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Introduction

Let (X ,T ) be a topological dynamical system, that is

▶ X is a compact metric space endowed with a metric d ;
▶ T : X → X is a continuous map.

The orbit of x is:

Orb(x ,T ) = {T n(x) : n ­ 0}.
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Introduction

The Besicovitch pseudo-metric

ρB(x , y) = lim sup
n→∞

1
n

n−1∑
k=0

d(T k(x),T k(y)),

where x , y ∈ X .
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Introduction

The mean orbital pseudo-metric

ρ̄(x , y) = lim sup
n→∞

min
σ∈Sn

1
n

n−1∑
k=0

d(T k(x),T σ(k)(y)),

where x , y ∈ X and Sn is the permutation group on
{0, 1, . . . , n − 1}.

▶ L. Zheng and Z. Zheng 2020
▶ ρ̄ ¬ ρB
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Notations

Let (X ,T ) be a topological dynamical system.

▶ M(X ) is the space of Borel probability measures on X .
▶ Prokhorov metric for µ, ν ∈M(X )

ρ(µ, ν) = inf{ε > 0 : µ(B) ¬ ν(Bε)+ε for every Borel set B ⊂ X},

▶ Hausdorff metric for A,B ∈ 2M(X )

ρH(A,B) = max
{
inf{ε > 0 : B ⊂ Aε}, inf{ε > 0 : A ⊂ Bε}

}
.

Remark

ρH({µ}, {ν}) = ρ(µ, ν) for every µ, ν ∈M(X ).
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Notation

Given x ∈ X and n ∈ N,

▶ δ̂(T n(x)) is the Dirac measure concentrated at T n(x).
▶ Empirical measure

mT (x , n) =
1
n

n−1∑
i=0

δ̂(T i (x)).

▶ µ ∈M(X ) is a distribution measure of x ∈ X if µ is a limit
of some subsequence of {mT (x , n)}∞n=1.

▶ ω̂(x) is the set of all distribution measures of x ∈ X .
▶ ω̂(x) is a non-empty closed connected subset ofMT (X ).
▶ x ∈ X is a generic point for µ ∈MT (X ) if ω̂(x) = {µ}.
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The mean orbital pseudo-metric and invariant measures

Definition
A TDS (X ,T ) is mean equicontinuous if for ε > 0 there exists δ
such that for every x , y ∈ X with d(x , y) < δ one has ρB(x , y) < ε.

Definition
A TDS (X ,T ) is ρ̄− continuous if for every ε > 0 there exists δ
such that for every x , y ∈ X with d(x , y) < δ one has ρ̄(x , y) < ε.

▶ Mean equicontinuty and ρ̄-continuity do not depend on the
metric d on X which induce the same topology.

▶ Mean equicontinuity is equivalent to stability in the mean in
the sense of Lyapunov introduced by Fomin.
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The mean orbital pseudo-metric and invariant measures

Theorem (CKLP ‘22+)
For a TDS (X ,T ), the map (X , ρ̄)→ (2MT (X ), ρH), x → ω̂(x) is
uniformly continuous, that is for every ε > 0 there exists a δ > 0
such that for every x , y ∈ X with ρ̄(x , y) < δ one has
ρH(ω̂(x), ω̂(y)) < ε.

▶ D. Kwietniak, M. Łącka, and P. Oprocha 2017

Corollary (CKLP ‘22+)
Let (X ,T ) be a TDS. For any x , y ∈ X if ρ̄(x , y) = 0 then
ω̂(x) = ω̂(y).
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The mean orbital pseudo-metric and invariant measures

Let (X ,T ) be a TDS. Define

ρ̄n(x , y) = min
σ∈Sn

1
n

n−1∑
k=0

d(T kx ,T σ(k)y), n ∈ N.

Recall ρ̄(x , y) = lim supn→∞ ρ̄n(x , y).

Theorem (CKLP ‘22+)
Let (X ,T ) be a TDS. If x is a generic point, then for every ε > 0,
there exists δ > 0 and N ∈ N such that for every y ∈ X and n ­ N
with ρ(mT (x , n),mT (y , n)) < δ, one has ρ̄n(x , y) < ε.

Corollary (CKLP ‘22+)
Let (X ,T ) be a TDS. If x is a generic point, then for every ε > 0,
there is δ > 0 such that for every y ∈ X with ρH(ω̂(x), ω̂(y)) < δ,
one has ρ̄(x , y) < ε.
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The mean orbital pseudo-metric and invariant measures

Corollary (Zheng, Zheng ‘20)
Let (X ,T ) be a TDS. If x ∈ X is a generic point, then for every
y ∈ X , ω̂(x) = ω̂(y) if and only if ρ̄(x , y) = 0.

Corollary (Zheng, Zheng ‘20)
A TDS (X ,T ) is uniquely ergodic if and only if ρ̄(x , y) = 0 for all
x , y ∈ X .
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ρ̄-continuity and mean equicontinuity

Lemma (CKLP ‘22+)
If (X ,T ) is a TDS such that the map ω̂ : (X , d)→ (2MT (X ), ρH),
x → ω̂(x) is continuous, then for every x ∈ X the TDS
(Orb(x ,T ),T ) is uniquely ergodic.

Lemma (CKLP ‘22+)
Let (X ,T ) be a TDS. If (X ,T ) is ρ̄-continuous and has a dense
orbit, then (X ,T ) is uniquely ergodic.
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Main Theorem

Theorem (CKLP ‘22+)
Let (X ,T ) be a TDS. Then the following statements are
equivalent:

1. (X ,T ) is ρ̄-continuous;

2. the map ω̂ : (X , d)→ (2MT (X ), ρH) is continuous;

3. empirical measure maps (mT (·, n))∞n=1, where
mT (·, n) : X →M(X ) and

x 7→ mT (x , n) =
1
n

n−1∑
j=0

δ̂(T j(x)) for x ∈ X and n ∈ N,

are uniformly equicontinuous on X ;
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ρ̄-continuity and mean equicontinuity
4. every x ∈ X is generic for some ergodic invariant measure and
the map X ∋ x 7→ µ(x) ∈Me

T (X ) is continuous;

5. every x ∈ X is generic for some invariant measure and the
map X ∋ x 7→ µ(x) ∈MT (X ) is continuous;

6. for every continuous function f : X → R, the sequence of
continuous functions { 1n

∑n−1
k=0 f ◦T k} is pointwise convergent

to a continuous function f ∗;

7. for every continuous function f : X → R, the sequence of
continuous functions { 1n

∑n−1
k=0 f ◦ T k} converges uniformly.

If any of the conditions 1–7 holds, then the limit continuous
function f ∗ mentioned in 6 is the function given for x ∈ X by

f ∗(x) =

∫
X
f dµ(x).

▶ T. Downarowicz, B. Weiss, L. Zheng, Z. Zheng, · · ·
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ρ̄-continuity and mean equicontinuity

Definition
We say that (X ,T ) is {ρ̄n} − equicontinuous if for any ε > 0 there
exists δ > 0, such that for every x , y ∈ X with d(x , y) < δ for
every n ∈ N we have ρ̄n(x , y) < ε.

Theorem (CKLP ‘22+)
For a TDS (X ,T ) the following conditions are equivalent:

1. (X ,T ) is ρ̄-continuous;

2. (X ,T ) is {ρ̄n}-equicontinuous.
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ρ̄-continuity and mean equicontinuity
Theorem (CKLP ‘22+)
For a TDS (X ,T ) the following conditions are equivalent:

1. (X ,T ) is mean equicontinuous;

2. (X × X ,T × T ) is ρ̄-continuous;

3. for every (x , y) ∈ X × X the system Orb((x , y),T × T ) is
uniquely ergodic and the map (x , y) 7→ µ(x , y) is continuous;

4. (X ,T ) is Weyl mean equicontinuous: if for every ε > 0 there
is a δ > 0 such that for every x , y ∈ X with d(x , y) < δ

lim sup
n−m→∞

1
n −m

n−1∑
k=m

d(T nx ,T ny) < ε.

▶ J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016
▶ J. Qiu, J. Zhao 2020
▶ G. Fuhrmann, M. Gröger, and D. Lenz 2022
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