Typical Trees: An $Out(F_r)$ Excursion

Catherine PFAFF (with D. Gagnier I. Kapovich, J. Maher, S. Taylor)

Queen's University at Kingston, Ontario

Vienna, 36th Summer Topology Conference, July 19, 2022

I. Main Characters (Propaganda): $CV_r \& Out(F_r)$

Main Character: Outer Automorphism Group of the Free Group $Out(F_r)$

 $F_r = \langle x_1, \ldots, x_r \rangle$ rank *r* free group

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main Character: Outer Automorphism Group of the Free Group $Out(F_r)$

 $F_r = \langle x_1, \ldots, x_r \rangle$ rank *r* free group

Definition

 $Out(F_r) = \frac{Aut(F_r)}{Inn(F_r) = \{\varphi_a \mid \varphi_a(b) = aba^{-1} \forall a, b \in F_r\}}$

< □ > < □ > < □ > < □ > < □ > < □ >

Main Character: Outer Automorphism Group of the Free Group $Out(F_r)$

 $F_r = \langle x_1, \ldots, x_r \rangle$ rank *r* free group

Definition

$$Out(F_r) = \frac{Aut(F_r)}{Inn(F_r) = \{\varphi_a \mid \varphi_a(b) = aba^{-1} \forall a, b \in F_r\}}$$

To define $\Phi \in Aut(F_r)$, just need to describe images of generators:

$$\Phi = \begin{cases} x_1 \mapsto x_1 x_3^{-1} \\ x_2 \mapsto x_3 \\ x_3 \mapsto x_2 \end{cases}$$

Catherine PFAFF (Queen's)

Typical Trees: An $Out(F_r)$ Excursion

SUMTOPO 2022 (Vienna)

3/26

< □ > < □ > < □ > < □ > < □ > < □ >

For each $i \neq j$, ordering, etc, have generator:

$$\varphi(x_i) = \begin{cases} x_i x_j & \text{for } i = k \\ x_i & \text{for } i \neq k \end{cases}$$

3

< □ > < @ >

For each $i \neq j$, ordering, etc, have generator:

$$\varphi(x_i) = \begin{cases} x_i x_j^{-1} & \text{for } i = k \\ x_i & \text{for } i \neq k \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

For each $i \neq j$, ordering, etc, have generator:

$$\varphi(x_i) = \begin{cases} x_i x_j^{-1} \pmod{\text{order swapped}} & \text{for } i = k \\ x_i & \text{for } i \neq k \end{cases}$$

For each $i \neq j$, ordering, etc, have generator:

$$\varphi(x_i) = \begin{cases} x_i x_j^{-1} \pmod{\text{order swapped}} & \text{for } i = k \\ x_i & \text{for } i \neq k \end{cases}$$

So, for φ defined by $x_2 \mapsto x_2 x_3^{-1} (x_2^{-1} \mapsto x_3 x_2^{-1})$

< □ > < 凸

For each $i \neq j$, ordering, etc, have generator:

$$\varphi(x_i) = \begin{cases} x_i x_j^{-1} \pmod{\text{order swapped}} & \text{for } i = k \\ x_i & \text{for } i \neq k \end{cases}$$

So, for φ defined by $x_2 \mapsto x_2 x_3^{-1} (x_2^{-1} \mapsto x_3 x_2^{-1})$

$$\varphi(x_3^{-1}x_2x_1x_2^{-1}) = x_3^{-1}x_2x_3^{-1}x_1x_3x_2^{-1}$$

< □ > < 凸

Viewing $Out(F_r)$: Homotopy equivalences of graphs Γ with $\pi_1(\Gamma) \cong F_r$

Example:

Typical Trees: An $Out(F_r)$ Excursion

< □ > < □ > < □ > < □ > < □ > < □ >

3

Viewing $Out(F_r)$: Homotopy equivalences of graphs Γ with $\pi_1(\Gamma) \cong F_r$

Example:

$$x_{1} \rightarrow x_{1} x_{3}^{-1}$$

$$x_{2} \rightarrow x_{3}$$

$$x_{3} \rightarrow x_{2}$$

$$x_{1} \rightarrow x_{3}$$

$$x_{2} \rightarrow x_{3}$$

$$x_{3} \rightarrow x_{2}$$

$$x_{1} \rightarrow x_{3}$$

(Images of F_r generators $\leftrightarrow \rightarrow$ Images of corresponding loops)

イロト 不得 トイヨト イヨト 二日

Viewing $Out(F_r)$: $Out(F_r) \cong Isom(CV_r)$

 $Out(F_r)$ is the isometry group for a deformation space of metric graphs, Culler-Vogtmann Outer Space CV_r

II. Main Questions & Inadequate Knowledge Summary

Underlying Questions

Handel-Mosher Question

$g_0 g_1 \dots g_n \dots$

Stop, composing yields automorphism What properties does it typically have? What if compose more generators?

Bestvina Question

Namazi-Pettet-Reynolds says typically converges to a ∂CV_r pt (So an " \mathbb{R} -tree") Hitting measure says what expect

Properties?

Known of generic $\varphi \in \text{Out}(F_r)$:

э

< □ > < @ >

Known of generic $\varphi \in \text{Out}(F_r)$:

• [Rivin, '08] φ is fully irreducible:

э

Known of generic $\varphi \in \text{Out}(F_r)$:

• [Rivin, '08] φ is **fully irreducible**: No positive power φ^k fixes the conjugacy class of a nontrivial proper free factor of F_r

Known of generic $\varphi \in \text{Out}(F_r)$:

- [Rivin, '08] φ is **fully irreducible**: No positive power φ^k fixes the conjugacy class of a nontrivial proper free factor of F_r
- [Rivin, '10] φ is **NOT induced by** a surface homeomorphism:

III. Asymptotic Conjugacy Class Invariant T^{arphi}_+

4 E b

э

The Backstory

$GL_2(Z) \cong MCG(\bigcirc) \cong Out(F_2)$

2x2 integer matrices of determinant +/- 1

 $\operatorname{Aut}(F_2)$ Inn (F_2)

Typical Trees: An $Out(F_r)$ Excursion

< □ > < □ > < □ > < □ > < □ > < □ >

э

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

Some important "conjugacy class" invariants:

 $GL(2,\mathbb{Z})$ | $MCG(\Sigma_{1,1})$ | $Out(F_2)$

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

Some important "conjugacy class" invariants:

 $\frac{GL(2,\mathbb{Z})}{\bullet \ \text{Eigenvector}} \quad \left| \begin{array}{c} MCG(\Sigma_{1,1}) \\ \hline \bullet \ \text{Lamination}^{*} \end{array} \right| \begin{array}{c} Out(F_{2}) \\ \hline \bullet \ \text{Lamination} \end{array}$

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

Some important "conjugacy class" invariants:

 $\frac{GL(2,\mathbb{Z})}{\bullet \text{ Eigenvector}} \quad \left| \begin{array}{c} MCG(\Sigma_{1,1}) \\ \hline \bullet \text{ Lamination}^* \end{array} \right| \begin{array}{c} Out(F_2) \\ \hline \bullet \text{ Lamination} \end{array}$

Indices / IWG

• Indices / IWG

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

Some important "conjugacy class" invariants:

 $GL(2,\mathbb{Z})$ $MCG(\Sigma_{1,1})$

- Eigenvector
- Dominant eigenval
- Lamination*
- Indices / IWG
- Stretch factor

 $Out(F_2)$

- Lamination
- Indices / IWG
- Stretch factor

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

Some important "conjugacy class" invariants:

$GL(2,\mathbb{Z})$	$MCG(\Sigma_{1,1})$	$Out(F_2)$
Eigenvector	Lamination*	Lamination
• Dominant eigenval	 Stretch factor Attracting tree T⁺ 	 Matter / WG Stretch factor Attracting tree T⁺
	, which does not get φ	, the document of φ

For φ a generic surface homeo, repeated application of φ to any curve limits on the same object...

Some important "conjugacy class" invariants:

$GL(2,\mathbb{Z})$	$MCG(\Sigma_{1,1})$	$Out(F_2)$	
• Eigenvector	 Lamination* Indices / IWG 	Lamination Indices / IWG	
• Dominant eigenval	• Stretch factor • Attracting tree T_{φ}^+	• Stretch factor • Attracting tree T_{φ}^+	
Connected to "measu	red foliations"	(日)、<問)、<目)、<目)、<	৩৫৫
Catherine PFAFF (Queen's)	Typical Trees: An $Out(F_r)$ E	SUMTOPO 2022 (Vienna)	14 / 26

To understand these invariants in our circumstance, we need to understand train track representatives...

э

Train Track Representatives (Bestvina-Handel)

Recall: $\varphi \in Out(F_r)$ always have topological representatives:

• But iteration may lead to cancellation on edge interiors

Typical Trees: An $Out(F_r)$ Excursion

Train Track Representatives (Bestvina-Handel)

Nice $\varphi \in Out(F_r)$ have train track representatives $g \colon \Gamma \xrightarrow{h.e.} \Gamma$

No cancellation on edge interiors even after iteration!

Catherine PFAFF (Queen's)

Typical Trees: An $Out(F_r)$ Excursion

Asymptotic Dynamical Invariant of Interest: Attracting Tree T^{φ}_+

Asymptotic Dynamical Invariant of Interest: Attracting Tree T^{φ}_+

• Can assign edge-lengths so that g stretches all by stretch factor $\lambda(\varphi)$

Asymptotic Dynamical Invariant of Interest: Attracting Tree ${\cal T}^{\varphi}_+$

• Can assign edge-lengths so that g stretches all by stretch factor $\lambda(\varphi)$ • T^{φ}_{+} is quotient of $\widetilde{\Gamma}$ with metric

$$d_{\infty}(x,y) = \lim_{k \to \infty} \left(\frac{d(\tilde{g}^{k}(x), \tilde{g}^{k}(y))}{\lambda^{k}} \right)$$

IV. Answers

Typical Trees: An $Out(F_r)$ Excursion

SUMTOPO 2022 (Vienna)

<ロト <回 > < 回 > < 回 >

19 / 26

2

Recall Underlying Questions

Handel-Mosher Question

$g_0 g_1 \dots g_n \dots$

Stop, composing yields automorphism What properties does it typically have? What if compose more generators?

Bestvina Question

(So an "ℝ-tree")

Hitting measure says what expect Properties?

 T^{φ}_{\perp} is always an \mathbb{R} -tree, i.e. 0-hyperbolic space

 \mathbb{R} -trees can be:

Simplicial trees

2

3

4

э

 T^{φ}_+ is always an \mathbb{R} -tree, i.e. 0-hyperbolic space

 \mathbb{R} -trees can be:

• Simplicial trees (not for T^{φ}_{+} f.i. even)

- E

 T^{φ}_+ is always an \mathbb{R} -tree, i.e. 0-hyperbolic space

 \mathbb{R} -trees can be:

- Simplicial trees (not for T^{φ}_+ f.i. even)
- **@ Geometric**: dual to measured foliation on finite simplicial 2-complex

 T^{φ}_+ is always an \mathbb{R} -tree, i.e. 0-hyperbolic space

 \mathbb{R} -trees can be:

• Simplicial trees (not for T^{φ}_+ f.i. even)

@ Geometric: dual to measured foliation on finite simplicial 2-complex

- f.i.'s mimic pseudo-Anosov homeos
- ▶ pseudo-Anosovs \rightsquigarrow foliations \rightsquigarrow geometric \mathbb{R} -trees
- For T^φ₊ generic?

 T^{φ}_+ is always an \mathbb{R} -tree, i.e. 0-hyperbolic space

 \mathbb{R} -trees can be:

• Simplicial trees (not for T^{φ}_+ f.i. even)

@ Geometric: dual to measured foliation on finite simplicial 2-complex

- f.i.'s mimic pseudo-Anosov homeos
- ▶ pseudo-Anosovs \rightsquigarrow foliations \rightsquigarrow geometric \mathbb{R} -trees
- For T^φ₊ generic?

Interpote the second second

 T^{φ}_+ is always an \mathbb{R} -tree, i.e. 0-hyperbolic space

 \mathbb{R} -trees can be:

• Simplicial trees (not for T^{φ}_+ f.i. even)

@ Geometric: dual to measured foliation on finite simplicial 2-complex

- f.i.'s mimic pseudo-Anosov homeos
- ▶ pseudo-Anosovs \rightsquigarrow foliations \rightsquigarrow geometric \mathbb{R} -trees
- For T^φ₊ generic?

"Hairy"

• Have k-pronged branch points p: $T \setminus \{p\}$ has $k \ge 3$ components

Main Random Walk Theorems

Theorem (I. Kapovich, J. Maher, C. Pfaff, S. Taylor) IN BOTH CIRCUMSTANCES TYPICALLY GET A VERY HAIRY AGEOMETRIC \mathbb{R} -TREE WITH ALL BRANCH POINTS TRIVALENT!

What the outer automorphisms may look like

Theorem (D. Gagnier, C. Pfaff)

The graphs carrying train track representatives of "principal" fully irreducible outer automorphisms in $Out(F_3)$ are precisely:

The simplices in CV_3 with principal axes passing through them are precisely those whose these underlying graphs.

The "principal axes" automaton

SUMTOPO 2022 (Vienna)

A D N A B N A B N A B N

25 / 26

э

Thank you!

Typical Trees: An $Out(F_r)$ Excursion

SUMTOPO 2022 (Vienna)

< □ > < □ > < □ > < □ > < □ >

26 / 26

2