Complexity of η-od-like continua

 36th Summer Topology ConferenceM. en C. Hugo Adrian Maldonado Garcia, UNAM
Dr. Logan Hoehn, Nipissing University

2022

A continuum is a compact connected metric space. W. Lewis asked in Indecomposable Continua. Open problems in topology II, whether there exists, for every $\eta \geq 2$, an atriodic simple ($\eta+1$)-od-like continuum which is not simple η-od-like and, if such continuum exists, whether it has a variety of properties such as being planar or being an arc-continuum, among others. Some partial results have been obtained by W.T. Ingram, P. Minc, C.T. Kennaugh and L. Hoehn.

In the following sections we will develop the notion of a combinatorial η od cover of a graph, a tool which may enable one to prove that certain examples of continua are not η-od-like.

We will suggest the construction of an atriodic simple ($\eta+1$)-od-like continuum which is not simple η-od-like and has properties such as being planar, being an arc-continuum, and span zero.

Let $\eta \in \mathbf{N}$ be such that $\eta \geq 3$.

Let $\eta \in \mathbf{N}$ be such that $\eta \geq 3$.

Define the function $b:\{0, \ldots, \eta\} \stackrel{(0,-2)}{\times}[0,1] \rightarrow \mathbf{R}^{2}$ given by

$$
b(i, t)=\left\{\begin{array}{cl}
(0,-1-t) & \text { if } i=0, \\
\left((1+t) \cos \frac{(i-1) \pi}{\eta-1},(1+t) \sin \frac{(i-1) \pi}{\eta-1}\right) & \text { if } i \neq 0 .
\end{array}\right.
$$

For each $i \in\{0, \ldots, \eta\}$, define $B_{i}=\{b(i, t): t \in[0,1]\}$.

Let $\eta \in \mathbf{N}$ be such that $\eta \geq 3$.

Define the function $b:\{0, \ldots, \eta\} \times[0,1] \rightarrow \mathbf{R}^{2}$ given by

$$
b(i, t)=\left\{\begin{array}{cl}
(0,-1-t) & \text { if } i=0, \\
\left((1+t) \cos \frac{(i-1) \pi}{\eta-1},(1+t) \sin \frac{(i-1) \pi}{\eta-1}\right) & \text { if } i \neq 0 .
\end{array}\right.
$$

For each $i \in\{0, \ldots, \eta\}$, define $B_{i}=\{b(i, t): t \in[0,1]\}$.
In the set $\Gamma=B_{0} \cup \cdots \cup B_{\eta} \cup\{o\}$ we define the relation $p \cong q$ if and only if $p=q$ or $\{p, q\} \subset B_{i}$ for some $i \in\{0, \ldots, \eta\}$.

Definition 1

A function $\omega: V(G) \rightarrow \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in\{0, \ldots, \eta\}$.

Definition 1

A function $\omega: V(G) \rightarrow \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in\{0, \ldots, \eta\}$.

Definition 1

A function $\omega: V(G) \rightarrow \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in\{0, \ldots, \eta\}$.

Definition 1

A function $\omega: V(G) \rightarrow \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in\{0, \ldots, \eta\}$.

Definition 2

Let $\epsilon>0$ and ω a compliant function. $A\left(T_{0}, \epsilon\right)$-projection via ω is a continuous function $\Omega: G \rightarrow T_{0}$ such that:
(1) Ω extends ω,
(2) if u and v are adjacent vertices of $G, \Omega \mid u v$ is a homeomorphism
between $u v$ and $\omega(u) \omega(v)$,
(3) for every $p \in G, d_{2}(p, \Omega(p))<\epsilon$.

We will work with the infinite η-od \mathcal{C} defined by

Construction of \mathcal{C} with $\eta=3$.

Definition 3

Let $\delta>0$. A δ-combinatorial η-od cover for a compliant function ω is a function $f: V(G) \rightarrow V(\mathcal{C})$ such that for any vertices $u, v, v_{1}, v_{2}, v_{3}$ of G we have the following properties

Definition 3

Let $\delta>0$. A δ-combinatorial η-od cover for a compliant function ω is a function $f: V(G) \rightarrow V(\mathcal{C})$ such that for any vertices $u, v, v_{1}, v_{2}, v_{3}$ of G we have the following properties
Cl. If $f(u)=f(v)$, then $\omega(u) \cong \omega(v)$,

Definition 3

Let $\delta>0$. A δ-combinatorial η-od cover for a compliant function ω is a function $f: V(G) \rightarrow V(\mathcal{C})$ such that for any vertices $u, v, v_{1}, v_{2}, v_{3}$ of G we have the following properties
Cl. If $f(u)=f(v)$, then $\omega(u) \cong \omega(v)$,
CII. If u and v are adjacent in G, then $f(u)$ and $f(v)$ are adjacent in \mathcal{C},

Definition 3

Let $\delta>0$. A δ-combinatorial η-od cover for a compliant function ω is a function $f: V(G) \rightarrow V(\mathcal{C})$ such that for any vertices $u, v, v_{1}, v_{2}, v_{3}$ of G we have the following properties
Cl. If $f(u)=f(v)$, then $\omega(u) \cong \omega(v)$,
CII. If u and v are adjacent in G, then $f(u)$ and $f(v)$ are adjacent in \mathcal{C}, CIII. Assume that v_{1}, v_{2}, v_{3} are consecutive vertices in $G, v \notin\left\{v_{1}, v_{2}, v_{3}\right\}$, $f\left(v_{1}\right) \neq f\left(v_{3}\right), f(v)=f\left(v_{2}\right), f\left(v_{2}\right)$ is in the path of \mathcal{C} between $f\left(v_{1}\right)$ and $f\left(v_{3}\right)$, and $f\left(v_{2}\right)$ is not the branch vertex of \mathcal{C}. Assume further that $0 \leq s<t \leq 1$, and for some $i \in\{0, \ldots, \eta\}, \omega\left(v_{2}\right)=b(i, s)$ and $\omega(v)=b(i, t)$. Then $t-s<\delta$.

Definition 3

Let $\delta>0$. A δ-combinatorial η-od cover for a compliant function ω is a function $f: V(G) \rightarrow V(\mathcal{C})$ such that for any vertices $u, v, v_{1}, v_{2}, v_{3}$ of G we have the following properties
Cl. If $f(u)=f(v)$, then $\omega(u) \cong \omega(v)$,
CII. If u and v are adjacent in G, then $f(u)$ and $f(v)$ are adjacent in \mathcal{C}, CIII. Assume that v_{1}, v_{2}, v_{3} are consecutive vertices in $G, v \notin\left\{v_{1}, v_{2}, v_{3}\right\}$, $f\left(v_{1}\right) \neq f\left(v_{3}\right), f(v)=f\left(v_{2}\right), f\left(v_{2}\right)$ is in the path of \mathcal{C} between $f\left(v_{1}\right)$ and $f\left(v_{3}\right)$, and $f\left(v_{2}\right)$ is not the branch vertex of \mathcal{C}. Assume further that $0 \leq s<t \leq 1$, and for some $i \in\{0, \ldots, \eta\}, \omega\left(v_{2}\right)=b(i, s)$ and $\omega(v)=b(i, t)$. Then $t-s<\delta$.

Proposition 4

Let small $\delta, \epsilon \in\left(0, \frac{\delta}{2}\right)$, and ω a compliant function with a $\left(T_{0}, \epsilon\right)$-projection Ω. If G has an open η-odic cover of mesh less than $\delta-2 \epsilon$, then ω has a δ-combinatorial η-od cover.

Property CI.

If $f(u)=f(v)$, then $\omega(u) \cong \omega(v)$.

Property CII.

If u and v are adjacent in G, then $f(u)$ and $f(v)$ are adjacent in \mathcal{C}.

Property CII.

If u and v are adjacent in G, then $f(u)$ and $f(v)$ are adjacent in \mathcal{C}.

Property CII.

If u and v are adjacent in G, then $f(u)$ and $f(v)$ are adjacent in \mathcal{C}.

Property CIII.

Assume that v_{1}, v_{2}, v_{3} are consecutive vertices in $G, v \notin\left\{v_{1}, v_{2}, v_{3}\right\}$, $f\left(v_{1}\right) \neq f\left(v_{3}\right), f(v)=f\left(v_{2}\right), f\left(v_{2}\right)$ is in the path of \mathcal{C} between $f\left(v_{1}\right)$ and $f\left(v_{3}\right)$, and $f\left(v_{2}\right)$ is not the branch vertex of \mathcal{C}. Assume further that $0 \leq s<t \leq 1$, and for some $i \in\{0, \ldots, \eta\}, \omega\left(v_{2}\right)=b(i, s)$ and $\omega(v)=b(i, t)$. Then $t-s<\delta$.

Property CIII.

Assume that v_{1}, v_{2}, v_{3} are consecutive vertices in $G, v \notin\left\{v_{1}, v_{2}, v_{3}\right\}$, $f\left(v_{1}\right) \neq f\left(v_{3}\right), f(v)=f\left(v_{2}\right), f\left(v_{2}\right)$ is in the path of \mathcal{C} between $f\left(v_{1}\right)$ and $f\left(v_{3}\right)$, and $f\left(v_{2}\right)$ is not the branch vertex of \mathcal{C}. Assume further that $0 \leq s<t \leq 1$, and for some $i \in\{0, \ldots, \eta\}, \omega\left(v_{2}\right)=b(i, s)$ and $\omega(v)=b(i, t)$. Then $t-s<\delta$.

Property CIII.

Assume that v_{1}, v_{2}, v_{3} are consecutive vertices in $G, v \notin\left\{v_{1}, v_{2}, v_{3}\right\}$, $f\left(v_{1}\right) \neq f\left(v_{3}\right), f(v)=f\left(v_{2}\right), f\left(v_{2}\right)$ is in the path of \mathcal{C} between $f\left(v_{1}\right)$ and $f\left(v_{3}\right)$, and $f\left(v_{2}\right)$ is not the branch vertex of \mathcal{C}. Assume further that $0 \leq s<t \leq 1$, and for some $i \in\{0, \ldots, \eta\}, \omega\left(v_{2}\right)=b(i, s)$ and $\omega(v)=b(i, t)$. Then $t-s<\delta$.

Property CIII.

Assume that v_{1}, v_{2}, v_{3} are consecutive vertices in $G, v \notin\left\{v_{1}, v_{2}, v_{3}\right\}$, $f\left(v_{1}\right) \neq f\left(v_{3}\right), f(v)=f\left(v_{2}\right), f\left(v_{2}\right)$ is in the path of \mathcal{C} between $f\left(v_{1}\right)$ and $f\left(v_{3}\right)$, and $f\left(v_{2}\right)$ is not the branch vertex of \mathcal{C}. Assume further that $0 \leq s<t \leq 1$, and for some $i \in\{0, \ldots, \eta\}, \omega\left(v_{2}\right)=b(i, s)$ and $\omega(v)=b(i, t)$. Then $t-s<\delta$.

Let small δ and $\epsilon \in\left(0, \frac{\delta}{2}\right)$. Also, let X be a continuum defined as the limit of a sequence of graphs $\left\langle T_{n}\right\rangle_{n=1}^{\infty}$, each described by a $\left(T_{0}, \epsilon\right)$-projection via ω_{N} (where ω_{N} is a compliant function for the graph T_{n}). With the Proposition 4 , we will be able to conclude that X cannot be covered by an open η-odic cover with mesh less than $\delta-2 \epsilon$, if for every graph T_{n} we have that there doesn't exists a δ-combinatorial η-od cover for ω_{N}.

Definition 5 (Lelek,[5])

Let X be a continuum with metric d_{X}, the span of X, denoted by σX, is the supreme of every $0 \leq \gamma$ for which there exists a continuum
$Z \subseteq X \times X$ such that:
(1) $\gamma \leq d_{X}(x, y)$ for every $(x, y) \in Z$.
(2) $\pi_{1}(Z)=\pi_{2}(Z)$ where $\pi_{1}, \pi_{2}: X \times X \rightarrow X$ are the projections of the first and second coordinate, respectively.

Definition 5 (Lelek, [5])

Let X be a continuum with metric d_{X}, the span of X, denoted by σX, is the supreme of every $0 \leq \gamma$ for which there exists a continuum $Z \subseteq X \times X$ such that:
(1) $\gamma \leq d_{X}(x, y)$ for every $(x, y) \in Z$.
(2) $\pi_{1}(Z)=\pi_{2}(Z)$ where $\pi_{1}, \pi_{2}: X \times X \rightarrow X$ are the projections of the first and second coordinate, respectively.

Lema 6

Let $\delta>0$. If X is a simple $\delta-(\eta+1)$-od with metric d_{X}, then $\sigma X \leq \delta$.

Definition 5 (Lelek,[5])

Let X be a continuum with metric d_{X}, the span of X, denoted by σX, is the supreme of every $0 \leq \gamma$ for which there exists a continuum $Z \subseteq X \times X$ such that:
(1) $\gamma \leq d_{X}(x, y)$ for every $(x, y) \in Z$.
(2) $\pi_{1}(Z)=\pi_{2}(Z)$ where $\pi_{1}, \pi_{2}: X \times X \rightarrow X$ are the projections of the first and second coordinate, respectively.

Lema 6

Let $\delta>0$. If X is a simple $\delta-(\eta+1)$-od with metric d_{X}, then $\sigma X \leq \delta$.

From [7] we have the following result,
Every continuum with span zero is atriodic.

From [7] we have the following result,
Every continuum with span zero is atriodic.
These known result, together with Lemma 6, will allow us to conclude that a continuum X built as the nested intersection of small neighborhoods of simple $\delta_{N^{-}}(\eta+1)$-ods, such that $\lim _{n \rightarrow \infty} 0$, will have $\sigma X=0$ and, therefore, will be atriodic.

The construction of a continuum X which is $(\eta+1)$-od-like, for which we will prove the following properties:
(1) is atriodic, and
(2) is not η-od-like,
is a natural generalization of the construction of the continuum built in [1].

The construction of a continuum X which is $(\eta+1)$-od-like, for which we will prove the following properties:
(1) is atriodic, and
(2) is not η-od-like,
is a natural generalization of the construction of the continuum built in [1].
We have designed a sequence of $(\eta+1)$-ods T_{n} for which we will prove the following properties:
(I) $\lim _{n \rightarrow \infty} \sigma T_{n}=0$, and
(II) it cannot be covered by an open η-odic cover with small mesh.

L. C. Hoehn, A non-chainable plane continuum with span zero, Fund. Math. 211 (2011), no. 2, 149-174. MR 2747040
W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), no. 2, 99-107. MR 0365516
-_-, Hereditarily indecomposable tree-like continua, Fund. Math. 103 (1979), no. 1, 61-64. MR 535836
C. T. Kennaugh, Complexity of atriodic continua, Ph.D. thesis, Texas Tech University, 2009.
A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214

Wayne Lewis, Indecomposable continua, Open problems in topology. II (Elliott Pearl, ed.), Elsevier B. V., Amsterdam, 2007, pp. 303-317. MR 2367385

Piotr Minc, An atriodic simple-4-od-like continuum which is not simple-triod-like, Trans. Amer. Math. Soc. 338 (1993), no. 2, 537-552. MR 11975642

THANK YOU

