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Main Question of this talk
Q1: What is the dynamical complexity of the conjugation action

G ↷ Gc , (g , x) 7→ gxg−1

for locally compact (second countable) topological groups G?

Q2: When this action is a ”part” of the natural dual action
Iso (V ) ↷ (BV ∗ ,w∗) via some continuous representation
h : G → Iso (V ) for low complexity Banach spaces V ?

Remark: Easy for left regular actions G ↷ G with G ∈ LC.

(Gelfand–Raikov) ∀G ∈ LC G ∈ Hilbr (Hilbert representable). ↓

One may derive that for every separable metrizable locally compact
G the left regular action G × G → G , (g , x) 7→ gx is Hilbr.
Sketch: if h : G ↪→ Is (H), then ∃ countably many G -maps
fn : G → 1

2n
BH , g 7→ gvn s.t. the diagonal G -map G ↪→ ⊕n∈NHn is a uniform

G -embedding. This induces a proper representation of G ↷ G on the l2-sum of
countably many copies of H.
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Conjugation action case

In contrast,
for the action by conjugations G ↷ Gc , (g , x) 7→ gxg−1 the
representation theory and the corresponding hierarchy is
widely open even for classical (matrix) LC groups.

Lemma: For every topological group G and a continuous action G × H → H on a
topological group H by automorphisms the G -space H has a proper
G -compactification H ↪→ K .

↓ (use Teleman’s thm)
Proposition: Every conjugation action has a proper Banach representation on C(K).
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Main direction

Parallel hierarchies in:
TGr ⇆ DS ⇆ Ban

{topological groups}, {dynamical systems} and {Banach spaces}

1. representations of continuous group actions
G ↷ X on Iso (V ) ↷ (BV ∗ ,w∗)

for some (nonrandom) classes K of Banach spaces (V , || · ||)
{reflexive} ⊂ {Asplund} ⊂ {Rosenthal} ⊂ Ban

DLP (in Ban) ⇆ WAP (in DS)
fragmentability (in Ban) ⇆ HNS (in DS)
Rosenthal’s dichotomy (in Ban) ⇆ tameness (in DS)

2. (new) continuous actions by group automorphisms
(e.g., actions by conjugations) and their representations
↓

3. counterexamples for coset G -spaces G/H.
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Banach spaces, induced structures and representations

To every V ∈ Ban one may associate:

• compact space BV ∗ (w∗-compact unit ball in V ∗)
• topological group Iso (V ) = {linear onto isometries} with SOT
• dynamical system G × BV ∗ → BV ∗ , (gm)(v) = m(g−1v)
for every continuous h : G → Iso (V )

Def: representations of actions on Banach spaces

G × X

h
��

α
��

// X

α

��
Iso (V )× V ∗ // V ∗

Remark: [Teleman’s thm]
Every compact G -space K admits a proper (embedding) representation on
V := C(K) as K ↪→ BV∗ , x 7→ δx , h : G → Iso (V ), (gf )(x) = f (g−1x) .
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Question: Which actions are representable on

Ref ⊂ Asp ⊂ Ros ⊂ Ban

Ref = reflexive.
Asp = Asplund (V is Asplund iff every separable subspace of V is separable).

Ros = Rosenthal (a Banach space is Rosenthal iff l1 ⊈ V iff any bounded sequence

contains a weak Cauchy subsequence).

WAP ⊂ HNS ⊂ Tame ⊂ DS

Definitions: A compact G -space X is said to be:

(a) WAP if fG is relatively weakly compact in C (X ) ∀f ∈ C (X ).

(b) HNS if every (closed) G -subspace of X is nonsensitive.

(c) Tame (A. Köhler 1995) if fG contains no independent
subsequence, in the sense of H. Rosenthal, ∀f ∈ C (X ).
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Tameness of DS and Rosenthal representability

Def: A sequence {fn : X → R}n∈N of functions on a set X is independent
if ∃ a < b s.t. ⋂

n∈P

f −1
n (−∞, a) ∩

⋂
n∈M

f −1
n (b,∞) ̸= ∅

for all finite disjoint subsets P,M of N.

Fact (Glasner-Me Trans. AMS 12)

For a compact metric G -space X TFAE:

1. G -space X is Rosr.

2. G -space X is tame.

3. Ellis semigroup E(X ) is Frechet (scl(A) = cl(A) ∀A ⊂ E(X )).

4. card(E(X )) ≤ 2ℵ0 .
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Main results of this talk

• For G := SLn(R) the conjugation G -space Gc

is not Refr ∀n ≥ 2;
is not Aspr ∀n ≥ 4;

• SLn(Z) ↷ Rn is not Aspr ∀n ≥ 3.

• (Glasner-Me, Trans. AMS 22) GLn(R) ↷ Rn is Rosr.

• For every n ≥ 2 there exists a topological group automorphism
σ : Tn → Tn s.t.
the action Z ↷ Tn is not Rosr;
for the group G = Tn ⋊ Z, its conjugation action is not Rosr.
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Two corollaries for coset spaces

• Let G := T2 ⋊ Z be as above. Then for its cocompact discrete
subgroup H := Z, the compact two dimensional homogeneous
G -space G/H is not Rosr.

• There exists a closed subgroup H of G := SL2(R) such that the
corresponding locally compact coset G -space G/H is not Refr.

Lemma
Let G ↷ X be a continuous action by group automorphisms and P := X ⋊α G be the
corresponding topological semidirect product. Then G ↷ X naturally is embedded
into the homogeneous action P ↷ P/G .



Some questions

Question
• For which interesting topological groups G the conjugation
action G ↷ Gc is Rosr?
• When the action G ↷ X = (Gc ∪ {∞}) on the 1-point
compactification is tame ?
• What about G = SL2(R) ?

Question
• Which interesting homogeneous G -spaces G/H are Rosr?
• What about the SLn(R)-spaces SLn(R)/H ?
• In particular, what if H = SLn(Z)?



More remarks about tame actions

{Reflexive} ⊂ {Asplund} ⊂ {Rosenthal}︸ ︷︷ ︸
”small” Banach spaces

⊂ {Banach sp.}

{Eberlein} ⊂ {RN} ⊂ {WRN}︸ ︷︷ ︸
”small” comp. spaces

⊂ {Compact sp.}

{WAP} ⊂ {HNS} ⊂ {Tame}︸ ︷︷ ︸
dynamically ”small” systems

⊂ {Dyn. systems}
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Remarks about tame actions

1. Dynamical BFT (Bourgain-Fremlin Talagrand) dichotomy,
Rosenthal’s l1-dichotomy [Köhler95], [GM06], [Kerr-Li07]

2. Many dynamical models in quasicrystals (tilings) are tame
[Aujogue15], [Aujogue-Kellendonk15], ...

3. Closely related to NIP formulas in model theory [Shelah]

4. (Based on [Ellis 95], which in turn follows Furstenberg’s results)

Projective actions of GLn(R) on the projective space Pn−1 are
tame but not HNS (i.e., Rosr but not Aspr).

5. [Gl-Me] Sturmian like systems X ⊂ {0, 1}Zk
are tame.

(more generally) Circularly (e.g., linearly) ordered DS

6. Every continuous G -action on a dendron is tame

7. Bernoulli cascade Z ↷ {0, 1}Z is not tame (is not Rosr)



Some ingredients and details. WAP and reflexivity

Ref = reflexive
V ∈ Ban is reflexive (i : V ↪→ V ∗∗ is onto) iff for every bounded subsets
B ⊂ V , K ⊂ V ∗ the pairing B × K → R has Grothendieck’s DLP
(for every sequence {fn} ⊂ B and every sequence {xm} ⊂ K the limits

lim
n

lim
m

fn(xm) and lim
m

lim
n

fn(xm)

are equal whenever they both exist)

Lemma
Let X be a compact G -space and f ∈ C (X ). TFAE:

1. f ∈ WAP(X ) (fG is relatively weakly compact in C(X ));

2. fG × X → R has DLP;

3. fG is reflexively representable.

Thm: [Me 03] A compact metric G -space X is Refr iff X is WAP.
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SLn(R) /∈ Ref rconj n ≥ 1

Proposition

Let G := SLn(R), n > 1. Then the conjugation G -space Gc

is not Refr.

Sketch
We claim that the 1-point G -compactification Gc ∪ {∞} is not WAP. It is enough to
show that for every compact nbd U of e ∈ G and for every continuous bounded
function f : G → R with f (e) = 1 and f (x) = 0 for every x /∈ U, we have
f /∈ WAP(Gc ). By Grothendieck’s double limit criterion (for G -spaces), it suffices to
show that there exist two sequences gn ∈ G and xm ∈ Gc such that the double
sequence f (gnxmg

−1
n ) (n,m ∈ N) has distinct double limits.

gn :=

(
n 0
0 n−1

)
, xm :=

(
1 m−1

0 1

)
.

gnxmg
−1
n =

(
1 n2

m
0 1

)

lim
m

lim
n
(gnxmg

−1
n ) = ∞ ≠ lim

n
lim
m
(gnxmg

−1
n ) =

(
1 0
0 1

)
.

lim
m

lim
n

f (gnxmg
−1
n ) = 0 ̸= 1 = lim

n
lim
m

f (gnxmg
−1
n ).
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Proposition

(This idea was suggested by V. Pestov) Let G be a metrizable
separable topological group which is Refrconj . Then G is SIN
(i.e., left uniformity = right uniformity)



Asplund spaces and HNS dynamical systems

• V ∈Asp iff dual of every separable subspace of V is separable.
Equiv.: (Namioka-Phelps, Jane-Rogers) VB∗ is (w∗, norm)-fragmented
(∀ nonempty A ⊂ VB∗ and every ε > 0 ∃ weak-star open O ⊂ V ∗ s.t. O ∩ A is
nonempty and ε-small).

• Recall the classical concept of non-sensitivity. An action of G on (X , d) is said to be
non-sensitive if for every ε > 0 there exists a nonempty open subset O in X such that
gO is ε-small for every g ∈ G .

• hereditarily non-sensitive (HNS) means that every (closed) G -subspace Y of X is

non-sensitive.

Facts:
(Gl-Me 06) A compact metric G -space X is Aspr iff X is HNS

(Gl-Me-Uspenskij 08) iff E (X ) is metrizable.



Theorem: SLn(Z) ↷ Rn is not Asplund representable ∀n ≥ 3.
The conjugation action of SLn(R) is not Aspr ∀n ≥ 4.

Sketch:
• (S.G. Dani and S. Raghavan, Israel J. Math. 80)
SLn(Z) ↷ Rn is weakly mixing for every n ≥ 3.
• (Glasner-Me 06) Let (X , d) be a weakly mixing G -space which
is nonsensitive with respect to d . Then X is trivial.
• Now Theorem 17 implies that this action is not Aspr.

• Rn ⋊ SLn(Z) ↪→ SLn+1(R), M 7→
(

M v
0 1

)
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Rosenthal representability, a counterexample

Theorem
For every n ≥ 2 there exists a topological group automorphism
σ : Tn → Tn s.t. the action of the cyclic group Z on Tn by the
iterations of σ is not Rosr.

Proof.
For every hyperbolic toral automorphism, the corresponding
cascade has positive entropy. Hence, it cannot be tame by a result
of [Kerr-Li 07]. Therefore, such a cascade is not Rosr by the
representation thm [Glasner-Me 12].

Corollary

For G = T2 ⋊ Z its conjugation action is not Rosr.
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