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Iterated Function System and its attractors

Definition

An Iterated Function System (IFS) is a pair (X ,F) where
X is a Hausdorff space
F is a finite family of continuous maps X → X .

Definition

The Barnsley-Hutchinson operator associated with the IFS
(X ,F):

F : K(X )→ K(X ) F(S) =
⋃
f ∈F

f (S)

K(X ) - the hyperspace of nonempty compact subsets of X with
the Vietoris topology.
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Strict and pointwise attractor

The set A ∈ K(X )

is a

strict attractor if there is some open nbh U of A s.t.

for every S ∈ K(U),

lim
n→∞

Fn(S) = A

pointwise attractor if A ⊂ int Bp(A,F), where

Bp(A,F) = {x ∈ X ;

lim
n→∞

Fn(x) = A

}

is called a pointwise basin of A
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Implications

A is a strict attractor ⇒ A is a pointwise attractor

A is a strict attractor ⇐ A is a pointwise attractor and
F contains nonexpansive maps on the metric space X

Michael F. Barnsley, Krzysztof Leśniak, Miroslav Rypka,
Chaos game for IFSs on topological spaces
Journal of Mathematical Analysis and Applications, 435(2),
2016, 1458-1466,
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Kwietniak’s counterexample

R̂ = R ∪ {∞}

ϕ : R̂→ R̂

ϕ(x) = x + 1

ϕ(∞) =∞

A = {∞}

Bp(A, {ϕ}) = R̂
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Finite union of singletons and intervals in R and R̂

ϕ : R̂→ R̂

ϕ(x) =


... for x ∈ [∞, 0]
√
x for x ∈ [0, 1]

... for x ∈ [1,∞].

A = {∞, 0, 1}

{ϕ, const∞, const0, const1}

A′ = {0} ∪ I

I - retract of R (retraction r),
pointwise attr. of w1, . . . ,wn

{ϕ, const0,w1 ◦ r , . . . ,wn ◦ r}
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A local repellor

Definition

We say that the point a ∈ Fix(ϕ) is a local repellor of continuous
map ϕ : X → X on a Hausdorff space X if it has a sequence
(xn)n∈N in X converges to a such that x0 /∈ Fix(ϕ) and
ϕ(xn+1) = xn for every n ∈ N.

Lemma (LR)

ϕ has a local repellor

⇓

Fix(ϕ) is not a strict attractor for any F contains ϕ.
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An attracting map

Definition

A continuous map ϕ : X → X on a Hausdorff space X is called an
attracting map when
for every x ∈ X there exists limn→∞ ϕ

n(x) ∈ Fix(ϕ).

Lemma (A)

ϕ is an attracting map
Fix(ϕ) is a pointwise attractor for IFS (X ,W ) s.t imW ⊂ Fix(ϕ)

⇓

Fix(ϕ) is a pointwise attractor for (X ,W ∪ {ϕ}).
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An ALR map

Corollary ⇐ (A) & (LR)

ϕ is an attracting map with local repellor
Fix(ϕ) is a pointwise attractor for IFS (X ,W ) s.t imW ⊂ Fix(ϕ)

⇓

Fix(ϕ) is a pointwise nonstrict attractor for (X ,W ∪ {ϕ}).

Magdalena Nowak Pointwise attractors which are not strict



An ALR map

Corollary ⇐ (A) & (LR)

ϕ is an attracting map with local repellor
Fix(ϕ) is a pointwise attractor for IFS (X ,W ) s.t imW ⊂ Fix(ϕ)

⇓

Fix(ϕ) is a pointwise nonstrict attractor for (X ,W ∪ {ϕ}).

Magdalena Nowak Pointwise attractors which are not strict



Finite sum of retracts and pointwise attractors

Theorem

ϕ is an attracting map with local repellor
Fix(ϕ) =

⋃n
k=1 Ak where

Ak - retract of X (retraction rk), pointwise attractor of (X ,Wk)

⇓

Fix(ϕ) is a pointwise nonstrict attractor for (X ,F) where

F =
n⋃

k=1

{w ◦ rk}w∈Wk
∪ {ϕ}.

Examples: A is a finite union of

(at least two) singletons or closed intervals in R̂ (or R)

(at least two) singletons, curves or sets homeo. with [0, 1]2 in
Ĉ (or C)
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Examples

A is a finite union of at least two singletons, curves or sets homeo.
with [0, 1]2 in C
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ALR maps on the unit ball

For a given z ∈ S1 define z : B(0, 1)→ S1

z(x) =

{
x for x ∈ S1

e i ·arg(x−z) for x /∈ S1

ϕ(x) =

z for x = z

| x−z
z(x)−z |(x − z) + z for x 6= z

Magdalena Nowak Pointwise attractors which are not strict



ALR maps

Lemma

For an ALR map ϕ on the topological space X and for
homeomorphism h : X → Y , the composition h ◦ ϕ ◦ h−1 is also an
ALR map on Y .
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Classical fractals

Example

The Cantor set, Sierpinski triagle and Sierpiński carpet can be a
pointwise attractor and no strict attractor.
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Thank you

Magdalena Nowak, Pointwise attractors which are not strict,
preprint on arXiv: http://arxiv.org/abs/2206.03244

Slava Ukraini!
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