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Introduction

Let (X, T) be a topological dynamical system, that is
> X is a compact metric space endowed with a metric d,
» T7: X — X is a continuous map.

The orbit of x is:

Orb(x, T) ={T"(x) : n > 0}.
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Introduction

The Besicovitch pseudo-metric

n—1
pe(x.y) = limsup = 3 d(T*(x), T*(y)),

n—oo N k=0

where x,y € X.
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Let (X, T) be a topological dynamical system.
» M(X) is the space of Borel probability measures on X.
» Prokhorov metric for p, v € M(X)

p(p,v) =inf{e > 0: u(B) < v(B®)+¢ for every Borel set B C X},
» Hausdorff metric for A, B € 2M(X)

pH(A, B) = max{inf{e > 0: B C A°},inf{e >0: AC B°}}.
Remark

pr{u};{v}) = p(p,v)  for every p,v € M(X).
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> §(T"(x)) is the Dirac measure concentrated at T"(x).

» Empirical measure

S|
i
-

3(T'(x)).

mr(x,n) =

I
o

» 1€ M(X) is a distribution measure of x € X if p is a limit
of some subsequence of {mt(x, n)}>2 ;.

» ©(x) is the set of all distribution measures of x € X.

v

&(x) is a non-empty closed connected subset of M 1(X).
» x € X is a generic point for u € M7(X) if ©(x) = {u}.
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The mean orbital pseudo-metric and invariant measures

Definition
A TDS (X, T) is mean equicontinuous if for £ > 0 there exists 0
such that for every x,y € X with d(x,y) < d one has pg(x,y) < ¢.

Definition
A TDS (X, T) is p — continuous if for every ¢ > 0 there exists ¢
such that for every x,y € X with d(x,y) < d one has p(x,y) < €.

» Mean equicontinuty and p-continuity do not depend on the
metric d on X which induce the same topology.

> Mean equicontinuity is equivalent to stability in the mean in
the sense of Lyapunov introduced by Fomin.
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The mean orbital pseudo-metric and invariant measures

Theorem (CKLP '22+)

For a TDS (X, T), the map (X, p) — (2M7X) pp), x — &(x) is
uniformly continuous, that is for every € > O there exists a § > 0
such that for every x,y € X with p(x,y) < 0 one has
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uniformly continuous, that is for every € > O there exists a § > 0
such that for every x,y € X with p(x,y) < 0 one has
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> D. Kwietniak, M. tacka, and P. Oprocha 2017

Corollary (CKLP ‘22+)
Let (X, T) be a TDS. For any x,y € X if p(x,y) =0 then
o(x) = &(y).
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Let (X, T) be a TDS. If x is a generic point, then for every € > 0,
there exists 6 > 0 and N € N such that for everyy € X and n > N
with p(mt(x, n), mr(y,n)) < 6, one has py(x,y) <€

Corollary (CKLP ‘22+)

Let (X, T) be a TDS. If x is a generic point, then for every € > 0,
there is 6 > 0 such that for every y € X with py(&(x),o(y)) < 9,
one has p(x,y) < e.
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The mean orbital pseudo-metric and invariant measures

Corollary (Zheng, Zheng '20)

Let (X, T) bea TDS. If x € X is a generic point, then for every
y € X, ©(x) = &(y) if and only if p(x,y) = 0.
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The mean orbital pseudo-metric and invariant measures

Corollary (Zheng, Zheng '20)

Let (X, T) bea TDS. If x € X is a generic point, then for every
y € X, ©(x) = &(y) if and only if p(x,y) = 0.

Corollary (Zheng, Zheng '20)
A TDS (X, T) is uniquely ergodic if and only if p(x,y) = 0 for all
x,y € X.
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If (X, T) is a TDS such that the map &: (X, d) — (2M7X) py),
x — w(x) is continuous, then for every x € X the TDS

(Orb(x, T), T) is uniquely ergodic.

Lemma (CKLP ‘22+)

Let (X, T) bea TDS. If (X, T) is p-continuous and has a dense
orbit, then (X, T) is uniquely ergodic.
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Main Theorem

Theorem (CKLP '22+)

Let (X, T) be a TDS. Then the following statements are
equivalent:

1. (X, T) is p-continuous;
2. the map &: (X, d) — (2M7(X), py) is continuous;

3. empirical measure maps (m (-, n))7>;, where
mr(-,n): X — M(X) and

1.
x +— mr(x,n) —ZdTJ forx € X and n € N,
N0

are uniformly equicontinuous on X;

13/18
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