Pointwise attractors which are not strict

Magdalena Nowak

Jan Kochanowski University in Kielce (POLAND)

Vienna 2022

Magdalena Nowak Pointwise attractors which are not strict

(日本) (日本) (日本)

Definition

An **Iterated Function System (IFS)** is a pair (X, \mathcal{F}) where

X is a Hausdorff space

 ${\mathcal F}$ is a finite family of continuous maps $X \to X$.

Definition

The **Barnsley-Hutchinson operator** associated with the IFS (X, \mathcal{F}) :

$$\mathcal{F} \colon \mathcal{K}(X) o \mathcal{K}(X) \qquad \mathcal{F}(S) = \bigcup_{f \in \mathcal{F}} f(S)$$

 $\mathcal{K}(X)$ - the hyperspace of nonempty compact subsets of X with the Vietoris topology.

・ロト ・ 同ト ・ ヨト ・ ヨト

Strict and pointwise attractor

The set $A \in \mathcal{K}(X)$

 $\lim_{n\to\infty}\mathcal{F}^n(S)=A$

$$\lim_{n\to\infty}\mathcal{F}^n(x)=A$$

(日) (部) (注) (注)

Magdalena Nowak Pointwise attractors which are not strict

The set $A \in \mathcal{K}(X)$ is a

• strict attractor if there is some open nbh U of A s.t.

for every
$$S \in \mathcal{K}(U)$$
, $\lim_{n \to \infty} \mathcal{F}^n(S) = A$

$$\lim_{n\to\infty}\mathcal{F}^n(x)=A$$

(日) (日)

The set $A \in \mathcal{K}(X)$ is a

• strict attractor if there is some open nbh U of A s.t.

for every
$$S \in \mathcal{K}(U)$$
, $\lim_{n \to \infty} \mathcal{F}^n(S) = A$

• pointwise attractor if $A \subset \text{int } B_p(A, \mathcal{F})$, where

$$B_p(A,\mathcal{F}) = \{x \in X; \lim_{n \to \infty} \mathcal{F}^n(x) = A\}$$

is called a pointwise basin of A

A is a strict attractor \Rightarrow A is a pointwise attractor

ヘロト ヘ団ト ヘヨト ヘヨト

æ

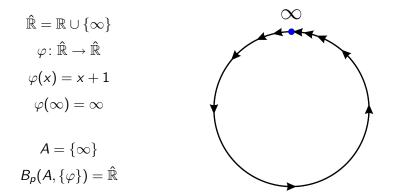
- A is a strict attractor \Rightarrow A is a pointwise attractor
- A is a strict attractor \Leftrightarrow A is a pointwise attractor and \mathcal{F} contains nonexpansive maps on the metric space X

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

- A is a strict attractor \Rightarrow A is a pointwise attractor
- A is a strict attractor \Leftarrow A is a pointwise attractor and \mathcal{F} contains nonexpansive maps on the metric space X
- Michael F. Barnsley, Krzysztof Leśniak, Miroslav Rypka, Chaos game for IFSs on topological spaces Journal of Mathematical Analysis and Applications, 435(2), 2016, 1458-1466,

・ 同 ト ・ ヨ ト ・ ヨ ト

Kwietniak's counterexample



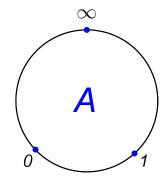
Magdalena Nowak Pointwise attractors which are not strict

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite union of singletons and intervals in ${\mathbb R}$ and $\hat{{\mathbb R}}$

$$\varphi \colon \hat{\mathbb{R}} \to \hat{\mathbb{R}}$$
$$\varphi(x) = \begin{cases} \dots & \text{for } x \in [\infty, 0] \\ \sqrt{x} & \text{for } x \in [0, 1] \\ \dots & \text{for } x \in [1, \infty]. \end{cases}$$
$$A = \{\infty, 0, 1\}$$

 $\{\varphi, \textit{const}_{\infty}, \textit{const}_{0}, \textit{const}_{1}\}$



伺下 イヨト イヨト

Finite union of singletons and intervals in ${\mathbb R}$ and $\hat{{\mathbb R}}$

$$\varphi \colon \hat{\mathbb{R}} \to \hat{\mathbb{R}}$$

$$\varphi(x) = \begin{cases} \dots & \text{for } x \in [\infty, 0] \\ \sqrt{x} & \text{for } x \in [0, 1] \\ \dots & \text{for } x \in [1, \infty]. \end{cases}$$

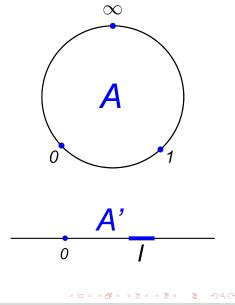
$$A = \{\infty, 0, 1\}$$

$$\{\varphi, const_{\infty}, const_{0}, const_{1}\}$$

$$A' = \{0\} \cup I$$

$$I \text{ - retract of } \mathbb{R} \text{ (retraction } r),$$
pointwise attr. of w_{1}, \dots, w_{n}

$$\{\varphi, const_0, w_1 \circ r, \ldots, w_n \circ r\}$$



Definition

We say that the point $a \in Fix(\varphi)$ is a **local repellor** of continuous map $\varphi \colon X \to X$ on a Hausdorff space X if it has a sequence $(x_n)_{n \in \mathbb{N}}$ in X converges to a such that $x_0 \notin Fix(\varphi)$ and $\varphi(x_{n+1}) = x_n$ for every $n \in \mathbb{N}$.

Definition

We say that the point $a \in Fix(\varphi)$ is a **local repellor** of continuous map $\varphi \colon X \to X$ on a Hausdorff space X if it has a sequence $(x_n)_{n \in \mathbb{N}}$ in X converges to a such that $x_0 \notin Fix(\varphi)$ and $\varphi(x_{n+1}) = x_n$ for every $n \in \mathbb{N}$.

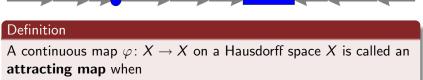
Lemma (LR)

 φ has a local repellor

 $Fix(\varphi)$ is not a strict attractor for any \mathcal{F} contains φ .

 \downarrow

ヘロト 人間ト イヨト イヨト



for every $x \in X$ there exists $\lim_{n\to\infty} \varphi^n(x) \in Fix(\varphi)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A continuous map $\varphi \colon X \to X$ on a Hausdorff space X is called an **attracting map** when for every $x \in X$ there exists $\lim_{n\to\infty} \varphi^n(x) \in Fix(\varphi)$.

Lemma (A) φ is an attracting map $Fix(\varphi)$ is a pointwise attractor for IFS (X, W) s.t im $W \subset Fix(\varphi)$ \downarrow $Fix(\varphi)$ is a pointwise attractor for $(X, W \cup \{\varphi\})$.

・ロト ・ 同ト ・ ヨト ・ ヨト

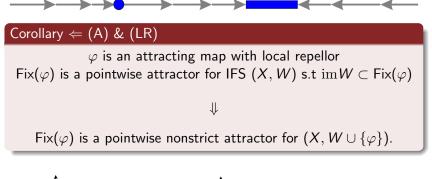
Corollary \leftarrow (A) & (LR)

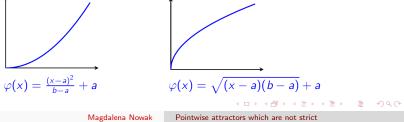
 φ is an attracting map with local repellor Fix(φ) is a pointwise attractor for IFS (X, W) s.t im $W \subset Fix(\varphi)$

\Downarrow

 $Fix(\varphi)$ is a pointwise nonstrict attractor for $(X, W \cup \{\varphi\})$.

・ロト ・ 一日 ト ・ 日 ト ・





Finite sum of retracts and pointwise attractors

Theorem

F

$$\varphi \text{ is an attracting map with local repellor} Fix(\varphi) = \bigcup_{k=1}^{n} A_k \text{ where} A_k - retract of X (retraction r_k), pointwise attractor of (X, W_k)
$$\downarrow$$

ix(φ) is a pointwise nonstrict attractor for (X, \mathcal{F}) where
$$\mathcal{F} = \bigcup_{k=1}^{n} \{w \circ r_k\}_{w \in W_k} \cup \{\varphi\}.$$$$

回 ト イヨ ト イヨト

э

Finite sum of retracts and pointwise attractors

Theorem

Α

$$\varphi$$
 is an attracting map with local repellor
Fix $(\varphi) = \bigcup_{k=1}^{n} A_k$ where
 $_k$ - retract of X (retraction r_k), pointwise attractor of (X, W_k)

1

 $\mathsf{Fix}(arphi)$ is a pointwise nonstrict attractor for (X,\mathcal{F}) where

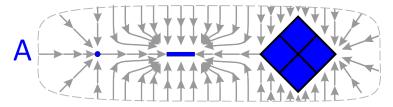
$$\mathcal{F} = \bigcup_{k=1}^n \{ w \circ r_k \}_{w \in W_k} \cup \{ \varphi \}.$$

Examples: A is a finite union of

- (at least two) singletons or closed intervals in $\hat{\mathbb{R}}$ (or $\mathbb{R})$
- (at least two) singletons, curves or sets homeo. with $[0,1]^2$ in $\hat{\mathbb{C}}$ (or $\mathbb{C})$

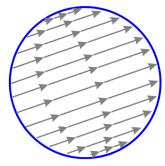
・ 戸 ト ・ ヨ ト ・ ヨ ト

A is a finite union of at least two singletons, curves or sets homeo. with $[0,1]^2$ in $\mathbb C$



伺下 イヨト イヨト

ALR maps on the unit ball



For a given $z \in S^1$ define $z \colon B(0,1) \to S^1$ $z(x) = \begin{cases} x & \text{for } x \in S^1 \\ e^{i \cdot \arg(x-z)} & \text{for } x \notin S^1 \end{cases}$ $\varphi(x) = \begin{cases} z & \text{for } x = z \\ |\frac{x-z}{z(x)-z}|(x-z)+z & \text{for } x \neq z \end{cases}$

z(x)

 $\varphi(x)$

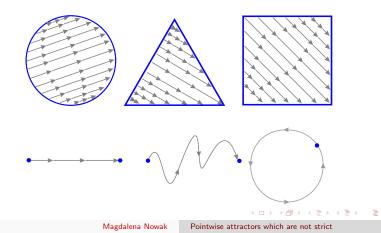
Magdalena Nowak

Pointwise attractors which are not strict

ALR maps

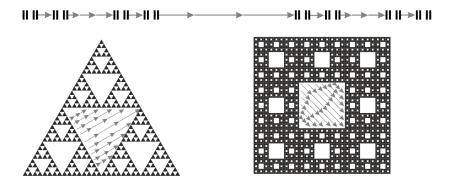
Lemma

For an ALR map φ on the topological space X and for homeomorphism $h: X \to Y$, the composition $h \circ \varphi \circ h^{-1}$ is also an ALR map on Y.



Example

The Cantor set, Sierpinski triagle and Sierpiński carpet can be a pointwise attractor and no strict attractor.



Magdalena Nowak

Pointwise attractors which are not strict

・ロト ・ 同ト ・ ヨト ・ ヨト

Thank you

Magdalena Nowak, *Pointwise attractors which are not strict*, preprint on arXiv: http://arxiv.org/abs/2206.03244

イロト イボト イヨト イヨト

Thank you

Magdalena Nowak, *Pointwise attractors which are not strict*, preprint on arXiv: http://arxiv.org/abs/2206.03244

Slava Ukraini!

・ 同 ト ・ ヨ ト ・ ヨ ト