The mean orbital pseudo-metric in topological dynamics

Habibeh Pourmand joint work with Fangzhou Cai, Dominik Kwietniak, Jian Li

University of Vienna, 19 July 2022

Liechtenstein Norway Norway grants grants

Outline

- Introduction
- Notation
- The mean orbital pseudo-metric and invariant measures
- $\bar{\rho}$ -continuity and mean equicontinuity

Let (X, T) be a **topological dynamical system**, that is

- Let (X, T) be a **topological dynamical system**, that is
 - ► X is a compact metric space endowed with a metric d;

- Let (X, T) be a **topological dynamical system**, that is
 - ► X is a compact metric space endowed with a metric d;
 - $T: X \to X$ is a continuous map.

Let (X, T) be a **topological dynamical system**, that is

- ► X is a compact metric space endowed with a metric d;
- $T: X \to X$ is a continuous map.

The **orbit** of *x* is:

$$\operatorname{Orb}(x, T) = \{ T^n(x) : n \ge 0 \}.$$

The Besicovitch pseudo-metric

$$\rho_B(x,y) = \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x), T^k(y)),$$

where $x, y \in X$.

The mean orbital pseudo-metric

$$\bar{\rho}(x,y) = \limsup_{n\to\infty} \sup_{\sigma\in S_n} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x), T^{\sigma(k)}(y)),$$

where $x, y \in X$ and S_n is the permutation group on $\{0, 1, \ldots, n-1\}.$

The mean orbital pseudo-metric

$$\bar{\rho}(x,y) = \limsup_{n\to\infty} \sup_{\sigma\in S_n} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x), T^{\sigma(k)}(y)),$$

where $x, y \in X$ and S_n is the permutation group on $\{0, 1, \ldots, n-1\}.$

L. Zheng and Z. Zheng 2020

The mean orbital pseudo-metric

$$\bar{\rho}(x,y) = \limsup_{n\to\infty} \sup_{\sigma\in S_n} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x), T^{\sigma(k)}(y)),$$

where $x, y \in X$ and S_n is the permutation group on $\{0, 1, \ldots, n-1\}.$

L. Zheng and Z. Zheng 2020

$$\blacktriangleright \ \bar{\rho} \leqslant \rho_B$$

Let (X, T) be a topological dynamical system.

Let (X, T) be a topological dynamical system.

• $\mathcal{M}(X)$ is the space of Borel probability measures on X.

Let (X, T) be a topological dynamical system.

- $\mathcal{M}(X)$ is the space of Borel probability measures on X.
- **Prokhorov metric** for $\mu, \nu \in \mathcal{M}(X)$

 $\rho(\mu,\nu) = \inf\{\varepsilon > 0 : \mu(B) \leqslant \nu(B^{\varepsilon}) + \varepsilon \text{ for every Borel set } B \subset X\},$

Let (X, T) be a topological dynamical system.

- $\mathcal{M}(X)$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

 $\rho(\mu,\nu) = \inf\{\varepsilon > 0 : \mu(B) \leqslant \nu(B^{\varepsilon}) + \varepsilon \text{ for every Borel set } B \subset X\},$

Hausdorff metric for $A, B \in 2^{\mathcal{M}(X)}$

 $\rho_{H}(A,B) = \max\{\inf\{\varepsilon > 0 : B \subset A^{\varepsilon}\}, \inf\{\varepsilon > 0 : A \subset B^{\varepsilon}\}\}.$

Let (X, T) be a topological dynamical system.

- $\mathcal{M}(X)$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

 $\rho(\mu,\nu) = \inf\{\varepsilon > 0 : \mu(B) \leqslant \nu(B^{\varepsilon}) + \varepsilon \text{ for every Borel set } B \subset X\},$

Hausdorff metric for $A, B \in 2^{\mathcal{M}(X)}$

 $\rho_{H}(A,B) = \max\{\inf\{\varepsilon > 0 : B \subset A^{\varepsilon}\}, \inf\{\varepsilon > 0 : A \subset B^{\varepsilon}\}\}.$

Let (X, T) be a topological dynamical system.

- $\mathcal{M}(X)$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

 $\rho(\mu,\nu) = \inf\{\varepsilon > 0 : \mu(B) \leqslant \nu(B^{\varepsilon}) + \varepsilon \text{ for every Borel set } B \subset X\},$

• Hausdorff metric for $A, B \in 2^{\mathcal{M}(X)}$

 $\rho_{H}(A,B) = \max\{\inf\{\varepsilon > 0 : B \subset A^{\varepsilon}\}, \inf\{\varepsilon > 0 : A \subset B^{\varepsilon}\}\}.$

Remark

$$\rho_{\mathcal{H}}(\{\mu\},\{\nu\}) = \rho(\mu,\nu) \quad \text{for every } \mu,\nu \in \mathcal{M}(X).$$

Given $x \in X$ and $n \in \mathbb{N}$,

Given $x \in X$ and $n \in \mathbb{N}$,

• $\hat{\delta}(T^n(x))$ is the **Dirac measure** concentrated at $T^n(x)$.

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}(T^n(x))$ is the **Dirac measure** concentrated at $T^n(x)$.
- Empirical measure

$$m_T(x,n) = \frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}(T^i(x)).$$

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}(T^n(x))$ is the **Dirac measure** concentrated at $T^n(x)$.
- Empirical measure

$$m_T(x,n) = \frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}(T^i(x)).$$

μ ∈ M(X) is a distribution measure of x ∈ X if μ is a limit of some subsequence of {m_T(x, n)}_{n=1}[∞].

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}(T^n(x))$ is the **Dirac measure** concentrated at $T^n(x)$.
- Empirical measure

$$m_T(x,n) = \frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}(T^i(x)).$$

- µ ∈ M(X) is a distribution measure of x ∈ X if µ is a limit
 of some subsequence of {m_T(x, n)}[∞]_{n=1}.
- $\hat{\omega}(x)$ is the set of all distribution measures of $x \in X$.

Given $x \in X$ and $n \in \mathbb{N}$,

• $\hat{\delta}(T^n(x))$ is the **Dirac measure** concentrated at $T^n(x)$.

Empirical measure

$$m_T(x,n) = \frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}(T^i(x)).$$

- µ ∈ M(X) is a distribution measure of x ∈ X if µ is a limit
 of some subsequence of {m_T(x, n)}[∞]_{n=1}.
- $\hat{\omega}(x)$ is the set of all distribution measures of $x \in X$.
- $\hat{\omega}(x)$ is a non-empty closed connected subset of $\mathcal{M}_{\mathcal{T}}(X)$.

Given $x \in X$ and $n \in \mathbb{N}$,

• $\hat{\delta}(T^n(x))$ is the **Dirac measure** concentrated at $T^n(x)$.

Empirical measure

$$m_T(x,n) = \frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}(T^i(x)).$$

- µ ∈ M(X) is a distribution measure of x ∈ X if µ is a limit of some subsequence of {m_T(x, n)}_{n=1}[∞].
- $\hat{\omega}(x)$ is the set of all distribution measures of $x \in X$.
- $\hat{\omega}(x)$ is a non-empty closed connected subset of $\mathcal{M}_{\mathcal{T}}(X)$.
- $x \in X$ is a generic point for $\mu \in \mathcal{M}_T(X)$ if $\hat{\omega}(x) = \{\mu\}$.

Definition

A TDS (X, T) is mean equicontinuous if for $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\rho_B(x, y) < \varepsilon$.

Definition

A TDS (X, T) is mean equicontinuous if for $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\rho_B(x, y) < \varepsilon$.

Definition

A TDS (X, T) is $\overline{\rho}$ - continuous if for every $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\overline{\rho}(x, y) < \varepsilon$.

Definition

A TDS (X, T) is mean equicontinuous if for $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\rho_B(x, y) < \varepsilon$.

Definition

A TDS (X, T) is $\overline{\rho}$ - continuous if for every $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\overline{\rho}(x, y) < \varepsilon$.

Mean equicontinuty and p
-continuity do not depend on the metric d on X which induce the same topology.

Definition

A TDS (X, T) is mean equicontinuous if for $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\rho_B(x, y) < \varepsilon$.

Definition

A TDS (X, T) is $\overline{\rho}$ - continuous if for every $\varepsilon > 0$ there exists δ such that for every $x, y \in X$ with $d(x, y) < \delta$ one has $\overline{\rho}(x, y) < \varepsilon$.

- Mean equicontinuty and p
 -continuity do not depend on the metric d on X which induce the same topology.
- Mean equicontinuity is equivalent to stability in the mean in the sense of Lyapunov introduced by Fomin.

Theorem (CKLP '22+)

For a TDS (X, T), the map $(X, \bar{\rho}) \rightarrow (2^{\mathcal{M}_{T}(X)}, \rho_{H}), x \rightarrow \hat{\omega}(x)$ is uniformly continuous, that is for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every $x, y \in X$ with $\bar{\rho}(x, y) < \delta$ one has $\rho_{H}(\hat{\omega}(x), \hat{\omega}(y)) < \varepsilon$.

Theorem (CKLP '22+)

For a TDS (X, T), the map $(X, \bar{\rho}) \rightarrow (2^{\mathcal{M}_{T}(X)}, \rho_{H}), x \rightarrow \hat{\omega}(x)$ is uniformly continuous, that is for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every $x, y \in X$ with $\bar{\rho}(x, y) < \delta$ one has $\rho_{H}(\hat{\omega}(x), \hat{\omega}(y)) < \varepsilon$.

D. Kwietniak, M. Łącka, and P. Oprocha 2017

Theorem (CKLP '22+)

For a TDS (X, T), the map $(X, \bar{\rho}) \rightarrow (2^{\mathcal{M}_T(X)}, \rho_H)$, $x \rightarrow \hat{\omega}(x)$ is uniformly continuous, that is for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every $x, y \in X$ with $\bar{\rho}(x, y) < \delta$ one has $\rho_H(\hat{\omega}(x), \hat{\omega}(y)) < \varepsilon$.

D. Kwietniak, M. Łącka, and P. Oprocha 2017

Corollary (CKLP '22+)

Let (X, T) be a TDS. For any $x, y \in X$ if $\overline{\rho}(x, y) = 0$ then $\hat{\omega}(x) = \hat{\omega}(y)$.

Let (X, T) be a TDS. Define

$$\bar{\rho}_n(x,y) = \min_{\sigma \in S_n} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k x, T^{\sigma(k)} y), \ n \in \mathbb{N}.$$

Recall $\bar{\rho}(x, y) = \limsup_{n \to \infty} \bar{\rho}_n(x, y)$.

Let (X, T) be a TDS. Define

$$\bar{\rho}_n(x,y) = \min_{\sigma \in S_n} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k x, T^{\sigma(k)} y), \ n \in \mathbb{N}.$$

Recall
$$\bar{\rho}(x, y) = \limsup_{n \to \infty} \bar{\rho}_n(x, y).$$

Theorem (CKLP '22+)

Let (X, T) be a TDS. If x is a generic point, then for every $\varepsilon > 0$, there exists $\delta > 0$ and $N \in \mathbb{N}$ such that for every $y \in X$ and $n \ge N$ with $\rho(m_T(x, n), m_T(y, n)) < \delta$, one has $\overline{\rho}_n(x, y) < \varepsilon$.

Let (X, T) be a TDS. Define

$$\bar{\rho}_n(x,y) = \min_{\sigma \in S_n} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k x, T^{\sigma(k)} y), \ n \in \mathbb{N}.$$

Recall
$$\bar{\rho}(x, y) = \limsup_{n \to \infty} \bar{\rho}_n(x, y).$$

Theorem (CKLP '22+)

Let (X, T) be a TDS. If x is a generic point, then for every $\varepsilon > 0$, there exists $\delta > 0$ and $N \in \mathbb{N}$ such that for every $y \in X$ and $n \ge N$ with $\rho(m_T(x, n), m_T(y, n)) < \delta$, one has $\overline{\rho}_n(x, y) < \varepsilon$.

Corollary (CKLP '22+)

Let (X, T) be a TDS. If x is a generic point, then for every $\varepsilon > 0$, there is $\delta > 0$ such that for every $y \in X$ with $\rho_H(\hat{\omega}(x), \hat{\omega}(y)) < \delta$, one has $\bar{\rho}(x, y) < \varepsilon$.

Corollary (Zheng, Zheng '20) Let (X, T) be a TDS. If $x \in X$ is a generic point, then for every $y \in X$, $\hat{\omega}(x) = \hat{\omega}(y)$ if and only if $\bar{\rho}(x, y) = 0$.

Corollary (Zheng, Zheng '20)

Let (X, T) be a TDS. If $x \in X$ is a generic point, then for every $y \in X$, $\hat{\omega}(x) = \hat{\omega}(y)$ if and only if $\bar{\rho}(x, y) = 0$.

Corollary (Zheng, Zheng '20) A TDS (X, T) is uniquely ergodic if and only if $\bar{\rho}(x, y) = 0$ for all $x, y \in X$.

Lemma (CKLP '22+)

If (X, T) is a TDS such that the map $\hat{\omega} : (X, d) \to (2^{\mathcal{M}_T(X)}, \rho_H)$, $x \to \hat{\omega}(x)$ is continuous, then for every $x \in X$ the TDS $(\overline{\operatorname{Orb}(x, T)}, T)$ is uniquely ergodic.

Lemma (CKLP '22+)

If (X, T) is a TDS such that the map $\hat{\omega} : (X, d) \to (2^{\mathcal{M}_T(X)}, \rho_H)$, $x \to \hat{\omega}(x)$ is continuous, then for every $x \in X$ the TDS $(\overline{\operatorname{Orb}(x, T)}, T)$ is uniquely ergodic.

Lemma (CKLP '22+)

Let (X, T) be a TDS. If (X, T) is $\bar{\rho}$ -continuous and has a dense orbit, then (X, T) is uniquely ergodic.

Theorem (CKLP '22+) Let (X, T) be a TDS. Then the following statements are equivalent:

Theorem (CKLP '22+)

Let (X, T) be a TDS. Then the following statements are equivalent:

1. (X, T) is $\bar{\rho}$ -continuous;

Theorem (CKLP '22+)

Let (X, T) be a TDS. Then the following statements are equivalent:

- 1. (X, T) is $\bar{\rho}$ -continuous;
- 2. the map $\hat{\omega}: (X, d) \rightarrow (2^{\mathcal{M}_T(X)}, \rho_H)$ is continuous;

Theorem (CKLP '22+)

Let (X, T) be a TDS. Then the following statements are equivalent:

- 1. (X, T) is $\bar{\rho}$ -continuous;
- 2. the map $\hat{\omega} \colon (X, d) \to (2^{\mathcal{M}_T(X)}, \rho_H)$ is continuous;
- 3. empirical measure maps $(m_T(\cdot, n))_{n=1}^{\infty}$, where $m_T(\cdot, n): X \to \mathcal{M}(X)$ and

$$x\mapsto m_T(x,n)=rac{1}{n}\sum_{j=0}^{n-1}\hat{\delta}(T^j(x)) \qquad ext{for } x\in X ext{ and } n\in \mathbb{N},$$

are uniformly equicontinuous on X;

$\bar{\rho}\text{-}\mathrm{continuity}$ and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}^e_T(X)$ is continuous;

- 4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}^e_T(X)$ is continuous;
- 5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{\mathcal{T}}(X)$ is continuous;

- 4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}^e_T(X)$ is continuous;
- 5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{\mathcal{T}}(X)$ is continuous;
- 6. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ is pointwise convergent to a continuous function f^* ;

- 4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}^e_T(X)$ is continuous;
- 5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{\mathcal{T}}(X)$ is continuous;
- 6. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ is pointwise convergent to a continuous function f^* ;
- 7. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ converges uniformly.

- 4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}^e_{\mathcal{T}}(X)$ is continuous;
- 5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{\mathcal{T}}(X)$ is continuous;
- 6. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ is pointwise convergent to a continuous function f^* ;
- 7. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ converges uniformly.

If any of the conditions 1–7 holds, then the limit continuous function f^* mentioned in 6 is the function given for $x \in X$ by

$$f^*(x) = \int_X f \,\mathrm{d}\mu(x).$$

- 4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}^e_T(X)$ is continuous;
- 5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{\mathcal{T}}(X)$ is continuous;
- 6. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ is pointwise convergent to a continuous function f^* ;
- 7. for every continuous function $f: X \to \mathbb{R}$, the sequence of continuous functions $\{\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k\}$ converges uniformly.

If any of the conditions 1–7 holds, then the limit continuous function f^* mentioned in 6 is the function given for $x \in X$ by

$$f^*(x) = \int_X f \,\mathrm{d}\mu(x).$$

T. Downarowicz, B. Weiss, L. Zheng, Z. Zheng, ···

Definition

We say that (X, T) is $\{\overline{\rho}_n\}$ – equicontinuous if for any $\varepsilon > 0$ there exists $\delta > 0$, such that for every $x, y \in X$ with $d(x, y) < \delta$ for every $n \in \mathbb{N}$ we have $\overline{\rho}_n(x, y) < \varepsilon$.

Definition

We say that (X, T) is $\{\overline{\rho}_n\}$ – equicontinuous if for any $\varepsilon > 0$ there exists $\delta > 0$, such that for every $x, y \in X$ with $d(x, y) < \delta$ for every $n \in \mathbb{N}$ we have $\overline{\rho}_n(x, y) < \varepsilon$.

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

Definition

We say that (X, T) is $\{\overline{\rho}_n\}$ – equicontinuous if for any $\varepsilon > 0$ there exists $\delta > 0$, such that for every $x, y \in X$ with $d(x, y) < \delta$ for every $n \in \mathbb{N}$ we have $\overline{\rho}_n(x, y) < \varepsilon$.

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is $\bar{\rho}$ -continuous;

Definition

We say that (X, T) is $\{\overline{\rho}_n\}$ – equicontinuous if for any $\varepsilon > 0$ there exists $\delta > 0$, such that for every $x, y \in X$ with $d(x, y) < \delta$ for every $n \in \mathbb{N}$ we have $\overline{\rho}_n(x, y) < \varepsilon$.

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

- 1. (X, T) is $\bar{\rho}$ -continuous;
- 2. (X, T) is $\{\bar{\rho}_n\}$ -equicontinuous.

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

$\bar{\rho}\text{-}\mathrm{continuity}$ and mean equicontinuity

- Theorem (CKLP '22+)
- For a TDS (X, T) the following conditions are equivalent:
 - 1. (X, T) is mean equicontinuous;

$\bar{\rho}\text{-}\mathrm{continuity}$ and mean equicontinuity

- Theorem (CKLP '22+)
- For a TDS (X, T) the following conditions are equivalent:
 - 1. (X, T) is mean equicontinuous;
 - 2. $(X \times X, T \times T)$ is $\bar{\rho}$ -continuous;

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

- 1. (X, T) is mean equicontinuous;
- 2. $(X \times X, T \times T)$ is $\bar{\rho}$ -continuous;
- 3. for every $(x, y) \in X \times X$ the system $\overline{Orb((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

- 1. (X, T) is mean equicontinuous;
- 2. $(X \times X, T \times T)$ is $\bar{\rho}$ -continuous;
- 3. for every $(x, y) \in X \times X$ the system $\overline{Orb((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
- 4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon > 0$ there is a $\delta > 0$ such that for every $x, y \in X$ with $d(x, y) < \delta$

$$\limsup_{n-m\to\infty}\frac{1}{n-m}\sum_{k=m}^{n-1}d(T^nx,T^ny)<\varepsilon.$$

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

- 1. (X, T) is mean equicontinuous;
- 2. $(X \times X, T \times T)$ is $\bar{\rho}$ -continuous;
- 3. for every $(x, y) \in X \times X$ the system $\overline{Orb((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
- 4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon > 0$ there is a $\delta > 0$ such that for every $x, y \in X$ with $d(x, y) < \delta$

$$\limsup_{n-m\to\infty}\frac{1}{n-m}\sum_{k=m}^{n-1}d(T^nx,T^ny)<\varepsilon.$$

▶ J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

- 1. (X, T) is mean equicontinuous;
- 2. $(X \times X, T \times T)$ is $\bar{\rho}$ -continuous;
- 3. for every $(x, y) \in X \times X$ the system $\overline{Orb((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
- 4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon > 0$ there is a $\delta > 0$ such that for every $x, y \in X$ with $d(x, y) < \delta$

$$\limsup_{n-m\to\infty}\frac{1}{n-m}\sum_{k=m}^{n-1}d(T^nx,T^ny)<\varepsilon.$$

J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016
J. Qiu, J. Zhao 2020

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

- 1. (X, T) is mean equicontinuous;
- 2. $(X \times X, T \times T)$ is $\bar{\rho}$ -continuous;
- 3. for every $(x, y) \in X \times X$ the system $\overline{Orb((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
- 4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon > 0$ there is a $\delta > 0$ such that for every $x, y \in X$ with $d(x, y) < \delta$

$$\limsup_{n-m\to\infty}\frac{1}{n-m}\sum_{k=m}^{n-1}d(T^nx,T^ny)<\varepsilon.$$

- ► J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016
- J. Qiu, J. Zhao 2020
- G. Fuhrmann, M. Gröger, and D. Lenz 2022

References

- F. Cai, D. Kwietniak, J. Li, H. Pourmand
 On the properties of the mean orbital pseudo-metric
 J. Differential Equations. 318 (2022), 1-19. 37B05 (37A25).
- T. Downarowicz, E. Glasner
 Isomorphic Extensions and Applications
 Topol. Methods Nonlinear Anal. 48 (2016), no. 1, 321–338.
- T. Downarowicz, B. Weiss
 When all points are generic for ergodic measures
 Bull. Pol. Acad. Sci. Math. 68 (2020), no. 2, 117–132.

🔋 S. Fomin

On dynamical systems with a purely point spectrum Doklady Akad. Nauk SSSR (N.S.) **77** (1951), 29-32.

G. Fuhrmann, M. Gröger, D. Lenz The structure of mean equicontinuous group actions Israel J. Math. **247** (2022), 75-123.

References

- D. Kwietniak, M. Łącka, P. Oprocha Generic points for dynamical systems with average shadowing Monatsh. Math. 183 (2017), no. 4, 625–648.
- 🔋 J. Li, S. Tu, X. Ye

Mean equicontinuity and mean sensivity Ergodic Theory Dynam. Systems. **35**(2015), no. 8, 2587-2612

📄 J. Qiu, J. Zhao

A note on mean equicontinuity

J. Dynam. Differential Equations. 32 (2020), no. 1, 101–116.

📔 L. Zheng, Z. Zheng

A new metric for statistical properties of long term behaviours

J. Differential Equations. 269(4)(2020) 2741-2773.