Complexity of η-od-like continua 36th Summer Topology Conference

M. en C. Hugo Adrian Maldonado Garcia, UNAM Dr. Logan Hoehn, Nipissing University

2022

A continuum is a compact connected metric space. W. Lewis asked in *Indecomposable Continua. Open problems in topology II*, whether there exists, for every $\eta \geq 2$, an atriodic simple $(\eta + 1)$ -od-like continuum which is not simple η -od-like and, if such continuum exists, whether it has a variety of properties such as being planar or being an arc-continuum, among others. Some partial results have been obtained by W.T. Ingram, P. Minc, C.T. Kennaugh and L. Hoehn.

In the following sections we will develop the notion of a combinatorial η od cover of a graph, a tool which may enable one to prove that certain examples of continua are not η -od-like.

We will suggest the construction of an atriodic simple $(\eta+1)$ -od-like continuum which is not simple η -od-like and has properties such as being planar, being an arc-continuum, and span zero.

Let $\eta \in \mathbf{N}$ be such that $\eta \geq 3$.

Let $\eta \in \mathbf{N}$ be such that $\eta \geq 3$.

$$b(i,t) = \begin{cases} (0,-1-t) & \text{if } i = 0, \\ ((1+t)\cos\frac{(i-1)\pi}{\eta-1}, (1+t)\sin\frac{(i-1)\pi}{\eta-1}) & \text{if } i \neq 0. \end{cases}$$

For each $i \in \{0, \dots, \eta\}$, define $B_i = \{b(i,t) : t \in [0,1]\}.$

Let $\eta \in \mathbf{N}$ be such that $\eta \geq 3$.

Define the function $b: \{0,\ldots,\eta\} imes [0,1] o {\mathbf R}^2$ given by

$$b(i,t) = \begin{cases} (0,-1-t) & \text{if } i = 0, \\ ((1+t)\cos\frac{(i-1)\pi}{\eta-1}, (1+t)\sin\frac{(i-1)\pi}{\eta-1}) & \text{if } i \neq 0. \end{cases}$$

For each $i \in \{0, \ldots, \eta\}$, define $B_i = \{b(i, t) : t \in [0, 1]\}$. In the set $\Gamma = B_0 \cup \cdots \cup B_\eta \cup \{o\}$ we define the relation $p \cong q$ if and only if p = q or $\{p, q\} \subset B_i$ for some $i \in \{0, \ldots, \eta\}$.

H. Maldonado

A function $\omega : V(G) \to \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in \{0, \ldots, \eta\}$.

A function $\omega : V(G) \to \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in \{0, \ldots, \eta\}$.

A function $\omega : V(G) \to \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in \{0, \ldots, \eta\}$.

A function $\omega : V(G) \to \Gamma$ is called compliant if for every vertices u and v of G we have that $\omega(u) \cong o$ and $\omega(v) \cong b(i, 1)$, or $\omega(u) \cong b(i, 1)$ and $\omega(v) \cong o$; for some $i \in \{0, \ldots, \eta\}$.

Definition 2

Let $\epsilon > 0$ and ω a compliant function. A (T_0, ϵ) -projection via ω is a continuous function $\Omega : G \to T_0$ such that: (1) Ω extends ω , (2) if u and v are adjacent vertices of G, $\Omega|uv$ is a homeomorphism between uv and $\omega(u)\omega(v)$, (3) for every $p \in G$, $d_2(p, \Omega(p)) < \epsilon$.

We will work with the infinite $\eta\text{-od}\ \mathcal{C}$ defined by

Let $\delta > 0$. A δ -combinatorial η -od cover for a compliant function ω is a function $f : V(G) \rightarrow V(C)$ such that for any vertices u, v, v_1, v_2, v_3 of G we have the following properties

Let $\delta > 0$. A δ -combinatorial η -od cover for a compliant function ω is a function $f : V(G) \to V(C)$ such that for any vertices u, v, v_1, v_2, v_3 of G we have the following properties CI. If f(u) = f(v), then $\omega(u) \cong \omega(v)$,

Let $\delta > 0$. A δ -combinatorial η -od cover for a compliant function ω is a function $f : V(G) \to V(C)$ such that for any vertices u, v, v_1, v_2, v_3 of G we have the following properties Cl. If f(u) = f(v), then $\omega(u) \cong \omega(v)$,

CII. If u and v are adjacent in G, then f(u) and f(v) are adjacent in C,

Let $\delta > 0$. A δ -combinatorial η -od cover for a compliant function ω is a function $f : V(G) \to V(C)$ such that for any vertices u, v, v_1, v_2, v_3 of G we have the following properties CI. If f(u) = f(v), then $\omega(u) \cong \omega(v)$, CII. If u and v are adjacent in G, then f(u) and f(v) are adjacent in C, CIII. Assume that v_1, v_2, v_3 are consecutive vertices in $G, v \notin \{v_1, v_2, v_3\}$, $f(v_1) \neq f(v_3), f(v) = f(v_2), f(v_2)$ is in the path of C between $f(v_1)$ and $f(v_3)$, and $f(v_2)$ is not the branch vertex of C. Assume further that $0 \le s < t \le 1$, and for some $i \in \{0, \ldots, \eta\}$, $\omega(v_2) = b(i, s)$ and $\omega(v) = b(i, t)$. Then $t - s < \delta$.

Let $\delta > 0$. A δ -combinatorial η -od cover for a compliant function ω is a function $f : V(G) \rightarrow V(C)$ such that for any vertices u, v, v_1, v_2, v_3 of G we have the following properties CI. If f(u) = f(v), then $\omega(u) \cong \omega(v)$, CII. If u and v are adjacent in G, then f(u) and f(v) are adjacent in C, CIII. Assume that v_1, v_2, v_3 are consecutive vertices in $G, v \notin \{v_1, v_2, v_3\}$, $f(v_1) \neq f(v_3), f(v) = f(v_2), f(v_2)$ is in the path of C between $f(v_1)$ and $f(v_3)$, and $f(v_2)$ is not the branch vertex of C. Assume further that $0 \le s < t \le 1$, and for some $i \in \{0, \ldots, \eta\}$, $\omega(v_2) = b(i, s)$ and $\omega(v) = b(i, t)$. Then $t - s < \delta$.

Proposition 4

Let small δ , $\epsilon \in (0, \frac{\delta}{2})$, and ω a compliant function with a (T_0, ϵ) -projection Ω . If G has an open η -odic cover of mesh less than $\delta - 2\epsilon$, then ω has a δ -combinatorial η -od cover.

Property CI. If f(u) = f(v), then $\omega(u) \cong \omega(v)$.

If u and v are adjacent in G, then f(u) and f(v) are adjacent in C.

If u and v are adjacent in G, then f(u) and f(v) are adjacent in C.

If u and v are adjacent in G, then f(u) and f(v) are adjacent in C.

Assume that v_1, v_2, v_3 are consecutive vertices in G, $v \notin \{v_1, v_2, v_3\}$, $f(v_1) \neq f(v_3)$, $f(v) = f(v_2)$, $f(v_2)$ is in the path of C between $f(v_1)$ and $f(v_3)$, and $f(v_2)$ is not the branch vertex of C. Assume further that $0 \leq s < t \leq 1$, and for some $i \in \{0, ..., \eta\}$, $\omega(v_2) = b(i, s)$ and $\omega(v) = b(i, t)$. Then $t - s < \delta$.

Assume that v_1, v_2, v_3 are consecutive vertices in G, $v \notin \{v_1, v_2, v_3\}$, $f(v_1) \neq f(v_3)$, $f(v) = f(v_2)$, $f(v_2)$ is in the path of C between $f(v_1)$ and $f(v_3)$, and $f(v_2)$ is not the branch vertex of C. Assume further that $0 \leq s < t \leq 1$, and for some $i \in \{0, ..., \eta\}$, $\omega(v_2) = b(i, s)$ and $\omega(v) = b(i, t)$. Then $t - s < \delta$.

Assume that v_1, v_2, v_3 are consecutive vertices in G, $v \notin \{v_1, v_2, v_3\}$, $f(v_1) \neq f(v_3)$, $f(v) = f(v_2)$, $f(v_2)$ is in the path of C between $f(v_1)$ and $f(v_3)$, and $f(v_2)$ is not the branch vertex of C. Assume further that $0 \le s < t \le 1$, and for some $i \in \{0, ..., \eta\}$, $\omega(v_2) = b(i, s)$ and $\omega(v) = b(i, t)$. Then $t - s < \delta$.

Assume that v_1, v_2, v_3 are consecutive vertices in G, $v \notin \{v_1, v_2, v_3\}$, $f(v_1) \neq f(v_3)$, $f(v) = f(v_2)$, $f(v_2)$ is in the path of C between $f(v_1)$ and $f(v_3)$, and $f(v_2)$ is not the branch vertex of C. Assume further that $0 \le s < t \le 1$, and for some $i \in \{0, ..., \eta\}$, $\omega(v_2) = b(i, s)$ and $\omega(v) = b(i, t)$. Then $t - s < \delta$.

Let small δ and $\epsilon \in (0, \frac{\delta}{2})$. Also, let X be a continuum defined as the limit of a sequence of graphs $\langle T_n \rangle_{n=1}^{\infty}$, each described by a (T_0, ϵ) -projection via ω_N (where ω_N is a compliant function for the graph T_n). With the Proposition 4, we will be able to conclude that X cannot be covered by an open η -odic cover with mesh less than $\delta - 2\epsilon$, if for every graph T_n we have that there doesn't exists a δ -combinatorial η -od cover for ω_N .

Definition 5 (Lelek, [5])

Let X be a continuum with metric d_X , the span of X, denoted by σX , is the supreme of every $0 \le \gamma$ for which there exists a continuum $Z \subseteq X \times X$ such that:

- $\gamma \leq d_X(x, y)$ for every $(x, y) \in Z$.
- ② $\pi_1(Z) = \pi_2(Z)$ where $\pi_1, \pi_2 : X \times X \to X$ are the projections of the first and second coordinate, respectively.

Definition 5 (Lelek, [5])

Let X be a continuum with metric d_X , the span of X, denoted by σX , is the supreme of every $0 \le \gamma$ for which there exists a continuum $Z \subseteq X \times X$ such that:

•
$$\gamma \leq d_X(x, y)$$
 for every $(x, y) \in Z$.

② $\pi_1(Z) = \pi_2(Z)$ where $\pi_1, \pi_2 : X \times X \to X$ are the projections of the first and second coordinate, respectively.

Lema 6

Let $\delta > 0$. If X is a simple δ - $(\eta + 1)$ -od with metric d_X , then $\sigma X \leq \delta$.

Definition 5 (Lelek, [5])

Let X be a continuum with metric d_X , the span of X, denoted by σX , is the supreme of every $0 \le \gamma$ for which there exists a continuum $Z \subseteq X \times X$ such that:

•
$$\gamma \leq d_X(x, y)$$
 for every $(x, y) \in Z$.

② $\pi_1(Z) = \pi_2(Z)$ where $\pi_1, \pi_2 : X \times X \to X$ are the projections of the first and second coordinate, respectively.

Lema 6

Let $\delta > 0$. If X is a simple δ - $(\eta + 1)$ -od with metric d_X , then $\sigma X \leq \delta$.

From [7] we have the following result,

Every continuum with span zero is atriodic.

From [7] we have the following result,

Every continuum with span zero is atriodic.

These known result, together with Lemma 6, will allow us to conclude that a continuum X built as the nested intersection of small neighborhoods of simple δ_{N} - $(\eta + 1)$ -ods, such that $\lim_{n \to \infty} 0$, will have $\sigma X = 0$ and, therefore, will be atriodic.

The construction of a continuum X which is $(\eta + 1)$ -od-like, for which we will prove the following properties:

- (1) is atriodic, and
- (2) is not η -od-like,

is a natural generalization of the construction of the continuum built in [1].

The construction of a continuum X which is $(\eta + 1)$ -od-like, for which we will prove the following properties:

- (1) is atriodic, and
- (2) is not η -od-like,

is a natural generalization of the construction of the continuum built in [1].

We have designed a sequence of $(\eta + 1)$ -ods T_n for which we will prove the following properties:

(I)
$$\lim_{n\to\infty} \sigma T_n = 0$$
, and

(II) it cannot be covered by an open η -odic cover with small mesh.

- L. C. Hoehn, A non-chainable plane continuum with span zero, Fund. Math. 211 (2011), no. 2, 149–174. MR 2747040
- W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), no. 2, 99–107. MR 0365516
- ——, Hereditarily indecomposable tree-like continua, Fund. Math. 103 (1979), no. 1, 61–64. MR 535836
- C. T. Kennaugh, *Complexity of atriodic continua*, Ph.D. thesis, Texas Tech University, 2009.
- A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199–214

Wayne Lewis, *Indecomposable continua, Open problems in topology. II* (Elliott Pearl, ed.), Elsevier B. V., Amsterdam, 2007, pp. 303–317. MR 2367385

Piotr Minc, An atriodic simple-4-od-like continuum which is not simple-triod-like, Trans. Amer. Math. Soc. 338 (1993), no. 2, 537–552. MR 1197564 2

THANK YOU