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Submaximal: height h < 2, partial order (no cIouds)
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Complements

In TOP(X), 7= < and 7/ = <’ are complements iff
V7T =P(X)=T and TAT ={0,X} =1
iff
tx N A'x=NXx)NN(x)={x} VxeX,
Tt x =X Wxe X



Short posets have totally ordered complements

If <'is a poset of height h =2 or 3, it has a totally ordered
complement.
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Totally ordered complements only for POsets

If quasiorder < is not a p.o., then < has no totally ordered
complement <’
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Finite non-discrete tops have short To complements

Every non-discrete topology < on a finite set X has a complement
< which is a partial order (i.e., Tp) with height h < 3.
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Every non-discrete topology < on a finite set X has a complement
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Totally ordered spaces have short complements

If |X| > 1 and < is totally ordered, < has a complement of height
2.
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If |X| > 1 and < is totally ordered, < has a complement of height
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Complements of Submaximal Spaces
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Suppose (X, <) is submaximal and not discrete. If <' is a
complement of <, then

(a) every minimal <'-cloud contains some t € T and no points
b <t, and

(b) every maximal <’'-cloud contains an element of B.

A submaximal space <’ with isolated points has no submaximal
complement <.
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Suppose (X, <) is submaximal and not discrete. If <' is a
complement of <, then

(a) every minimal <'-cloud contains some t € T and no points
b < t, and

(b) every maximal <'-cloud contains an element of B.
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A submaximal space <' with isolated points has no submaximal
complement <.
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Proof: A <’ isolated point t would be a <’-maximal and a
<’-minimal cloud, sot € TN B = (. m



Sumbax comps of Submax spaces

A submaximal space (X, <) has a submaximal complement iff it
has no isolated points.
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has no isolated points.

Note: Edwin Hewitt calls submaximal with no isolated points. “MI
spaces”.



Sumbax comps of Submax spaces

A submaximal space (X, <) has a submaximal complement iff it
has no isolated points.

Flip <, pick one minimal point from each component, cyclically
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Door spaces have totally ordered complements
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Door spaces have totally ordered complements
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Indeed, if | X| = n and |B| = b, there are b(n — 2)! totally ordered
complements.



Whyburn Complements of Whyburn spaces

If no isolated points, no “branches” (i.e., |B| = |T|, K =0)
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Take <’ to be > with the boxed elements from < cyclically
permuted in <’
<"is a Ty complement of <.




Whyburn Complements of Whyburn spaces

With isolated points
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Not every Whyburn space has a Whyburn complement

(a) If (X, <) is a Whyburn space with C = () and |T| > |B| > 1,
then < has a Whyburn complement if and only if |B| = | T|
and K = 0.

(b) If (X, <) is a Whyburn space with T = B = () and
4 < |C| < |K|, then < has no Whyburn complement.

Example: Whyburn spaces
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has a Whyburn complement; Y and Z do not.
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