Extension of mappings to non-Tychonoff spaces

Evgenii Reznichenko

2022, July 22, Vienna

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Semitopological groups

Quasicontinuous mappings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

3 Extension of mappings

Separately continuous maps

Recall that the mapping of spaces

 $f: X \times Y \to Z$

is called *separately continuous* if constraints f on a horizontal and vertical sections $X \times Y$ are continuous,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that the mapping of spaces

 $f: X \times Y \to Z$

is called *separately continuous* if constraints f on a horizontal and vertical sections $X \times Y$ are continuous, that is, functions

$$egin{aligned} X o Z, & x \mapsto f(x,y_*), \ Y o Z, & y \mapsto f(x_*,y) \end{aligned}$$

are continuous for all $(x_*,y_*)\in X imes Y$.

A group G with topology is called *semitopological* if the multiplication $(x, y) \mapsto xy$ in G is separately continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A group G with topology is called *semitopological* if the multiplication $(x, y) \mapsto xy$ in G is separately continuous.

Theorem 1.1 [R1994].

Let G be a Tychonoff pseudocompact semitopological group, and G belong to one of the classes below: countably compact spaces; separable spaces; ... Then G is a topological group.

A group G with topology is called *semitopological* if the multiplication $(x, y) \mapsto xy$ in G is separately continuous.

Theorem 1.1 [R1994].

Let G be a Tychonoff pseudocompact semitopological group, and G belong to one of the classes below: countably compact spaces; separable spaces; ... Then G is a topological group.

In particular, a <u>Tychonoff</u> countably compact semitopological group is topological. It was noted in [T2014] that the results of [KKM2001] imply that <u>regular</u> countably compact semitopological group is a topological group.

M.Tkachenko [T2014] poses the question:

Question 1 [T2014].

Let G be a feebly compact regular semitopological group. Assume that G is a separable space (or some other spaces from [R1994]). Is it true that G is a topological group?

M.Tkachenko [T2014] poses the question:

Question 1 [T2014].

Let G be a feebly compact regular semitopological group. Assume that G is a separable space (or some other spaces from [R1994]). Is it true that G is a topological group?

The answer is **YES** for separable spaces.

M.Tkachenko [T2014] poses the question:

Question 1 [T2014].

Let G be a feebly compact regular semitopological group. Assume that G is a separable space (or some other spaces from [R1994]). Is it true that G is a topological group?

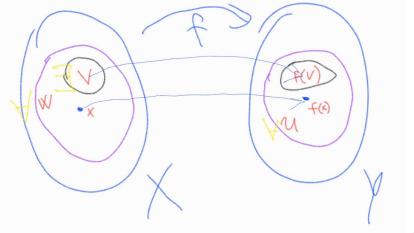
The answer is **YES** for separable spaces.

Theorem 1.2 Main Group Theorem.

Let G be a regular separable feebly compact semitopological group. Then G is a topological group.

Quasicontinuous mappings

A mapping $f: X \to Y$ is called *quasicontinuous* if for any point $x \in X$, any neighborhood $W \subset X$ of the point x and any neighborhood $U \subset Y$ of the point f(x) there exists an open non-empty $V \subset W$ such that $f(V) \subset U$.



From [ArhangelskiiChoban2010, Moors2017] follows

Proposition 1.

Let G be a regular pseudocompact semitopological group. If the multiplication operation on G is quasicontinuous then G is a topological group.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

From [ArhangelskiiChoban2010, Moors2017] follows

Proposition 1.

Let G be a regular pseudocompact semitopological group. If the multiplication operation on G is quasicontinuous then G is a topological group.

Theorem 2.1 QuasicontinuousTheorem.

Let X, Y, Z be regular spaces, X is feebly compact, Y is a separable Baire space and $f : X \times Y \rightarrow Z$ is separately continuous. Then f is quasicontinuous.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

From [ArhangelskiiChoban2010, Moors2017] follows

Proposition 1.

Let G be a regular pseudocompact semitopological group. If the multiplication operation on G is quasicontinuous then G is a topological group.

Theorem 2.1 QuasicontinuousTheorem.

Let X, Y, Z be regular spaces, X is feebly compact, Y is a separable Baire space and $f : X \times Y \rightarrow Z$ is separately continuous. Then f is quasicontinuous.

From Proposition 1 and Theorem 2.1 follows Main Group Theorem 1.2.

A set $D \subset X$ is called *relatively countably compact* in X if any sequence $(d_n)_n$ of points in D has an accumulation point in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A set $D \subset X$ is called *relatively countably compact* in X if any sequence $(d_n)_n$ of points in D has an accumulation point in X.

The space X is called *countably pracompact* if there exists a dense subset D of X such that D is relatively countable compact.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A set $D \subset X$ is called *relatively countably compact* in X if any sequence $(d_n)_n$ of points in D has an accumulation point in X.

The space X is called *countably pracompact* if there exists a dense subset D of X such that D is relatively countable compact.

Let $n \in \omega$. We call a mapping $f : X \to Y$ r_n -continuous if for a sequence

$$U_0 \subset \overline{U_0} \subset U_1 \subset \overline{U_1} \subset ... \subset U_n$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

open subsets of Y we have $f^{-1}(U_0) \subset \operatorname{Int} f^{-1}(U_n)$.

Using the Christensen topological game, one can prove

Theorem 2.2(QuasicontinuousTheorem for pracompact X).

Let $n \in \omega$, X, Y, Z be spaces, $(x_0, y_0) \in X \times Y$, X is countably pracompact and regular at x_0 , Y is a separable Baire space, Z is regular at $f(x_0, y_0)$, $f : X \times Y \to Z$,

$$X \to Z, x \mapsto f(x, y_*)$$
 is continuos
 $Y \to Z, y \mapsto f(x_*, y)$ is r_n -continuos

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへの

for all $(x_*, y_*) \in X \times Y$. Then f is quasicontinuous at (x_0, y_0) .

Corollary 1(QuasicontinuousTheorem for compact X).

Let X, Y, Z be regular spaces, X is (countably) compact, Y is a separable Baire space and $f : X \times Y \rightarrow Z$ is separately continuous. Then f is quasicontinuous.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Corollary 1(QuasicontinuousTheorem for compact X).

Let X, Y, Z be regular spaces, X is (countably) compact, Y is a separable Baire space and $f : X \times Y \rightarrow Z$ is separately continuous. Then f is quasicontinuous.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

For Tychonoff spaces, the corollary can be deduced from well-known theorems

In order to use quasicontinuity theorems with (almost) compact X for feebly compact X we use extension theorems.

In order to use quasicontinuity theorems with (almost) compact X for feebly compact X we use extension theorems.

The general scheme is as follows: for a map $f: X \times Y \to Z$, we find extensions $\hat{f}: \hat{X} \times Y \to \hat{Z}$, such that \hat{X} becomes "more compact" than X, and for \hat{f} we can use the obtained quasicontinuity theorems.

Theorem 3.1 [R1994].

Let X, Y, Z be Tychonoff spaces, X is pseudocompact, Y is a separable space and $f : X \times Y \to Z$ is separately continuous. Then f can be extended to a separately continuous map $\hat{f} : \beta X \times Y \to \beta Z$.

Theorem 3.1 [R1994].

Let X, Y, Z be Tychonoff spaces, X is pseudocompact, Y is a separable space and $f: X \times Y \to Z$ is separately continuous. Then f can be extended to a separately continuous map $\hat{f}: \beta X \times Y \to \beta Z$.

Proof.

It suffices to prove for the case $Z=\mathbb{R}.$ Let's put

$$\Phi: X \to C_{\rho}(Y), \ x \mapsto f_{[x]}: Y \to \mathbb{R}, \ y \mapsto f(x, y).$$

Map Φ is continuos and the space $C_p(Y)$ is submetrazable (becouse Y is separable). Hence $\Phi(X)$ is (metrazable) compact and map Φ can be extended to a continuous map $\widehat{\Phi}: \beta X \to C_p(Y)$. Put $\widehat{f}(x, y) = \widehat{\Phi}(x)(y)$ for $(x, y) \in \beta X \times Y$. Now we can prove QuasicontinuousTheorem for the case when X, Y, Z is Tychonoff.

Now we can prove QuasicontinuousTheorem for the case when X, Y, Z is Tychonoff. Take the extension $\hat{f} : \beta X \times Y \to \beta Z$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now we can prove QuasicontinuousTheorem for the case when X, Y, Z is Tychonoff. Take the extension $\hat{f} : \beta X \times Y \to \beta Z$. Corollary 1 (QuasicontinuousTheorem for compact X) implies that \hat{f} is quasicontinuous.

Now we can prove QuasicontinuousTheorem for the case when X, Y, Z is Tychonoff. Take the extension $\hat{f} : \beta X \times Y \to \beta Z$. Corollary 1 (QuasicontinuousTheorem for compact X) implies that \hat{f} is quasicontinuous. Hence f is quasicontinuous too.

Let $p \in \beta \omega \setminus \omega$ be a free ultrafilter. Let A be a set. Consider an equivalence on A^{ω} : $x \sim y$ iff $\{n \in \omega : x_n = y_n\} \in p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Let $p \in \beta \omega \setminus \omega$ be a free ultrafilter. Let A be a set. Consider an equivalence on A^{ω} : $x \sim y$ iff $\{n \in \omega : x_n = y_n\} \in p$. The equivalence classes in A^{ω} are called *ultrapower* or *non-standard* extension of A and are denoted by A^* .

Let $p \in \beta \omega \setminus \omega$ be a free ultrafilter. Let A be a set. Consider an equivalence on A^{ω} : $x \sim y$ iff $\{n \in \omega : x_n = y_n\} \in p$. The equivalence classes in A^{ω} are called *ultrapower* or *non-standard* extension of A and are denoted by A^* .

The following properties of ultrapowers are well known:

$$(A \cap B)^* = A^* \cap B^*, \quad (A \cup B)^* = A^* \cup B^*, \quad (A \times B)^* = A^* \times B^*.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Any mapping $f : A \rightarrow B$ extends to a mapping $f^* : A^* \rightarrow B^*$.

Let (X, τ) be a space and $U \in \tau$. On the set X^* we consider the topology whose base is formed by the sets U^* for $U \in \tau$.

Let (X, τ) be a space and $U \in \tau$. On the set X^* we consider the topology whose base is formed by the sets U^* for $U \in \tau$.

If a point $x \in X$ is regular in X, then x is regular in X^* .

Let (X, τ) be a space and $U \in \tau$. On the set X^* we consider the topology whose base is formed by the sets U^* for $U \in \tau$.

If a point $x \in X$ is regular in X, then x is regular in X^* .

The set X is relatively countably compact in X^* .

Let X, Y, Z be regular spaces, X is feebly compact, Y is a separable space and $f : X \times Y \to Z$ is separately continuous. Then for $f^* : X^* \times Y \to Z^*$ we have

$$X \to Z^*, x \mapsto f^*(x, y_*)$$
 is continuos
 $Y \to Z^*, y \mapsto f^*(x_*, y)$ is r_3 -continuos

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

for all $(x_*, y_*) \in X^* \times Y$.

Let X, Y, Z be regular spaces, X is feebly compact, Y is a separable space and $f : X \times Y \to Z$ is separately continuous. Then for $f^* : X^* \times Y \to Z^*$ we have

$$X \to Z^*, x \mapsto f^*(x, y_*)$$
 is continuos
 $Y \to Z^*, y \mapsto f^*(x_*, y)$ is r_3 -continuos

for all $(x_*, y_*) \in X^* \times Y$.

Now we can prove the QuasicontinuousTheorem for the case when X, Y, Z is regular. Take the extension $f^* : X^* \times Y \to Z^*$ of f.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Let X, Y, Z be regular spaces, X is feebly compact, Y is a separable space and $f : X \times Y \to Z$ is separately continuous. Then for $f^* : X^* \times Y \to Z^*$ we have

$$X \to Z^*, x \mapsto f^*(x, y_*)$$
 is continuos
 $Y \to Z^*, y \mapsto f^*(x_*, y)$ is r_3 -continuos

for all $(x_*, y_*) \in X^* \times Y$.

Now we can prove the QuasicontinuousTheorem for the case when X, Y, Z is regular. Take the extension $f^* : X^* \times Y \to Z^*$ of f. Theorem 2.2 (QuasicontinuousTheorem for contably pracompact X) implies that f^* is quasicontinuous at (x_0, y_0) for $(x_0, y_0) \in X \times Y$.

Let X, Y, Z be regular spaces, X is feebly compact, Y is a separable space and $f : X \times Y \to Z$ is separately continuous. Then for $f^* : X^* \times Y \to Z^*$ we have

$$X \to Z^*, x \mapsto f^*(x, y_*)$$
 is continuos
 $Y \to Z^*, y \mapsto f^*(x_*, y)$ is r_3 -continuos

for all $(x_*, y_*) \in X^* \times Y$.

Now we can prove the QuasicontinuousTheorem for the case when X, Y, Z is regular. Take the extension $f^* : X^* \times Y \to Z^*$ of f. Theorem 2.2 (QuasicontinuousTheorem for contably pracompact X) implies that f^* is quasicontinuous at (x_0, y_0) for $(x_0, y_0) \in X \times Y$. Hence f is quasicontinuous.

Question 2 [T2014].

Let G be a feebly compact regular semitopological group. Assume that G is a Fréchet space (countable tightness space, k-space). Is it true that G is a topological group?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Question 2 [T2014].

Let G be a feebly compact regular semitopological group. Assume that G is a Fréchet space (countable tightness space, k-space). Is it true that G is a topological group?

Question 3.

Let X, Y, Z be regular spaces, X and Y is feebly compact, Y is a Fréchet space (countable tightness space, k-space) and $f : X \times Y \to Z$ is separately continuous. Is it true that f is quasicontinuous?

Question 2 [T2014].

Let G be a feebly compact regular semitopological group. Assume that G is a Fréchet space (countable tightness space, k-space). Is it true that G is a topological group?

Question 3.

Let X, Y, Z be regular spaces, X and Y is feebly compact, Y is a Fréchet space (countable tightness space, k-space) and $f : X \times Y \to Z$ is separately continuous. Is it true that f is quasicontinuous?

The answers is **YES** for Tychonoff spaces. [R1994]

END