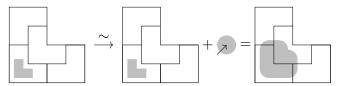
K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications There is an action $\mathbb{R}^2 \odot \Omega_T$ with $T \mapsto T - v$.

Definition

This action gives a topological groupoid, the unstable groupoid, $G^{u} = \{(T', T' - v) \in \Omega^{2}_{T}\}.$

Basic open sets: (cylinder, cylinder $-B_r(v)$) = $B_r(v) \times$ cylinder.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Partial Homeomorphisms

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

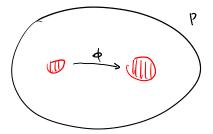
Preliminaries The Theorem Applications

Fact

Same as the topology generated by partial homeomorphisms¹, or homeomorphisms that are only defined between cylinder sets.

(日)

э



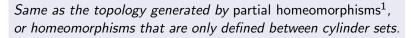
¹ "Partially-defined homeomorphisms."

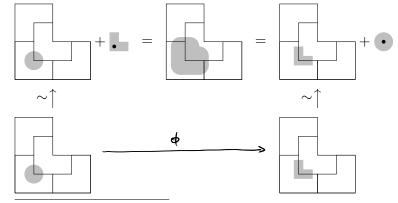
Partial Homeomorphisms

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Fact

Preliminaries The Theorem Applications





(日)

э

¹ "Partially-defined homeomorphisms."

K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications

"Definition"

 $K_0(G^u)$ is generated by the collection of cylinder sets of Ω_T , up to partial homeomorphisms.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

²Details only work on punctures.

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications

"Definition"

 $K_0(G^u)$ is generated by the collection of cylinder sets of Ω_T , up to partial homeomorphisms.

Geometry: the collection of coordinate charts, up to coordinate transformations.

Operator algebraic² terminology:

- (Basic "rank-1") projections ⇔ cylinder sets ⇔ coordinate charts, and
- Partial isometries \Leftrightarrow basic open sets of G^u /partial homeomorphisms \Leftrightarrow coordinate transformations.

²Details only work on punctures.

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications

"Definition"

 $K_0(G^u)$ is generated by the collection of cylinder sets of Ω_T , up to partial homeomorphisms.

Geometry: the collection of coordinate charts, up to coordinate transformations.

Operator algebraic² terminology:

- (Basic "rank-1") projections ⇔ cylinder sets ⇔ coordinate charts, and
- Partial isometries \Leftrightarrow basic open sets of G^u /partial homeomorphisms \Leftrightarrow coordinate transformations.

 $K_1(G^u) \dots$? Harder to define, related to the action. Will deduce using exactness.

²Details only work on punctures.

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications

- Connes-Thom and Chern isomorphisms: rationally, K-theory is isomorphic to direct sum of Čech cohomology groups of the same parity (up to parity of dimension).
- Anderson-Putnam '98: dimensions 1/2 true without $\otimes \mathbb{Q}$.

Forrest-Hunton '99: if torsion-free, true without $\otimes \mathbb{Q}$.

K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications

K. (G) & unfineder / (nutriel ?)

Origins: Karoubi's book (topology), Haslehurst (operator algebras '21)

Suppose that $\iota: G \hookrightarrow G^u$ (open subgroupoid).

"Definition"

 $K_0(G; G^u)$ is generated by the collection of partial homeomorphisms in G^u , up to partial homeomorphisms in G.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries

K.(G)/K.(G")

Origins: Karoubi's book (topology), Haslehurst (operator algebras '21)

Suppose that $\iota: G \hookrightarrow G^u$ (open subgroupoid).

"Definition"

 $K_0(G; G^u)$ is generated by the collection of partial homeomorphisms in G^{u} , up to partial homeomorphisms in G.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications

Theorem (Haslehurst '21)

is exact, where ev sends a partial homeomorphism cylinder₁ \rightarrow cylinder₂ to the formal difference [cylinder₁] - [cylinder₂].

Remark

We want to pick $G \leq G^u$ correctly so that no nontrivial action exists³.

³Orbit-breaking.

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications

Theorem (Haslehurst '21)

The 6-term sequence $\underbrace{(u^{i},i)}_{(u^{i},i)} \mapsto \underbrace{(u^{i},i)}_{(u^{i},i)} \mapsto$

is exact, where ev sends a partial homeomorphism cylinder₁ \rightarrow cylinder₂ to the formal difference [cylinder₁] - [cylinder₂].

Remark

We want to pick $G \leq G^u$ correctly so that no nontrivial action exists³.

³Orbit-breaking.

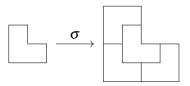
Substitutions

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications $\Omega_{\mathcal{T}}$ arises from a substitution if there exists σ from the set of tiles to the set of patches that

1 Expands a tile by some $\lambda > 1$ and

2 Subdivides it into tiles.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\sigma^n(t)$ is called a *level-n supertile*.

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

The Theorem Applications

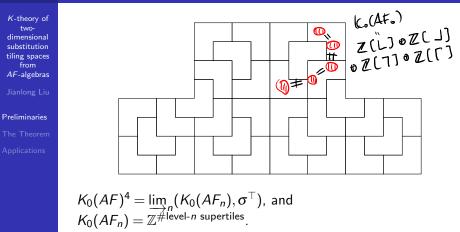
AF. - AF. -

Definition

The approximately finite-dimensional (AF) groupoid is the subgroupoid of G^u where the pairs of tilings have both of their origins belonging to the same (sufficiently-high level) supertile.

By taking AF_n to be pairs of tilings whose origins belong to the same level-*n* supertile, we get $AF = \lim_{n \to \infty} (AF_n, \sigma_*)$.

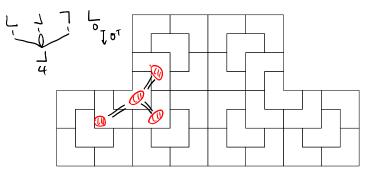
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



The AF_n -groupoid has no nontrivial action, i.e. $K_1(AF_n) = 0$. Therefore $K_1(AF) = 0$. $\underline{K_0(AF; G^u) = \lim_{n \to n} (K_0(AF_n; G^u), \sigma^{\top}).$

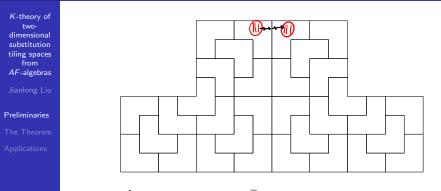
⁴Dimension group of the Bratteli diagram associated to σ^{\top} \Rightarrow \Rightarrow $\circ \circ \circ$

Applications



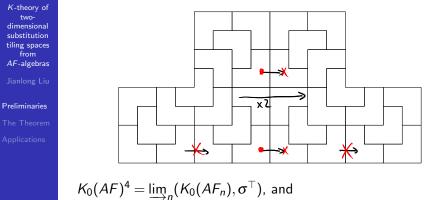
 $K_0(AF)^4 = \varinjlim_n (K_0(AF_n), \sigma^{\top}), \text{ and } K_0(AF_n) = \mathbb{Z}^{\#\text{level-}n \text{ supertiles}}.$ The AF_n -groupoid has no nontrivial action, i.e. $K_1(AF_n) = 0.$ Therefore $K_1(AF) = 0.$ $K_0(AF; G^u) = \varinjlim_n (K_0(AF_n; G^u), \sigma^{\top}).$

⁴Dimension group of the Bratteli diagram associated to σ^{T} \Rightarrow \Rightarrow $\circ \circ \circ$



 $K_0(AF)^4 = \varinjlim_n (K_0(AF_n), \sigma^{\top}), \text{ and}$ $K_0(AF_n) = \mathbb{Z}^{\#\text{level-}n \text{ supertiles}}.$ The AF_n -groupoid has no nontrivial action, i.e. $K_1(AF_n) = 0.$ Therefore $K_1(AF) = 0.$ $K_0(AF; G^u) = \varinjlim_n (K_0(AF_n; G^u), \sigma^{\top}).$

⁴Dimension group of the Bratteli diagram associated to $\sigma^{T_{4}} \equiv \cdots \equiv \cdots \oplus \sigma^{T_{4}}$



$$\begin{split} & \mathcal{K}_0(AF)^4 = \varinjlim_n(\mathcal{K}_0(AF_n), \sigma^\top), \text{ and } \\ & \mathcal{K}_0(AF_n) = \mathbb{Z}^{\#\text{level-}n \text{ supertiles}}. \\ & \text{The } AF_n\text{-}\text{groupoid has no nontrivial action, i.e. } \mathcal{K}_1(AF_n) = 0. \\ & \text{Therefore } \mathcal{K}_1(AF) = 0. \\ & \underline{\mathcal{K}_0(AF; G^u) = \varinjlim_n(\mathcal{K}_0(AF_n; G^u), \sigma^\top)}. \end{split}$$

⁴Dimension group of the Bratteli diagram associated to $\sigma^{T_{4}} \equiv \cdots \equiv \cdots \oplus \sigma^{T_{4}}$

K-theory of twodimensional substitution tiling spaces from AF-algebras

Preliminaries The Theorem Applications Assume aperiodicity, primitivity, finite local complexity, and collaring.

- Putnam '89, Kellendonk '95: in dimension 1, the AF-groupoid is "large enough" to reconstruct the K-theory.
- Julien-Savinien '16: this works for the square version of the chair tiling if one uses both AF- and AF⁽¹⁾-groupoids⁵.
 We will apply the six-term sequence in relative K-theory to the inclusion *ι* : AF → G^u to show this holds for all dimension 2 substitution tiling spaces.

K-theory of twodimensional substitution tilling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

Applications

Theorem (L.)

Fo

and for d = 2,

are isomorphisms of exact sequences.

K-theory of twodimensional substitution tilling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

Applications

Theorem (L.)

are isomorphisms of exact sequences.

K-theory of twodimensional substitution tilling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

Applications

Theorem (L.)

are isomorphisms of exact sequences.

K-theory of twodimensional substitution tiling spaces from AF-algebras

Jianlong Liu

Preliminaries

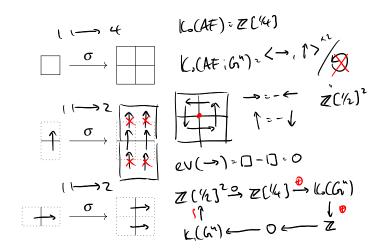
The Theorem Applications

are isomorphisms of exact sequences.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Square substitution

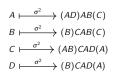
K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem Applications



▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

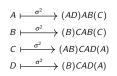
The Theorem Applications



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

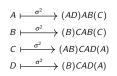
The Theorem Applications

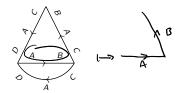


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

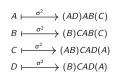
The Theorem Applications



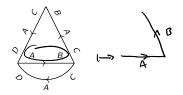


K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

The Theorem Applications



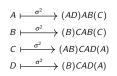
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

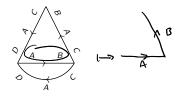


Then the substitution rule turns into an "evaluation" map.

K-theory of twodimensional substitution substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries

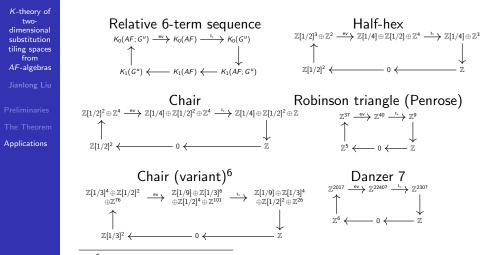
The Theorem Applications





Then the substitution rule turns into an "evaluation" map. Applying this to $\widetilde{\delta_n^1}: C_n^1/\operatorname{im} \delta_n^0 \to C_n^2$ turns the coboundary map into an evaluation map, resulting in ev : $K_0(AF; G^u) \to K_0(AF)$.

Applications⁷



⁶No rotational symmetry, expansion factor of 3. Assuming direct limit splits as direct sums.

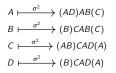
⁷Computed with a script in Sage. Everything is collared $\rightarrow (\Xi)$ $= \circ \circ \circ$

K-theory of two- dimensional substitution tiling spaces from AF-algebras Jianlong Liu			
	Thank you!		

・ロト・雪・・雪・・雪・・白・

"Thickening"

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	"Thickening"				
K-theory of two- dimensional substitution tiling spaces from AF-algebras					
Jianlong Liu	C_n^1	$K_0(AF_n; G^u)$			
Preliminaries	:·····				
The Theorem	0 - 0				
Applications					

Thus we obtain a map th : $\varinjlim_n(C_n^{d-1},\sigma^{\top}) \to \mathcal{K}_0(AF;G^u).$

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < </p>

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

For d = 1, th is an isomorphism, because there are no relations in relative K_0 .

Thus the square

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

commutes with vertical maps isomorphisms. One then adds in kernels and cokernels on both sides.

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

For d = 1, th is an isomorphism, because there are no relations in relative K_0 .

Thus the square

$$\begin{array}{c} \varinjlim_n(C_n^0, \sigma^{\top}) \xrightarrow{\delta^0} \xrightarrow{\lim_n (C_n^1, \sigma^{\top})} \\ \downarrow^{\text{th}} & \parallel \\ K_0(AF; G^u) \xrightarrow{\text{ev}} K_0(AF) \end{array}$$

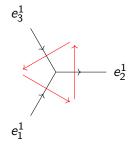
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

commutes with vertical maps isomorphisms. One then adds in kernels and cokernels on both sides. What about d = 2?

K-theory of twodimensional substitution tilling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

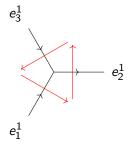
Applications

Partial homeomorphisms can be composed to yield the identity.



K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

Partial homeomorphisms can be composed to yield the identity.



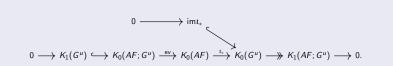
Thus the relations in $K_0(AF_n; G^u)$ are exactly given by $\operatorname{im} \delta_n^0$, and we obtain an isomorphism $\widetilde{\operatorname{th}} : \varinjlim(C_n^1/\operatorname{im} \delta_n^0, \widetilde{\sigma_{\top}}) \to K_0(AF; G^u).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fact

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu Preliminaries The Theorem

Applications



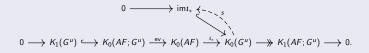
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

Preliminaries The Theorem Applications

There exists a splitting



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fact

K-theory of twodimensional substitution tiling spaces from AF-algebras Jianlong Liu

The Theorem Applications

There exists a splitting

$$0 \longrightarrow \operatorname{im}_{*} \underbrace{ \overbrace{ }}_{k_{1}} \underbrace{ }_{k_{1}} \underbrace{ }_{k_{1}} \underbrace{ }_{k_{0}} \underbrace{ }_{k_{0}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Anderson-Putnam '98 gives $K_1(AF; G^u) = \check{H}^0(\Omega_T)$.