Complements of Topologies with Short Specialization Quasiorders

> Veronica Pierre and Tom Richmond Western Kentucky University

Summer Topology Conference July 18–22, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro

All spaces X are finite. Thus, Topologies on X = Quasiorders on X.

Order TheoryTopology $x \lesssim y \iff x \in d(y) = \downarrow y \iff x \in cl\{y\}$ \updownarrow \downarrow \downarrow $y \gtrsim x \iff y \in i(x) = \uparrow x \iff y \in N(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro

All spaces X are finite. Thus, Topologies on X = Quasiorders on X.

Order TheoryTopology $x \lesssim y \iff x \in d(y) = \downarrow y \iff x \in cl\{y\}$ \updownarrow \downarrow $y \gtrsim x \iff y \in i(x) = \uparrow x \iff y \in N(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $x \approx y$ iff $x \lesssim y$ and $y \lesssim x$ is an equivalence relation. $[x] \leq [y]$ iff $x \lesssim y$ is a partial order on X/\approx .

Intro

All spaces X are finite. Thus, Topologies on X = Quasiorders on X.

Order Theory Topology $\begin{array}{cccc} x \lesssim y & \Longleftrightarrow & x \in d(y) = \downarrow y & \Longleftrightarrow & x \in cl\{y\} \\ & & & & \\ y \gtrsim x & \Longleftrightarrow & y \in i(x) = \uparrow x & \Longleftrightarrow & y \in N(x) \end{array}$ $x \approx y$ iff $x \leq y$ and $y \leq x$ is an equivalence relation. b c $[x] \leq [y]$ iff $x \leq y$ is a partial order on X/\approx . "cloud" Hasse diagram for $a \lesssim b \lesssim c \lesssim b \lesssim d$ a

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tops with short quasiorders

Submaximal: height $h \leq 2$, partial order (no clouds)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Tops with short quasiorders

Submaximal: height $h \le 2$, partial order (no clouds)

Door: $h \leq 2$, partial order, all chains have a common point

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Tops with short quasiorders

Submaximal: height $h \le 2$, partial order (no clouds)

Door: $h \leq 2$, partial order, all chains have a common point

Whyburn: $|\downarrow x| \le 2 \quad \forall x \in X$

$$[\bigvee \bigvee \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cdots$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Complements

In
$$TOP(X)$$
, $\tau = \lesssim$ and $\tau' = \lesssim'$ are complements iff
 $\tau \lor \tau' = \mathcal{P}(X) = \top$ and $\tau \land \tau' = \{0, X\} = \bot$

iff

$$\uparrow x \cap \uparrow' x = N(x) \cap N'(x) = \{x\} \quad \forall x \in X,$$

$$\uparrow \uparrow' \uparrow \uparrow' \cdots \uparrow \uparrow' \uparrow \uparrow' x = X \quad \forall x \in X$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

Short posets have totally ordered complements

If \leq is a poset of height h = 2 or 3, it has a totally ordered complement.

イロト 不得 トイヨト イヨト

э

Short posets have totally ordered complements

If \leq is a poset of height h = 2 or 3, it has a totally ordered complement.

イロト イヨト イヨト

Totally ordered complements only for POsets

If quasiorder $\lesssim\,$ is not a p.o., then $\,\lesssim\,$ has no totally ordered complement \leq'

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Totally ordered complements only for POsets

If quasiorder $\lesssim\,$ is not a p.o., then $\,\lesssim\,$ has no totally ordered complement \leq'

Case 1: $b \in \uparrow a \cap \uparrow' a$, so $\uparrow a \cap \uparrow' a \neq \{a\}$.

Case 2: $a \in \uparrow b \cap \uparrow' b$, so $\uparrow b \cap \uparrow' b \neq \{b\}$.

Every non-discrete topology \lesssim on a finite set X has a complement \leq which is a partial order (i.e., T_0) with height $h \leq 3$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every non-discrete topology \lesssim on a finite set X has a complement \leq which is a partial order (i.e., T_0) with height $h \leq 3$.

Every non-discrete topology \lesssim on a finite set X has a complement \leq which is a partial order (i.e., T_0) with height $h \leq 3$.

Every non-discrete topology \lesssim on a finite set X has a complement \leq which is a partial order (i.e., T_0) with height $h \leq 3$.

人口 医水黄 医水黄 医水黄素 化甘油

Totally ordered spaces have short complements

If |X| > 1 and \leq is totally ordered, \leq has a complement of height 2.

Totally ordered spaces have short complements

If |X| > 1 and \leq is totally ordered, \leq has a complement of height 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complements of Submaximal Spaces

Theorem

Suppose (X, \leq) is submaximal and not discrete. If \leq' is a complement of \leq , then

- (a) every minimal \leq '-cloud contains some $t \in T$ and no points b < t, and
- (b) every maximal \leq' -cloud contains an element of B.

Corollary

A submaximal space \leq' with isolated points has no submaximal complement \leq .

Complements of Submaximal Spaces

Theorem

Suppose (X, \leq) is submaximal and not discrete. If \leq' is a complement of \leq , then

- (a) every minimal \leq' -cloud contains some $t \in T$ and no points b < t, and
- (b) every maximal \leq' -cloud contains an element of B.

Corollary

A submaximal space \leq' with isolated points has no submaximal complement \leq .

Proof: A \leq' isolated point *t* would be a \leq' -maximal and a \leq' -minimal cloud, so $t \in T \cap B = \emptyset$.

Sumbax comps of Submax spaces

Theorem

A submaximal space (X, \leq) has a submaximal complement iff it has no isolated points.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Sumbax comps of Submax spaces

Theorem

A submaximal space (X, \leq) has a submaximal complement iff it has no isolated points.

Note: Edwin Hewitt calls submaximal with no isolated points. "MI spaces".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sumbax comps of Submax spaces

Theorem

A submaximal space (X, \leq) has a submaximal complement iff it has no isolated points.

Flip \leq , pick one minimal point from each component, cyclically permute.

(日) (四) (日) (日) (日)

Door spaces have totally ordered complements

イロト 不得 トイヨト イヨト

э

Door spaces have totally ordered complements

Indeed, if |X| = n and |B| = b, there are b(n-2)! totally ordered complements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Whyburn Complements of Whyburn spaces

If no isolated points, no "branches" (i.e., |B| = |T|, $K = \emptyset$)

Take \leq' to be \geq with the boxed elements from \leq cyclically permuted in \leq' . \leq'' is a T_0 complement of \leq .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Whyburn Complements of Whyburn spaces

With isolated points

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Not every Whyburn space has a Whyburn complement

Theorem

(a) If (X, \leq) is a Whyburn space with $C = \emptyset$ and $|T| \geq |B| > 1$, then \leq has a Whyburn complement if and only if |B| = |T|and $K = \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(b) If (X, \leq) is a Whyburn space with $T = B = \emptyset$ and $4 \leq |C| \leq |K|$, then \leq has no Whyburn complement.

Example: Whyburn spaces

X has a Whyburn complement; Y and Z do not.

References

- Sami Lazaar, Houssem Sabri, and Randa Tahri, On some topological properties in the class of Alexandroff spaces, Turkish J. Math. 45 (2021) no. 1, 479–486.
- E. Hewitt, A problem of set theoretic topology, Duke Math. J. 10 (1943) no. 2 309-333.
- Veronica Pierre, Tom Richmond, Complements of Topologies with short specialization quasiorders Topology Appl. 61 (2023), 145–153.
- Stephen Watson, The number of complements in the lattice of topologies on a fixed set, Topology Appl. 55 (1994), no. 2, 101–125.