Topological group actions by group automorphisms and Banach representations

Michael Megrelishvili

Bar-Ilan University This project is dedicated to Vladimir Pestov on the occasion of his 65th birthday

Vienna, 36th Summer Topological Conference July, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This project is dedicated to Vladimir Pestov on the occasion of his 65th birthday

Many results presented in this talk are joint with Eli Glasner

Most related references:

- 1. M. Megrelishvili, Topological group actions by group automorphisms and Banach representations, ArXiv 2022.
- 2. M. Megrelishvili, *Topological Group Actions and Banach Representations*, unpublished book, 2022. Available on my homepage.
- E. Glasner and M. Megrelishvili, *Representations of dynamical systems on Banach spaces*. Survey paper in: Recent Progress in General Topology III, Springer, Atlantis Press, 2014.
- 4. E. Glasner and M. Megrelishvili, *Hereditarily non-sensitive dynamical systems and linear representations*, Colloq. Math. **104** (2006).

イロト 不得 トイヨト イヨト ニヨー

This project is dedicated to Vladimir Pestov on the occasion of his 65th birthday

Many results presented in this talk are joint with Eli Glasner

Most related references:

- 1. M. Megrelishvili, Topological group actions by group automorphisms and Banach representations, ArXiv 2022.
- 2. M. Megrelishvili, *Topological Group Actions and Banach Representations*, unpublished book, 2022. Available on my homepage.
- 3. E. Glasner and M. Megrelishvili, *Representations of dynamical systems on Banach spaces.* Survey paper in: Recent Progress in General Topology III, Springer, Atlantis Press, 2014.
- 4. E. Glasner and M. Megrelishvili, *Hereditarily non-sensitive dynamical systems and linear representations*, Colloq. Math. **104** (2006).

This project is dedicated to Vladimir Pestov on the occasion of his 65th birthday

Many results presented in this talk are joint with Eli Glasner

Most related references:

- 1. M. Megrelishvili, Topological group actions by group automorphisms and Banach representations, ArXiv 2022.
- 2. M. Megrelishvili, *Topological Group Actions and Banach Representations*, unpublished book, 2022. Available on my homepage.
- E. Glasner and M. Megrelishvili, *Representations of dynamical systems on Banach spaces*. Survey paper in: Recent Progress in General Topology III, Springer, Atlantis Press, 2014.
- 4. E. Glasner and M. Megrelishvili, *Hereditarily non-sensitive dynamical systems and linear representations*, Colloq. Math. **104** (2006).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main Question of this talk

Q1: What is the dynamical complexity of the conjugation action

$$G \curvearrowright G_c, \ (g, x) \mapsto g x g^{-1}$$

for locally compact (second countable) topological groups G?

Q2: When this action is a "part" of the natural dual action Iso $(V) \frown (B_{V^*}, w^*)$ via some continuous representation $h: G \to \text{Iso}(V)$ for low complexity Banach spaces V?

Remark: Easy for left regular actions $G \curvearrowright G$ with $G \in LC$.

(Gelfand–Raikov) $orall G \in LC$ $G \in \mathsf{Hilb}^r$ (Hilbert representable). \downarrow

One may derive that for every separable metrizable locally compact G the **left regular action** $G \times G \to G$, $(g, x) \mapsto gx$ is **Hilb**^r. Sketch: if $h: G \to \text{Is}(H)$, then \exists countably many G-maps $f_n: G \to \frac{1}{2n}B_H, g \mapsto gv_n$ s.t. the diagonal G-map $G \to \bigoplus_{n \in \mathbb{N}} H_n$ is a uniform G-embedding. This induces a proper representation of $G \cap G$ on the l^2 -sum of countably many copies of H.

Main Question of this talk

Q1: What is the dynamical complexity of the conjugation action

$$G \curvearrowright G_c, \ (g, x) \mapsto g x g^{-1}$$

for locally compact (second countable) topological groups G?

Q2: When this action is a "part" of the natural dual action Iso $(V) \frown (B_{V^*}, w^*)$ via some continuous representation $h: G \to \text{Iso}(V)$ for low complexity Banach spaces V?

Remark: Easy for left regular actions $G \curvearrowright G$ with $G \in LC$.

(Gelfand–Raikov) $\forall G \in LC \ G \in \mathbf{Hilb}^r$ (Hilbert representable). \downarrow

One may derive that for every separable metrizable locally compact G the **left regular action** $G \times G \to G$, $(g, x) \mapsto gx$ is **Hilb**^r. Sketch: if $h: G \to \text{Is}(H)$, then \exists countably many G-maps $f_n: G \to \frac{1}{2n}B_H, g \mapsto gv_n$ s.t. the diagonal G-map $G \to \bigoplus_{n \in \mathbb{N}}H_n$ is a uniform G-embedding. This induces a proper representation of $G \frown G$ on the l^2 -sum of countably many copies of H.

Main Question of this talk

Q1: What is the dynamical complexity of the conjugation action

$$G \curvearrowright G_c, \ (g, x) \mapsto g x g^{-1}$$

for locally compact (second countable) topological groups G?

Q2: When this action is a "part" of the natural dual action Iso $(V) \frown (B_{V^*}, w^*)$ via some continuous representation $h: G \to \text{Iso}(V)$ for low complexity Banach spaces V?

Remark: Easy for left regular actions $G \curvearrowright G$ with $G \in LC$.

(Gelfand–Raikov) $\forall G \in LC \ G \in \mathbf{Hilb}^r$ (Hilbert representable). \downarrow

One may derive that for every separable metrizable locally compact G the **left regular action** $G \times G \to G$, $(g, x) \mapsto gx$ is **Hilb**^r. Sketch: if $h: G \hookrightarrow \text{Is}(H)$, then \exists countably many G-maps $f_n: G \to \frac{1}{2n}B_H, g \mapsto gv_n$ s.t. the diagonal G-map $G \hookrightarrow \bigoplus_{n \in \mathbb{N}} H_n$ is a uniform G-embedding. This induces a proper representation of $G \cap G$ on the l^2 -sum of countably many copies of H.

Conjugation action case

In contrast, for the action by conjugations $G \curvearrowright G_c, (g, x) \mapsto gxg^{-1}$ the representation theory and the corresponding hierarchy is widely open even for classical (matrix) LC groups.

Lemma: For every topological group G and a continuous action $G \times H \to H$ on a topological group H by automorphisms the G-space H has a proper G-compactification $H \hookrightarrow K$.

↓ (use Teleman's thm) **Proposition:** Every conjugation action has a proper Banach representation on C(K).

Conjugation action case

In contrast, for the action by conjugations $G \curvearrowright G_c, (g, x) \mapsto gxg^{-1}$ the representation theory and the corresponding hierarchy is widely open even for classical (matrix) LC groups.

Lemma: For every topological group G and a continuous action $G \times H \rightarrow H$ on a topological group H by automorphisms the G-space H has a proper G-compactification $H \hookrightarrow K$.

 \downarrow (use Teleman's thm) **Proposition:** Every conjugation action has a proper Banach representation on C(K).

Parallel hierarchies in:

$\textbf{TGr} \hspace{0.1in}\leftrightarrows \hspace{0.1in} \textbf{DS} \hspace{0.1in}\leftrightarrows \hspace{0.1in} \textbf{Ban}$

 $\{topological \ groups\}, \ \{dynamical \ systems\} \ and \ \{Banach \ spaces\}$

1. representations of continuous group actions $G \curvearrowright X$ on $\operatorname{Iso}(V) \curvearrowright (B_{V^*}, w^*)$

for some (nonrandom) classes $\mathcal K$ of Banach spaces $(V, || \cdot ||)$ {reflexive} \subset {Asplund} \subset {Rosenthal} \subset **Ban**

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- (new) continuous actions by group automorphisms
 (e.g., actions by conjugations) and their representations
 ↓
- 3. counterexamples for coset G-spaces G/H.

Parallel hierarchies in:

$\textbf{TGr} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{DS} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{Ban}$

 $\{topological \ groups\}, \ \{dynamical \ systems\} \ and \ \{Banach \ spaces\}$

1. representations of continuous group actions $G \curvearrowright X$ on $\operatorname{Iso}(V) \curvearrowright (B_{V^*}, w^*)$

for some (nonrandom) classes \mathcal{K} of Banach spaces $(V, || \cdot ||)$ {reflexive} \subset {Asplund} \subset {Rosenthal} \subset **Ban**

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- (new) continuous actions by group automorphisms
 (e.g., actions by conjugations) and their representations
 ↓
- 3. counterexamples for coset G-spaces G/H.

Parallel hierarchies in:

$\textbf{TGr} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{DS} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{Ban}$

 $\{topological \ groups\}, \ \{dynamical \ systems\} \ and \ \{Banach \ spaces\}$

1. representations of continuous group actions $G \curvearrowright X$ on $\operatorname{Iso}(V) \curvearrowright (B_{V^*}, w^*)$

for some (nonrandom) classes \mathcal{K} of Banach spaces $(V, || \cdot ||)$ {reflexive} \subset {Asplund} \subset {Rosenthal} \subset **Ban**

- 2. (new) continuous actions by group automorphisms (e.g., actions by conjugations) and their representations ↓
- 3. counterexamples for coset G-spaces G/H.

Parallel hierarchies in:

$\textbf{TGr} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{DS} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{Ban}$

{topological groups}, {dynamical systems} and {Banach spaces}

1. representations of continuous group actions $G \curvearrowright X$ on $\operatorname{Iso}(V) \curvearrowright (B_{V^*}, w^*)$

for some (nonrandom) classes \mathcal{K} of Banach spaces $(V, || \cdot ||)$ {reflexive} \subset {Asplund} \subset {Rosenthal} \subset **Ban**

- 2. (new) continuous actions by group automorphisms (e.g., actions by conjugations) and their representations ↓
- 3. counterexamples for coset G-spaces G/H.

Parallel hierarchies in:

$\textbf{TGr} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{DS} \hspace{0.1in} \leftrightarrows \hspace{0.1in} \textbf{Ban}$

 $\{topological \ groups\},\ \{dynamical \ systems\}\ and\ \{Banach \ spaces\}$

1. representations of continuous group actions $G \curvearrowright X$ on $\operatorname{Iso}(V) \curvearrowright (B_{V^*}, w^*)$

for some (nonrandom) classes \mathcal{K} of Banach spaces $(V, || \cdot ||)$ {reflexive} \subset {Asplund} \subset {Rosenthal} \subset **Ban**

- 2. (new) continuous actions by group automorphisms (e.g., actions by conjugations) and their representations ↓
- 3. counterexamples for coset G-spaces G/H.

Banach spaces, induced structures and representations

To every $V \in \mathbf{Ban}$ one may associate:

- compact space B_{V^*} (w^* -compact unit ball in V^*)
- topological group $Iso(V) = \{Iinear onto isometries\}$ with SOT
- dynamical system $G \times B_{V^*} \to B_{V^*}$, $(gm)(v) = m(g^{-1}v)$ for every continuous $h: G \to \text{Iso}(V)$

Def: representations of actions on Banach spaces

Remark: [Teleman's thm]

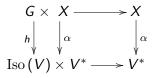
Every compact *G*-space *K* admits a proper (embedding) representation on V := C(K) as $K \hookrightarrow B_{V^*}, x \mapsto \delta_x$, $h : G \to \text{Iso}(V), (gf)(x) = f(g^{-1}x)$.

Banach spaces, induced structures and representations

To every $V \in \mathbf{Ban}$ one may associate:

- compact space B_{V^*} (w^* -compact unit ball in V^*)
- topological group $Iso(V) = \{Iinear onto isometries\}$ with SOT
- dynamical system $G \times B_{V^*} \to B_{V^*}$, $(gm)(v) = m(g^{-1}v)$ for every continuous $h: G \to \text{Iso}(V)$

Def: representations of actions on Banach spaces



Remark: [Teleman's thm]

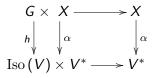
Every compact *G*-space *K* admits a proper (embedding) representation on V := C(K) as $K \hookrightarrow B_{V^*}, x \mapsto \delta_x$, $h : G \to \text{Iso}(V), (gf)(x) = f(g^{-1}x)$.

Banach spaces, induced structures and representations

To every $V \in \mathbf{Ban}$ one may associate:

- compact space B_{V^*} (w^* -compact unit ball in V^*)
- topological group $Iso(V) = \{Iinear onto isometries\}$ with SOT
- dynamical system $G \times B_{V^*} \to B_{V^*}$, $(gm)(v) = m(g^{-1}v)$ for every continuous $h: G \to \text{Iso}(V)$

Def: representations of actions on Banach spaces



Remark: [Teleman's thm]

Every compact G-space K admits a proper (embedding) representation on V := C(K) as $K \hookrightarrow B_{V^*}, x \mapsto \delta_x$, $h : G \to \text{Iso}(V), (gf)(x) = f(g^{-1}x)$.

Question: Which actions are representable on

$\textbf{Ref} \subset \textbf{Asp} \subset \textbf{Ros} \subset \textbf{Ban}$

Ref = reflexive.

Asp = Asplund (V is Asplund iff every separable subspace of V is separable).

Ros = Rosenthal (a Banach space is *Rosenthal* iff $l_1 \nsubseteq V$ iff any bounded sequence contains a weak Cauchy subsequence).

$\textbf{WAP} \subset \textbf{HNS} \subset \textbf{Tame} \subset \textbf{DS}$

Definitions: A compact G-space X is said to be:
(a) WAP if fG is relatively weakly compact in C(X) ∀f ∈ C(X).
(b) HNS if every (closed) G-subspace of X is nonsensitive.
(c) Tame (A. Köhler 1995) if fG contains no independent subsequence, in the sense of H. Rosenthal, ∀f ∈ C(X).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Question: Which actions are representable on

 $\textbf{Ref} \subset \textbf{Asp} \subset \textbf{Ros} \subset \textbf{Ban}$

Ref = reflexive.

Asp = Asplund (V is Asplund iff every separable subspace of V is separable).

Ros = Rosenthal (a Banach space is *Rosenthal* iff $l_1 \notin V$ iff any bounded sequence contains a weak Cauchy subsequence).

$\textbf{WAP} \subset \textbf{HNS} \subset \textbf{Tame} \subset \textbf{DS}$

Definitions: A compact G-space X is said to be:

(a) WAP if *fG* is relatively weakly compact in $C(X) \forall f \in C(X)$.

- (b) HNS if every (closed) *G*-subspace of *X* is nonsensitive.
- (c) Tame (A. Köhler 1995) if fG contains no independent subsequence, in the sense of H. Rosenthal, $\forall f \in C(X)$.

Tameness of DS and Rosenthal representability

Def: A sequence $\{f_n : X \to \mathbb{R}\}_{n \in \mathbb{N}}$ of functions on a set X is independent if $\exists a < b$ s.t.

$$\bigcap_{n\in P} f_n^{-1}(-\infty,a) \cap \bigcap_{n\in M} f_n^{-1}(b,\infty) \neq \emptyset$$

for all finite disjoint subsets P, M of \mathbb{N} .

Fact (Glasner-Me Trans. AMS 12)

For a compact metric G-space X TFAE:

- 1. G-space X is Ros^r.
- 2. G-space X is tame.
- 3. Ellis semigroup E(X) is **Frechet** $(scl(A) = cl(A) \quad \forall A \subset E(X))$.

4. card(E(X)) $\leq 2^{\aleph_0}$.

Tameness of DS and Rosenthal representability

Def: A sequence $\{f_n : X \to \mathbb{R}\}_{n \in \mathbb{N}}$ of functions on a set X is independent if $\exists a < b$ s.t.

$$\bigcap_{n\in P} f_n^{-1}(-\infty,a) \cap \bigcap_{n\in M} f_n^{-1}(b,\infty) \neq \emptyset$$

for all finite disjoint subsets P, M of \mathbb{N} .

Fact (Glasner-Me Trans. AMS 12)

For a compact metric G-space X TFAE:

- 1. G-space X is $\mathbf{Ros}^{\mathbf{r}}$.
- 2. G-space X is tame.
- 3. Ellis semigroup E(X) is **Frechet** $(scl(A) = cl(A) \quad \forall A \subset E(X))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

4. $card(E(X)) \le 2^{\aleph_0}$.

Main results of this talk

For G := SL_n(ℝ) the conjugation G-space G_c is not Ref^r ∀n ≥ 2;
 is not Asp^r ∀n ≥ 4;

• $SL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$ is not $Asp^r \forall n \ge 3$.

• (Glasner-Me, Trans. AMS 22) $GL_n(\mathbb{R}) \curvearrowright \mathbb{R}^n$ is **Ros**^r.

• For every $n \ge 2$ there exists a topological group automorphism $\sigma \colon \mathbb{T}^n \to \mathbb{T}^n$ s.t.

the action $\mathbb{Z} \curvearrowright \mathbb{T}^n$ is not **Ros**^r;

for the group $G = \mathbb{T}^n \rtimes \mathbb{Z}$, its conjugation action is not **Ros**^r.

Main results of this talk

- For G := SL_n(ℝ) the conjugation G-space G_c is not Ref^r ∀n ≥ 2;
 is not Asp^r ∀n ≥ 4;
- $SL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$ is not $Asp^r \forall n \geq 3$.
- (Glasner-Me, Trans. AMS 22) $GL_n(\mathbb{R}) \curvearrowright \mathbb{R}^n$ is **Ros**^r.
- For every $n \ge 2$ there exists a topological group automorphism $\sigma \colon \mathbb{T}^n \to \mathbb{T}^n$ s.t.

the action $\mathbb{Z} \curvearrowright \mathbb{T}^n$ is not **Ros**^r;

for the group $G = \mathbb{T}^n \rtimes \mathbb{Z}$, its conjugation action is not **Ros**^r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Two corollaries for coset spaces

• Let $G := \mathbb{T}^2 \rtimes \mathbb{Z}$ be as above. Then for its cocompact discrete subgroup $H := \mathbb{Z}$, the compact two dimensional homogeneous *G*-space G/H is not **Ros**^r.

• There exists a closed subgroup H of $G := SL_2(\mathbb{R})$ such that the corresponding locally compact coset G-space G/H is not **Ref**^r.

Lemma

Let $G \curvearrowright X$ be a continuous action by group automorphisms and $P := X \rtimes_{\alpha} G$ be the corresponding topological semidirect product. Then $G \curvearrowright X$ naturally is embedded into the homogeneous action $P \curvearrowright P/G$.

Some questions

Question

• For which interesting topological groups G the conjugation action $G \curvearrowright G_c$ is **Ros**^r?

- When the action $G \curvearrowright X = (G_c \cup \{\infty\})$ on the 1-point compactification is tame ?
- What about $G = SL_2(\mathbb{R})$?

Question

• Which interesting homogeneous G-spaces G/H are Ros^r?

- What about the $SL_n(\mathbb{R})$ -spaces $SL_n(\mathbb{R})/H$?
- In particular, what if $H = SL_n(\mathbb{Z})$?

 $\{Reflexive\} \subset \{Asplund\} \subset \{Rosenthal\} \subset \{Banach sp.\}$ "small" Banach spaces

・ロト・日本・日本・日本・日本・日本

$$\underbrace{ \{ Reflexive \} \subset \{ Asplund \} \subset \{ Rosenthal \} }_{\text{"small" Banach spaces}} \subset \{ Banach sp. \} \\ \underbrace{ \{ Eberlein \} \subset \{ RN \} \subset \{ WRN \} }_{\text{"small" comp. spaces}} \subset \{ Compact sp. \} \\ \underbrace{ \{ WAP \} \subset \{ HNS \} \subset \{ Tame \} }_{\text{dynamically "small" systems}} \subset \{ Dyn. systems \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\underbrace{ \{ Reflexive \} \subset \{ Asplund \} \subset \{ Rosenthal \} }_{\text{"small" Banach spaces}} \subset \{ Banach sp. \} \\ \underbrace{ \{ Eberlein \} \subset \{ RN \} \subset \{ WRN \} }_{\text{"small" comp. spaces}} \subset \{ Compact sp. \} \\ \underbrace{ \{ WAP \} \subset \{ HNS \} \subset \{ Tame \} }_{\text{dynamically "small" systems}} \subset \{ Dyn. systems \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\underbrace{ \{ Reflexive \} \subset \{ Asplund \} \subset \{ Rosenthal \} }_{"small" Banach spaces} \subset \{ Banach sp. \}$$

$$\underbrace{ \{ Eberlein \} \subset \{ RN \} \subset \{ WRN \} }_{"small" comp. spaces} \subset \{ Compact sp. \}$$

$$\underbrace{ \{ WAP \} \subset \{ HNS \} \subset \{ Tame \} }_{dynamically "small" systems} \subset \{ Dyn. systems \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Remarks about tame actions

- Dynamical BFT (Bourgain-Fremlin Talagrand) dichotomy, Rosenthal's *I*₁-dichotomy [Köhler95], [GM06], [Kerr-Li07]
- 2. Many dynamical models in quasicrystals (tilings) are tame [Aujogue15], [Aujogue-Kellendonk15], ...
- 3. Closely related to NIP formulas in model theory [Shelah]
- 4. (Based on [Ellis 95], which in turn follows Furstenberg's results) Projective actions of $\operatorname{GL}_n(\mathbb{R})$ on the projective space \mathbb{P}^{n-1} are tame but not HNS (i.e., Ros^r but not Asp^r).
- 5. [GI-Me] Sturmian like systems $X \subset \{0,1\}^{\mathbb{Z}^k}$ are tame. (more generally) Circularly (e.g., linearly) ordered DS
- 6. Every continuous G-action on a dendron is tame
- 7. Bernoulli cascade $\mathbb{Z} \curvearrowright \{0,1\}^{\mathbb{Z}}$ is not tame (is not **Ros**^r)

Some ingredients and details. WAP and reflexivity

Ref = reflexive $V \in Ban$ is reflexive (*i*: $V \hookrightarrow V^{**}$ is onto) iff for every bounded subsets $B \subset V$, $K \subset V^*$ the pairing $B \times K \to \mathbb{R}$ has Grothendieck's DLP (for every sequence $\{f_n\} \subset B$ and every sequence $\{x_m\} \subset K$ the limits

 $\lim_{n}\lim_{m}f_{n}(x_{m}) \text{ and } \lim_{m}\lim_{n}f_{n}(x_{m})$

are equal whenever they both exist)

Lemma

Let X be a compact G-space and $f \in C(X)$. TFAE

- $1. \hspace{0.1in} f \in \operatorname{WAP}(X)$ (fG is relatively weakly compact in C(X))
- 2. $fG \times X \rightarrow \mathbb{R}$ has DLP;
- 3. *fG* is reflexively representable.

Thm: [Me 03] A compact metric G-space X is **Ref^r** iff X is WAP.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ○ ● ● ● ●

Some ingredients and details. WAP and reflexivity

Ref = reflexive $V \in Ban$ is reflexive (*i*: $V \hookrightarrow V^{**}$ is onto) iff for every bounded subsets $B \subset V$, $K \subset V^*$ the pairing $B \times K \to \mathbb{R}$ has Grothendieck's DLP (for every sequence $\{f_n\} \subset B$ and every sequence $\{x_m\} \subset K$ the limits

 $\lim_{n}\lim_{m}f_{n}(x_{m}) \text{ and } \lim_{m}\lim_{n}f_{n}(x_{m})$

are equal whenever they both exist)

Lemma

Let X be a compact G-space and $f \in C(X)$. TFAE:

- 1. $f \in WAP(X)$ (fG is relatively weakly compact in C(X));
- 2. $fG \times X \rightarrow \mathbb{R}$ has DLP;
- 3. *fG* is reflexively representable.

Thm: [Me 03] A compact metric G-space X is \mathbf{Ref}^r iff X is WAP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$\mathsf{SL}_n(\mathbb{R}) \notin \mathbf{Ref}_{conj}^r \ n \geq 1$

Proposition

Let $G := SL_n(\mathbb{R})$, n > 1. Then the conjugation G-space G_c is not \mathbf{Ref}^r .

Sketch

We claim that the 1-point *G*-compactification $G_c \cup \{\infty\}$ is not WAP. It is enough to show that for every compact nbd U of $e \in G$ and for every continuous bounded function $f: G \to \mathbb{R}$ with f(e) = 1 and f(x) = 0 for every $x \notin U$, we have $f \notin WAP(G_c)$. By **Grothendieck's double limit criterion** (for *G*-spaces), it suffices to show that there exist two sequences $g_n \in G$ and $x_m \in G_c$ such that the double sequence $f(g_n x_m g_n^{-1})$ $(n, m \in \mathbb{N})$ has distinct double limits.

$$g_n := \begin{pmatrix} n & 0 \\ 0 & n^{-1} \end{pmatrix}, \quad x_m := \begin{pmatrix} 1 & m^{-1} \\ 0 & 1 \end{pmatrix},$$
$$g_n x_m g_n^{-1} = \begin{pmatrix} 1 & \frac{n^2}{m} \\ 0 & 1 \end{pmatrix}$$
$$\lim_m \lim_n (g_n x_m g_n^{-1}) = \infty \quad \neq \quad \lim_n \lim_m (g_n x_m g_n^{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$\lim_m \lim_n f(g_n x_m g_n^{-1}) = 0 \quad \neq \quad 1 = \lim_n \lim_m f(g_n x_m g_n^{-1}).$$

$\mathsf{SL}_n(\mathbb{R}) \notin \mathbf{Ref}_{conj}^r \ n \geq 1$

Proposition

Let $G := SL_n(\mathbb{R})$, n > 1. Then the conjugation G-space G_c is not \mathbf{Ref}^r .

Sketch

We claim that the 1-point *G*-compactification $G_c \cup \{\infty\}$ is not WAP. It is enough to show that for every compact nbd U of $e \in G$ and for every continuous bounded function $f: G \to \mathbb{R}$ with f(e) = 1 and f(x) = 0 for every $x \notin U$, we have $f \notin WAP(G_c)$. By **Grothendieck's double limit criterion** (for *G*-spaces), it suffices to show that there exist two sequences $g_n \in G$ and $x_m \in G_c$ such that the double sequence $f(g_n x_m g_n^{-1})$ $(n, m \in \mathbb{N})$ has distinct double limits.

$$g_n := \begin{pmatrix} n & 0 \\ 0 & n^{-1} \end{pmatrix}, \quad x_m := \begin{pmatrix} 1 & m^{-1} \\ 0 & 1 \end{pmatrix}.$$
$$g_n x_m g_n^{-1} = \begin{pmatrix} 1 & \frac{n^2}{m} \\ 0 & 1 \end{pmatrix}$$
$$\lim_m \lim_n (g_n x_m g_n^{-1}) = \infty \quad \neq \quad \lim_n \lim_m (g_n x_m g_n^{-1}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
$$\lim_m \lim_n f(g_n x_m g_n^{-1}) = 0 \quad \neq \quad 1 = \lim_n \lim_m f(g_n x_m g_n^{-1}).$$

Proposition

(This idea was suggested by V. Pestov) Let G be a metrizable separable topological group which is \mathbf{Ref}_{conj}^r . Then G is SIN (i.e., left uniformity = right uniformity)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Asplund spaces and HNS dynamical systems

• $V \in Asp$ iff dual of every separable subspace of V is separable. Equiv.: (Namioka-Phelps, Jane-Rogers) V_{B^*} is $(w^*, norm)$ -fragmented (\forall nonempty $A \subset V_{B^*}$ and every $\varepsilon > 0 \exists$ weak-star open $O \subset V^*$ s.t. $O \cap A$ is nonempty and ε -small).

• Recall the classical concept of non-sensitivity. An action of G on (X, d) is said to be *non-sensitive* if for every $\varepsilon > 0$ there exists a nonempty open subset O in X such that gO is ε -small for every $g \in G$.

• *hereditarily non-sensitive* (HNS) means that every (closed) *G*-subspace *Y* of *X* is non-sensitive.

Facts:

(GI-Me 06) A compact metric G-space X is Asp^r iff X is HNS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(GI-Me-Uspenskij 08) iff E(X) is metrizable.

Theorem: $SL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$ is not Asplund representable $\forall n \ge 3$. The conjugation action of $SL_n(\mathbb{R})$ is not **Asp**^r $\forall n \ge 4$.

Sketch:

• (S.G. Dani and S. Raghavan, Israel J. Math. 80)

 $SL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$ is weakly mixing for every $n \ge 3$.

• (Glasner-Me 06) Let (X, d) be a weakly mixing *G*-space which is nonsensitive with respect to *d*. Then *X* is trivial.

• Now Theorem 17 implies that this action is not Asp^r.

• $\mathbb{R}^n \rtimes \mathrm{SL}_n(\mathbb{Z}) \hookrightarrow \mathrm{SL}_{n+1}(\mathbb{R}), \quad M \mapsto \begin{pmatrix} M & v \\ 0 & 1 \end{pmatrix}$

Theorem: $SL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$ is not Asplund representable $\forall n \ge 3$. The conjugation action of $SL_n(\mathbb{R})$ is not $Asp^r \quad \forall n \ge 4$.

Sketch:

• (S.G. Dani and S. Raghavan, Israel J. Math. 80)

 $SL_n(\mathbb{Z}) \curvearrowright \mathbb{R}^n$ is weakly mixing for every $n \ge 3$.

• (Glasner-Me 06) Let (X, d) be a weakly mixing *G*-space which is nonsensitive with respect to *d*. Then *X* is trivial.

• Now Theorem 17 implies that this action is not Asp^r.

•
$$\mathbb{R}^n \rtimes \mathrm{SL}_n(\mathbb{Z}) \hookrightarrow \mathrm{SL}_{n+1}(\mathbb{R}), \quad M \mapsto \begin{pmatrix} M & v \\ 0 & 1 \end{pmatrix}$$

Rosenthal representability, a counterexample

Theorem

For every $n \ge 2$ there exists a topological group automorphism $\sigma \colon \mathbb{T}^n \to \mathbb{T}^n$ s.t. the action of the cyclic group \mathbb{Z} on \mathbb{T}^n by the iterations of σ is not **Ros**^r.

Proof.

For every hyperbolic toral automorphism, the corresponding cascade has positive entropy. Hence, it cannot be tame by a result of [Kerr-Li 07]. Therefore, such a cascade is not **Ros**^r by the representation thm [Glasner-Me 12].

Corollary

For $G = \mathbb{T}^2 \rtimes \mathbb{Z}$ its conjugation action is not **Ros**^r.

Rosenthal representability, a counterexample

Theorem

For every $n \ge 2$ there exists a topological group automorphism $\sigma: \mathbb{T}^n \to \mathbb{T}^n$ s.t. the action of the cyclic group \mathbb{Z} on \mathbb{T}^n by the iterations of σ is not **Ros**^r.

Proof.

For every hyperbolic toral automorphism, the corresponding cascade has positive entropy. Hence, it cannot be tame by a result of [Kerr-Li 07]. Therefore, such a cascade is not **Ros**^r by the representation thm [Glasner-Me 12].

Corollary

For $G = \mathbb{T}^2
times \mathbb{Z}$ its conjugation action is not \mathbf{Ros}^r .

Rosenthal representability, a counterexample

Theorem

For every $n \ge 2$ there exists a topological group automorphism $\sigma: \mathbb{T}^n \to \mathbb{T}^n$ s.t. the action of the cyclic group \mathbb{Z} on \mathbb{T}^n by the iterations of σ is not **Ros**^r.

Proof.

For every hyperbolic toral automorphism, the corresponding cascade has positive entropy. Hence, it cannot be tame by a result of [Kerr-Li 07]. Therefore, such a cascade is not **Ros**^r by the representation thm [Glasner-Me 12].

Corollary

For $G = \mathbb{T}^2 \rtimes \mathbb{Z}$ its conjugation action is not \mathbf{Ros}^r .

Thank you!