The mean orbital pseudo-metric in topological dynamics

Habibeh Pourmand
joint work with Fangzhou Cai, Dominik Kwietniak, Jian Li

University of Vienna, 19 July 2022

Outline

- Introduction
- Notation
- The mean orbital pseudo-metric and invariant measures
- $\bar{\rho}$-continuity and mean equicontinuity

Introduction

Let (X, T) be a topological dynamical system, that is

Introduction

Let (X, T) be a topological dynamical system, that is

- X is a compact metric space endowed with a metric d;

Introduction

Let (X, T) be a topological dynamical system, that is

- X is a compact metric space endowed with a metric d;
- $T: X \rightarrow X$ is a continuous map.

Introduction

Let (X, T) be a topological dynamical system, that is

- X is a compact metric space endowed with a metric d;
- $T: X \rightarrow X$ is a continuous map.

The orbit of x is:

$$
\operatorname{Orb}(x, T)=\left\{T^{n}(x): n \geqslant 0\right\}
$$

Introduction

The Besicovitch pseudo-metric

$$
\rho_{B}(x, y)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k}(x), T^{k}(y)\right)
$$

where $x, y \in X$.

Introduction

The mean orbital pseudo-metric

$$
\bar{\rho}(x, y)=\limsup _{n \rightarrow \infty} \min _{\sigma \in S_{n}} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k}(x), T^{\sigma(k)}(y)\right)
$$

where $x, y \in X$ and S_{n} is the permutation group on $\{0,1, \ldots, n-1\}$.

Introduction

The mean orbital pseudo-metric

$$
\bar{\rho}(x, y)=\limsup _{n \rightarrow \infty} \min _{\sigma \in S_{n}} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k}(x), T^{\sigma(k)}(y)\right)
$$

where $x, y \in X$ and S_{n} is the permutation group on $\{0,1, \ldots, n-1\}$.

- L. Zheng and Z. Zheng 2020

Introduction

The mean orbital pseudo-metric

$$
\bar{\rho}(x, y)=\limsup _{n \rightarrow \infty} \min _{\sigma \in S_{n}} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k}(x), T^{\sigma(k)}(y)\right)
$$

where $x, y \in X$ and S_{n} is the permutation group on $\{0,1, \ldots, n-1\}$.

- L. Zheng and Z. Zheng 2020
- $\bar{\rho} \leqslant \rho_{B}$

Notations

Let (X, T) be a topological dynamical system.

Notations

Let (X, T) be a topological dynamical system.

- $\mathcal{M}(X)$ is the space of Borel probability measures on X.

Notations

Let (X, T) be a topological dynamical system.

- $\mathcal{M}(X)$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

$$
\rho(\mu, \nu)=\inf \left\{\varepsilon>0: \mu(B) \leqslant \nu\left(B^{\varepsilon}\right)+\varepsilon \text { for every Borel set } B \subset X\right\}
$$

Notations

Let (X, T) be a topological dynamical system.

- $\boldsymbol{\mathcal { M }}(\boldsymbol{X})$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

$$
\rho(\mu, \nu)=\inf \left\{\varepsilon>0: \mu(B) \leqslant \nu\left(B^{\varepsilon}\right)+\varepsilon \text { for every Borel set } B \subset X\right\}
$$

- Hausdorff metric for $A, B \in 2^{\mathcal{M}(X)}$

$$
\rho_{H}(A, B)=\max \left\{\inf \left\{\varepsilon>0: B \subset A^{\varepsilon}\right\}, \inf \left\{\varepsilon>0: A \subset B^{\varepsilon}\right\}\right\} .
$$

Notations

Let (X, T) be a topological dynamical system.

- $\boldsymbol{\mathcal { M }}(\boldsymbol{X})$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

$$
\rho(\mu, \nu)=\inf \left\{\varepsilon>0: \mu(B) \leqslant \nu\left(B^{\varepsilon}\right)+\varepsilon \text { for every Borel set } B \subset X\right\}
$$

- Hausdorff metric for $A, B \in 2^{\mathcal{M}(X)}$

$$
\rho_{H}(A, B)=\max \left\{\inf \left\{\varepsilon>0: B \subset A^{\varepsilon}\right\}, \inf \left\{\varepsilon>0: A \subset B^{\varepsilon}\right\}\right\} .
$$

Notations

Let (X, T) be a topological dynamical system.

- $\boldsymbol{\mathcal { M }}(\boldsymbol{X})$ is the space of Borel probability measures on X.
- Prokhorov metric for $\mu, \nu \in \mathcal{M}(X)$

$$
\rho(\mu, \nu)=\inf \left\{\varepsilon>0: \mu(B) \leqslant \nu\left(B^{\varepsilon}\right)+\varepsilon \text { for every Borel set } B \subset X\right\}
$$

- Hausdorff metric for $A, B \in 2^{\mathcal{M}(X)}$

$$
\rho_{H}(A, B)=\max \left\{\inf \left\{\varepsilon>0: B \subset A^{\varepsilon}\right\}, \inf \left\{\varepsilon>0: A \subset B^{\varepsilon}\right\}\right\} .
$$

Remark

$$
\rho_{H}(\{\mu\},\{\nu\})=\rho(\mu, \nu) \quad \text { for every } \mu, \nu \in \mathcal{M}(X)
$$

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}\left(T^{n}(x)\right)$ is the Dirac measure concentrated at $T^{n}(x)$.

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}\left(T^{n}(x)\right)$ is the Dirac measure concentrated at $T^{n}(x)$.
- Empirical measure

$$
m_{T}(x, n)=\frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}\left(T^{i}(x)\right)
$$

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}\left(T^{n}(x)\right)$ is the Dirac measure concentrated at $T^{n}(x)$.
- Empirical measure

$$
m_{T}(x, n)=\frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}\left(T^{i}(x)\right) .
$$

- $\mu \in \mathcal{M}(X)$ is a distribution measure of $x \in X$ if μ is a limit of some subsequence of $\left\{m_{T}(x, n)\right\}_{n=1}^{\infty}$.

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}\left(T^{n}(x)\right)$ is the Dirac measure concentrated at $T^{n}(x)$.
- Empirical measure

$$
m_{T}(x, n)=\frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}\left(T^{i}(x)\right) .
$$

- $\mu \in \mathcal{M}(X)$ is a distribution measure of $x \in X$ if μ is a limit of some subsequence of $\left\{m_{T}(x, n)\right\}_{n=1}^{\infty}$.
- $\hat{\boldsymbol{\omega}}(\boldsymbol{x})$ is the set of all distribution measures of $x \in X$.

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}\left(T^{n}(x)\right)$ is the Dirac measure concentrated at $T^{n}(x)$.
- Empirical measure

$$
m_{T}(x, n)=\frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}\left(T^{i}(x)\right)
$$

- $\mu \in \mathcal{M}(X)$ is a distribution measure of $x \in X$ if μ is a limit of some subsequence of $\left\{m_{T}(x, n)\right\}_{n=1}^{\infty}$.
- $\hat{\boldsymbol{\omega}}(\boldsymbol{x})$ is the set of all distribution measures of $x \in X$.
- $\hat{\omega}(x)$ is a non-empty closed connected subset of $\mathcal{M}_{T}(X)$.

Notation

Given $x \in X$ and $n \in \mathbb{N}$,

- $\hat{\delta}\left(T^{n}(x)\right)$ is the Dirac measure concentrated at $T^{n}(x)$.
- Empirical measure

$$
m_{T}(x, n)=\frac{1}{n} \sum_{i=0}^{n-1} \hat{\delta}\left(T^{i}(x)\right)
$$

- $\mu \in \mathcal{M}(X)$ is a distribution measure of $x \in X$ if μ is a limit of some subsequence of $\left\{m_{T}(x, n)\right\}_{n=1}^{\infty}$.
- $\hat{\boldsymbol{\omega}}(\boldsymbol{x})$ is the set of all distribution measures of $x \in X$.
- $\hat{\omega}(x)$ is a non-empty closed connected subset of $\mathcal{M}_{T}(X)$.
- $x \in X$ is a generic point for $\mu \in \mathcal{M}_{T}(X)$ if $\hat{\omega}(x)=\{\mu\}$.

The mean orbital pseudo-metric and invariant measures

Definition

A TDS (X, T) is mean equicontinuous if for $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\rho_{B}(x, y)<\varepsilon$.

The mean orbital pseudo-metric and invariant measures

Definition
A TDS (X, T) is mean equicontinuous if for $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\rho_{B}(x, y)<\varepsilon$.

Definition

A TDS (X, T) is $\bar{\rho}$ - continuous if for every $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\bar{\rho}(x, y)<\varepsilon$.

The mean orbital pseudo-metric and invariant measures

Definition
A TDS (X, T) is mean equicontinuous if for $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\rho_{B}(x, y)<\varepsilon$.

Definition

A TDS (X, T) is $\bar{\rho}$ - continuous if for every $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\bar{\rho}(x, y)<\varepsilon$.

- Mean equicontinuty and $\bar{\rho}$-continuity do not depend on the metric d on X which induce the same topology.

The mean orbital pseudo-metric and invariant measures

Definition
A TDS (X, T) is mean equicontinuous if for $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\rho_{B}(x, y)<\varepsilon$.

Definition
A TDS (X, T) is $\bar{\rho}$ - continuous if for every $\varepsilon>0$ there exists δ such that for every $x, y \in X$ with $d(x, y)<\delta$ one has $\bar{\rho}(x, y)<\varepsilon$.

- Mean equicontinuty and $\bar{\rho}$-continuity do not depend on the metric d on X which induce the same topology.
- Mean equicontinuity is equivalent to stability in the mean in the sense of Lyapunov introduced by Fomin.

The mean orbital pseudo-metric and invariant measures

Theorem (CKLP '22+)
For a $\operatorname{TDS}(X, T)$, the map $(X, \bar{\rho}) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right), x \rightarrow \hat{\omega}(x)$ is uniformly continuous, that is for every $\varepsilon>0$ there exists a $\delta>0$ such that for every $x, y \in X$ with $\bar{\rho}(x, y)<\delta$ one has $\rho_{H}(\hat{\omega}(x), \hat{\omega}(y))<\varepsilon$.

The mean orbital pseudo-metric and invariant measures

Theorem (CKLP '22+)
For a $\operatorname{TDS}(X, T)$, the map $(X, \bar{\rho}) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right), x \rightarrow \hat{\omega}(x)$ is uniformly continuous, that is for every $\varepsilon>0$ there exists a $\delta>0$ such that for every $x, y \in X$ with $\bar{\rho}(x, y)<\delta$ one has $\rho_{H}(\hat{\omega}(x), \hat{\omega}(y))<\varepsilon$.

- D. Kwietniak, M. Łącka, and P. Oprocha 2017

The mean orbital pseudo-metric and invariant measures

Theorem (CKLP '22+)
For a TDS (X, T), the map $(X, \bar{\rho}) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right), x \rightarrow \hat{\omega}(x)$ is uniformly continuous, that is for every $\varepsilon>0$ there exists a $\delta>0$ such that for every $x, y \in X$ with $\bar{\rho}(x, y)<\delta$ one has $\rho_{H}(\hat{\omega}(x), \hat{\omega}(y))<\varepsilon$.

- D. Kwietniak, M. Łącka, and P. Oprocha 2017

Corollary (CKLP '22+)
Let (X, T) be a TDS. For any $x, y \in X$ if $\bar{\rho}(x, y)=0$ then $\hat{\omega}(x)=\hat{\omega}(y)$.

The mean orbital pseudo-metric and invariant measures

Let (X, T) be a TDS. Define

$$
\bar{\rho}_{n}(x, y)=\min _{\sigma \in S_{n}} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k} x, T^{\sigma(k)} y\right), n \in \mathbb{N} .
$$

Recall $\bar{\rho}(x, y)=\lim \sup _{n \rightarrow \infty} \bar{\rho}_{n}(x, y)$.

The mean orbital pseudo-metric and invariant measures

Let (X, T) be a TDS. Define

$$
\bar{\rho}_{n}(x, y)=\min _{\sigma \in S_{n}} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k} x, T^{\sigma(k)} y\right), n \in \mathbb{N} .
$$

Recall $\bar{\rho}(x, y)=\lim \sup _{n \rightarrow \infty} \bar{\rho}_{n}(x, y)$.
Theorem (CKLP '22+)
Let (X, T) be a TDS. If x is a generic point, then for every $\varepsilon>0$, there exists $\delta>0$ and $N \in \mathbb{N}$ such that for every $y \in X$ and $n \geqslant N$ with $\rho\left(m_{T}(x, n), m_{T}(y, n)\right)<\delta$, one has $\bar{\rho}_{n}(x, y)<\varepsilon$.

The mean orbital pseudo-metric and invariant measures

Let (X, T) be a TDS. Define

$$
\bar{\rho}_{n}(x, y)=\min _{\sigma \in S_{n}} \frac{1}{n} \sum_{k=0}^{n-1} d\left(T^{k} x, T^{\sigma(k)} y\right), n \in \mathbb{N} .
$$

Recall $\bar{\rho}(x, y)=\lim \sup _{n \rightarrow \infty} \bar{\rho}_{n}(x, y)$.
Theorem (CKLP '22+)
Let (X, T) be a TDS. If x is a generic point, then for every $\varepsilon>0$, there exists $\delta>0$ and $N \in \mathbb{N}$ such that for every $y \in X$ and $n \geqslant N$ with $\rho\left(m_{T}(x, n), m_{T}(y, n)\right)<\delta$, one has $\bar{\rho}_{n}(x, y)<\varepsilon$.

Corollary (CKLP '22+)
Let (X, T) be a TDS. If x is a generic point, then for every $\varepsilon>0$, there is $\delta>0$ such that for every $y \in X$ with $\rho_{H}(\hat{\omega}(x), \hat{\omega}(y))<\delta$, one has $\bar{\rho}(x, y)<\varepsilon$.

The mean orbital pseudo-metric and invariant measures

Corollary (Zheng, Zheng '20)
Let (X, T) be a TDS. If $x \in X$ is a generic point, then for every $y \in X, \hat{\omega}(x)=\hat{\omega}(y)$ if and only if $\bar{\rho}(x, y)=0$.

The mean orbital pseudo-metric and invariant measures

Corollary (Zheng, Zheng '20)
Let (X, T) be a TDS. If $x \in X$ is a generic point, then for every $y \in X, \hat{\omega}(x)=\hat{\omega}(y)$ if and only if $\bar{\rho}(x, y)=0$.

Corollary (Zheng, Zheng '20)
A $\operatorname{TDS}(X, T)$ is uniquely ergodic if and only if $\bar{\rho}(x, y)=0$ for all $x, y \in X$.

$\bar{\rho}$-continuity and mean equicontinuity

Lemma (CKLP '22+)

If (X, T) is a TDS such that the map $\hat{\omega}:(X, d) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right)$, $x \rightarrow \hat{\omega}(x)$ is continuous, then for every $x \in X$ the TDS
$(\overline{\operatorname{Orb}(x, T)}, T)$ is uniquely ergodic.

$\bar{\rho}$-continuity and mean equicontinuity

Lemma (CKLP '22+)

If (X, T) is a TDS such that the map $\hat{\omega}:(X, d) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right)$, $x \rightarrow \hat{\omega}(x)$ is continuous, then for every $x \in X$ the TDS
$(\overline{\operatorname{Orb}(x, T)}, T)$ is uniquely ergodic.
Lemma (CKLP '22+)
Let (X, T) be a TDS. If (X, T) is $\bar{\rho}$-continuous and has a dense orbit, then (X, T) is uniquely ergodic.

Main Theorem

Theorem (CKLP '22+)
Let (X, T) be a TDS. Then the following statements are equivalent:

Main Theorem

Theorem (CKLP '22+)
Let (X, T) be a TDS. Then the following statements are equivalent:

1. (X, T) is $\bar{\rho}$-continuous;

Main Theorem

Theorem (CKLP '22+)

Let (X, T) be a TDS. Then the following statements are equivalent:

1. (X, T) is $\bar{\rho}$-continuous;
2. the map $\hat{\omega}:(X, d) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right)$ is continuous;

Main Theorem

Theorem (CKLP '22+)

Let (X, T) be a TDS. Then the following statements are equivalent:

1. (X, T) is $\bar{\rho}$-continuous;
2. the map $\hat{\omega}:(X, d) \rightarrow\left(2^{\mathcal{M}_{T}(X)}, \rho_{H}\right)$ is continuous;
3. empirical measure maps $\left(m_{T}(\cdot, n)\right)_{n=1}^{\infty}$, where $m_{T}(\cdot, n): X \rightarrow \mathcal{M}(X)$ and

$$
x \mapsto m_{T}(x, n)=\frac{1}{n} \sum_{j=0}^{n-1} \hat{\delta}\left(T^{j}(x)\right) \quad \text { for } x \in X \text { and } n \in \mathbb{N}
$$

are uniformly equicontinuous on X;

$\bar{\rho}$-continuity and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}^{e}(X)$ is continuous;

$\bar{\rho}$-continuity and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}^{e}(X)$ is continuous;
5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}(X)$ is continuous;

$\bar{\rho}$-continuity and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}^{e}(X)$ is continuous;
5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}(X)$ is continuous;
6. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ is pointwise convergent to a continuous function f^{*};

$\bar{\rho}$-continuity and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}^{e}(X)$ is continuous;
5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}(X)$ is continuous;
6. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ is pointwise convergent to a continuous function f^{*};
7. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ converges uniformly.

$\bar{\rho}$-continuity and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}^{e}(X)$ is continuous;
5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}(X)$ is continuous;
6. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ is pointwise convergent to a continuous function f^{*};
7. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ converges uniformly.
If any of the conditions $1-7$ holds, then the limit continuous function f^{*} mentioned in 6 is the function given for $x \in X$ by

$$
f^{*}(x)=\int_{X} f \mathrm{~d} \mu(x)
$$

$\bar{\rho}$-continuity and mean equicontinuity

4. every $x \in X$ is generic for some ergodic invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}^{e}(X)$ is continuous;
5. every $x \in X$ is generic for some invariant measure and the map $X \ni x \mapsto \mu(x) \in \mathcal{M}_{T}(X)$ is continuous;
6. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ is pointwise convergent to a continuous function f^{*};
7. for every continuous function $f: X \rightarrow \mathbb{R}$, the sequence of continuous functions $\left\{\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}\right\}$ converges uniformly.
If any of the conditions $1-7$ holds, then the limit continuous function f^{*} mentioned in 6 is the function given for $x \in X$ by

$$
f^{*}(x)=\int_{X} f \mathrm{~d} \mu(x)
$$

- T. Downarowicz, B. Weiss, L. Zheng, Z. Zheng, ...

$\bar{\rho}$-continuity and mean equicontinuity

Definition

We say that (X, T) is $\left\{\bar{\rho}_{n}\right\}$ - equicontinuous if for any $\varepsilon>0$ there exists $\delta>0$, such that for every $x, y \in X$ with $d(x, y)<\delta$ for every $n \in \mathbb{N}$ we have $\bar{\rho}_{n}(x, y)<\varepsilon$.

$\bar{\rho}$-continuity and mean equicontinuity

Definition

We say that (X, T) is $\left\{\bar{\rho}_{n}\right\}$ - equicontinuous if for any $\varepsilon>0$ there exists $\delta>0$, such that for every $x, y \in X$ with $d(x, y)<\delta$ for every $n \in \mathbb{N}$ we have $\bar{\rho}_{n}(x, y)<\varepsilon$.

Theorem (CKLP '22+)
For a $T D S(X, T)$ the following conditions are equivalent:

$\bar{\rho}$-continuity and mean equicontinuity

Definition

We say that (X, T) is $\left\{\bar{\rho}_{n}\right\}$ - equicontinuous if for any $\varepsilon>0$ there exists $\delta>0$, such that for every $x, y \in X$ with $d(x, y)<\delta$ for every $n \in \mathbb{N}$ we have $\bar{\rho}_{n}(x, y)<\varepsilon$.

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is $\bar{\rho}$-continuous;

$\bar{\rho}$-continuity and mean equicontinuity

Definition

We say that (X, T) is $\left\{\bar{\rho}_{n}\right\}$ - equicontinuous if for any $\varepsilon>0$ there exists $\delta>0$, such that for every $x, y \in X$ with $d(x, y)<\delta$ for every $n \in \mathbb{N}$ we have $\bar{\rho}_{n}(x, y)<\varepsilon$.

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is $\bar{\rho}$-continuous;
2. (X, T) is $\left\{\bar{\rho}_{n}\right\}$-equicontinuous.

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;
2. $(X \times X, T \times T)$ is $\bar{\rho}$-continuous;

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;
2. $(X \times X, T \times T)$ is $\bar{\rho}$-continuous;
3. for every $(x, y) \in X \times X$ the system $\overline{\operatorname{Orb}((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)

For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;
2. $(X \times X, T \times T)$ is $\bar{\rho}$-continuous;
3. for every $(x, y) \in X \times X$ the system $\overline{\operatorname{Orb}((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon>0$ there is a $\delta>0$ such that for every $x, y \in X$ with $d(x, y)<\delta$

$$
\limsup _{n-m \rightarrow \infty} \frac{1}{n-m} \sum_{k=m}^{n-1} d\left(T^{n} x, T^{n} y\right)<\varepsilon
$$

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;
2. $(X \times X, T \times T)$ is $\bar{\rho}$-continuous;
3. for every $(x, y) \in X \times X$ the system $\overline{\operatorname{Orb}((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon>0$ there is a $\delta>0$ such that for every $x, y \in X$ with $d(x, y)<\delta$

$$
\limsup _{n-m \rightarrow \infty} \frac{1}{n-m} \sum_{k=m}^{n-1} d\left(T^{n} x, T^{n} y\right)<\varepsilon
$$

- J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;
2. $(X \times X, T \times T)$ is $\bar{\rho}$-continuous;
3. for every $(x, y) \in X \times X$ the system $\overline{\operatorname{Orb}((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon>0$ there is a $\delta>0$ such that for every $x, y \in X$ with $d(x, y)<\delta$

$$
\limsup _{n-m \rightarrow \infty} \frac{1}{n-m} \sum_{k=m}^{n-1} d\left(T^{n} x, T^{n} y\right)<\varepsilon
$$

- J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016
- J. Qiu, J. Zhao 2020

$\bar{\rho}$-continuity and mean equicontinuity

Theorem (CKLP '22+)
For a TDS (X, T) the following conditions are equivalent:

1. (X, T) is mean equicontinuous;
2. $(X \times X, T \times T)$ is $\bar{\rho}$-continuous;
3. for every $(x, y) \in X \times X$ the system $\overline{\operatorname{Orb}((x, y), T \times T)}$ is uniquely ergodic and the map $(x, y) \mapsto \mu(x, y)$ is continuous;
4. (X, T) is Weyl mean equicontinuous: if for every $\varepsilon>0$ there is a $\delta>0$ such that for every $x, y \in X$ with $d(x, y)<\delta$

$$
\limsup _{n-m \rightarrow \infty} \frac{1}{n-m} \sum_{k=m}^{n-1} d\left(T^{n} x, T^{n} y\right)<\varepsilon
$$

- J. Li, S. Tu, X. Ye 2015; T. Downarowicz, E. Glanser 2016
- J. Qiu, J. Zhao 2020
- G. Fuhrmann, M. Gröger, and D. Lenz 2022

References

囦 F．Cai，D．Kwietniak，J．Li，H．Pourmand
On the properties of the mean orbital pseudo－metric J．Differential Equations． 318 （2022），1－19．37B05（37A25）．
國 T．Downarowicz，E．Glasner Isomorphic Extensions and Applications
Topol．Methods Nonlinear Anal． 48 （2016），no．1，321－338．
圊 T．Downarowicz，B．Weiss
When all points are generic for ergodic measures
Bull．Pol．Acad．Sci．Math． 68 （2020），no．2，117－132．
目 S．Fomin
On dynamical systems with a purely point spectrum
Doklady Akad．Nauk SSSR（N．S．） 77 （1951），29－32．
围 G．Fuhrmann，M．Gröger，D．Lenz
The structure of mean equicontinuous group actions Israel J．Math． 247 （2022），75－123．

References

㞒 D．Kwietniak，M．Łącka，P．Oprocha
Generic points for dynamical systems with average shadowing Monatsh．Math． 183 （2017），no．4，625－648．

嗇 J．Li，S．Tu，X．Ye
Mean equicontinuity and mean sensivity Ergodic Theory Dynam．Systems．35（2015），no．8，2587－2612

嗇 J．Qiu，J．Zhao
A note on mean equicontinuity
J．Dynam．Differential Equations． 32 （2020），no．1，101－116．
固 L．Zheng，Z．Zheng
A new metric for statistical properties of long term behaviours
J．Differential Equations．269（4）（2020）2741－2773．

