Substitutions on compact alphabets

Dan Rust joint work with Neil Mañibo and Jamie Walton

Open University

19/7/2022

A substitution

 $\mathcal{A} = \mathbb{N}^* = \mathbb{N} \cup \{\infty\}$

$$\phi \colon \left\{ \begin{array}{rrr} 0 & \mapsto & 0 \ 1 \\ i & \mapsto & 0 \ (i-1) \ (i+1) \\ \infty & \mapsto & 0 \ \infty \ \infty \end{array} \right.$$

 $0\mapsto 01\mapsto 01002\mapsto 010020101013\mapsto 010020101013010020100201002024$

A substitution

 $\mathcal{A} = \mathbb{N}^* = \mathbb{N} \cup \{\infty\}$

$$\phi \colon \left\{ \begin{array}{rrr} 0 & \mapsto & 0 \ 1 \\ i & \mapsto & 0 \ (i-1) \ (i+1) \\ \infty & \mapsto & 0 \ \infty \ \infty \end{array} \right.$$

 $0\mapsto 01\mapsto 01002\mapsto 010020101013\mapsto 010020101013010020100201002024$

 ϕ has a bi-infinite fixed point

 $\cdots 01002010\infty \infty 0\infty \infty 010\infty \infty 0\infty \infty . 010020101013010020100201002024 \cdots$

Question: Do frequencies of letters exist? Uniformly? **Question:** What's the growth rate of $|\phi^n(i)|$? If $|\phi^n(i)| \sim \lambda^n$, what is λ ? **Question:** Does λ have to be algebraic? **Question:** Do natural tile lengths exist?

Symbolic dynamics on compact alphabets

• \mathcal{A} — Compact Hausdorff alphabet

- Ex.: S^1 , \mathbb{N}^* , $\{0,1\}^{\mathbb{N}}$, compact manifolds, attractors, etc., . . .
- $\mathcal{A}^+ = \bigsqcup_{n=1}^{\infty} \mathcal{A}^n$ Finite words over \mathcal{A} (product topology on \mathcal{A}^n)
- $\mathcal{A}^{\mathbb{Z}} = \{ \cdots x_{-2}x_{-1} \cdot x_0 x_1 x_2 \cdots \mid x_i \in \mathcal{A} \}$ Full shift on \mathcal{A} with the product topology (so compact, Hausdorff)
- $S: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}: x_i \mapsto x_{i+1}$ Left shift map, homeomorphism
- $X \subseteq \mathcal{A}^{\mathbb{Z}}$, closed, *S*-invariant **Subshift**

For
$$x \in \mathcal{A}^{\mathbb{Z}}$$
, $X_x := \overline{\{S^n(x) \mid n \in \mathbb{Z}\}}$ — orbit closure

Some general properties

- Easy to show that X_x is a subshift
- $x \in X$ has dense orbit if and only if X is topologically transitive
- Every orbit in X is dense if and only if X is minimal
- A^ℤ has a dense orbit if and only if A is separable
 So if X has a dense orbit, then A must be separable

Repetitivity

For
$$x \in \mathcal{A}^{\mathbb{Z}}$$
, $\mathcal{L}^{n}(x) := \{u \triangleleft x : |u| = n\}$ — legal words
Ex.: $\mathcal{A} = S^{1}$, $x = \cdots [\alpha^{-2}][\alpha^{-1}].[1][\alpha][\alpha^{2}] \cdots$, $\mathcal{L}^{2}(x) = \{[\alpha^{i}][\alpha^{i+1}]\}$
Notice that $\mathcal{L}^{2}(x)$ is not closed; $\overline{\mathcal{L}^{2}(x)} = \{[z][\alpha z] \mid z \in S^{1}\} \subset \mathbb{T}^{2}$

Repetitivity

For
$$x \in \mathcal{A}^{\mathbb{Z}}$$
, $\mathcal{L}^{n}(x) := \{u \triangleleft x : |u| = n\}$ — legal words
Ex.: $\mathcal{A} = S^{1}$, $x = \cdots [\alpha^{-2}][\alpha^{-1}].[1][\alpha][\alpha^{2}]\cdots$, $\mathcal{L}^{2}(x) = \{[\alpha^{i}][\alpha^{i+1}]\}$
Notice that $\mathcal{L}^{2}(x)$ is not closed; $\overline{\mathcal{L}^{2}(x)} = \{[z][\alpha z] \mid z \in S^{1}\} \subset \mathbb{T}^{2}$

$$\mathcal{L}^{n}(X) = \bigcup_{x \in X} \mathcal{L}^{n}(x) - \text{legal words for subshift } X \subset \mathcal{A}^{\mathbb{Z}}$$

Always have $\mathcal{L}^n(X_x) = \overline{\mathcal{L}^n(x)}$ (need to take closure)

Definition

 $x \in \mathcal{A}^{\mathbb{Z}}$ is **repetitive** if for all $n \ge 1$ and any open subset $U \subset \mathcal{L}^n(X_x)$, there exists an N = N(n, U) such that for all $u \in \mathcal{L}^N(X_x)$, there is a subword of u in U.

The following is well-known for finite alphabets and basically the same argument works for compact Hausdorff alphabets

Proposition

Let $x \in \mathcal{A}^{\mathbb{Z}}$. The following are equivalent:

- x is repetitive
- X_x is minimal
- Every element of X_x is repetitive
- Every element of X_x has dense orbit

Main point: this definition of repetitivity is the right one.

A substitution is a **continuous** function $\phi \colon \mathcal{A} \to \mathcal{A}^+$

Immediate consequences:

- Compactness of $\mathcal{A} \implies |\phi(a)|$ is bounded (normally has to be assumed)
- If $\mathcal A$ is connected, then ϕ has no choice, it *has* to be constant length

- ϕ -periodic points don't always exist build language directly
- $u \in \mathcal{A}^n$ is generated by ϕ if $u \triangleleft \phi^k(a)$, $a \in \mathcal{A}$, $k \ge 0$
- $\mathcal{L}(\phi) := \overline{\{u \in \mathcal{A}^+ \mid u \text{ generated}\}}$ Language of ϕ
- $X_{\phi} := \{x \in \mathcal{A}^{\mathbb{Z}} \mid u \triangleleft x \implies u \in \mathcal{L}(\phi)\}$ Subshift of ϕ

Theorem (Mañibo-R.-Walton '22)

 X_{ϕ} is non-empty if and only if $\sup_{a \in \mathcal{A}, n \geq 0} |\phi^n(a)| = \infty.$

Corollary: If $\lim_{n \to \infty} |\phi^n(a)| = \infty$ for some $a \in \mathcal{A}$, then X_{ϕ} is non-empty

Theorem (Mañibo-R.-Walton '22)

$$X_{\phi}$$
 is non-empty if and only if $\sup_{a \in \mathcal{A}, n \geq 0} |\phi^n(a)| = \infty.$

Corollary: If $\lim_{n \to \infty} |\phi^n(a)| = \infty$ for some $a \in \mathcal{A}$, then X_{ϕ} is non-empty

Converse is *not* true $\mathcal{A} = \mathbb{N}^* \times \mathbb{N}^*$ $\phi \begin{bmatrix} n \\ m \end{bmatrix} = \begin{cases} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, & m = 0, n = 0 \\ \begin{bmatrix} n \\ m-1 \end{bmatrix}, & m > 0 \\ \begin{bmatrix} n \\ m-1 \end{bmatrix} \begin{bmatrix} 0 \\ n \end{bmatrix}, & m = 0, n > 0 \end{cases}$ $\begin{bmatrix} 2 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} 2 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $X_{\phi} = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{\infty} \}$

Primitivity

[Durand–Ormes–Petite '18, Frank–Sadun '14, Queffelec '87] ϕ is primitive if for every open $U \subset A$, there is k = k(U) such that for all $a \in A$, some letter of $\phi^k(a)$ is in U

Ex.:
$$\mathcal{A} = S^1$$
, $\phi : [\theta] \to [\theta][\alpha\theta]$ for α irrational Kronecker's theorem \implies primitive

Ex.: $\mathcal{A} = \mathbb{N}^*$, $\phi: n \to 0 \ n+1$

Given k, $\phi^k(n)$ hits the open interval $[k, \infty]$, so primitive.

Ex.: $\mathcal{A} = \mathbb{N}^*$, $\phi: n \to n-1$ n n+1

Not primitive because you have to take different powers to hit 0 depending on *n* (also $\infty \mapsto \infty \infty \infty$)

Theorem (Durand-Ormes-Petite '18)

If ϕ is primitive, then X_{ϕ} is minimal.

Hence every $x \in X_{\phi}$ has dense orbit and is repetitive

Question: Primitive $\implies X_{\phi}$ uniquely ergodic?

Theorem (Durand–Ormes–Petite '18)

If ϕ is primitive, then X_{ϕ} is minimal.

Hence every $x \in X_{\phi}$ has dense orbit and is repetitive

Question: Primitive $\implies X_{\phi}$ uniquely ergodic?

Answer: No! Counterexample given by DOP.

We need stronger conditions.

What about Perron–Frobenius theory, expansion factors, frequencies, natural tile-lengths, unique ergodicity, etc...?

Have to consider the operator

$$T: C(\mathcal{A}, \mathbb{R}) \to C(\mathcal{A}, \mathbb{R})$$
$$Tf(a) = \sum_{i=1}^{|\phi(a)|} f(\phi(a)_i)$$

T is a **positive** operator because $f \ge 0 \implies Tf \ge 0$

Note: T is the **transpose** of the usual substitution matrix when A is finite

In general, exists no power p such that for all $f \ge 0$, $T^p f > 0$.

Too much to ask for! Perron-Frobenius theory fails in infinite dimensions

In general, exists no power p such that for all $f \ge 0$, $T^p f > 0$.

Too much to ask for! Perron-Frobenius theory fails in infinite dimensions

An operator T is strongly positive if for all $0 \neq f \geq 0$, there exists k = k(f) such that $T^k f > 0$

Proposition (Mañibo-R.-Walton '22)

 ϕ is primitive if and only if T is strongly positive.

Allows us to use the theory of strongly positive operators on Banach lattices (rich, beautiful theory from 60s & 70s — Abdelaziz, Karlin, Schaefer,...)

A continuous $L: \mathcal{A} \to \mathbb{R}$ is a length function if for all $a \in \mathcal{A}$,

$$\sum_{i=1}^{|\phi(\mathsf{a})|} L(\phi(\mathsf{a})_i) = \lambda L(\mathsf{a}), \qquad \lambda > 1$$

Gives consistent geometric inflation rule Inflation factor $\boldsymbol{\lambda}$

A continuous $L: \mathcal{A} \to \mathbb{R}$ is a length function if for all $a \in \mathcal{A}$,

$$\sum_{i=1}^{|\phi(\mathsf{a})|} L(\phi(\mathsf{a})_i) = \lambda L(\mathsf{a}), \qquad \lambda > 1$$

Gives consistent geometric inflation rule Inflation factor $\boldsymbol{\lambda}$

L is a length function \iff *L* is an eigenfunction of *T* ($\lambda > 1$)

Really, we want L to be strictly positive

Frank and Sadun's 'fusion' framework (+ some technicalities) shows that invariant measures for X_{ϕ} correspond to eigenmeasures of T' (need the existence of a length function L > 0 with $\lambda > 1$)

T' has a unique positive eigenmeasure $\iff X_{\phi}$ is uniquely ergodic

Main results

T is called **quasi-compact** if $||T^n - C|| < \rho^n$ for compact C and $n \ge 1$

Main results

T is called **quasi-compact** if $||T^n - C|| < \rho^n$ for compact C and $n \ge 1$

Theorem (Mañibo-R.-Walton '22)

Suppose ϕ is primitive and T is quasi-compact. Then:

- ρ is isolated in the spectrum of T
- ρ is a pole of the resolvent
- $|\phi^n(a)| \sim \rho^n$
- ϕ has a continuous length function L with $\lambda =
 ho > 1$
- L > 0
- L is unique (up to rescaling)
- L is the only strictly positive eigenfunction
- T' admits a unique positive eigenmeasure (up to rescaling) so X_{ϕ} is uniquely ergodic

Main results

T is called **quasi-compact** if $||T^n - C|| < \rho^n$ for compact C and $n \ge 1$

Theorem (Mañibo-R.-Walton '22)

Suppose ϕ is primitive and T is quasi-compact. Then:

- ρ is isolated in the spectrum of T
- ρ is a pole of the resolvent
- $|\phi^n(a)| \sim \rho^n$
- ϕ has a continuous length function L with $\lambda = \rho > 1$
- L > 0
- L is unique (up to rescaling)
- L is the only strictly positive eigenfunction
- T' admits a unique positive eigenmeasure (up to rescaling) so X_{ϕ} is uniquely ergodic

So it's important to find conditions which ensure T is quasi-compact!

Theorem (Mañibo-R.-Walton '22)

Suppose there is a finite set of isolated points $P\subset \mathcal{A}$ and $k\geq 0$ such that for all $a\in \mathcal{A}$

 $\#\{b \triangleleft \phi^k(a) \mid b \notin P\} < \rho^k.$

Then T is quasi-compact.

Condition says if we look at large enough ϕ^k , few land outside of *P*.

Making P larger or k greater makes it easier to satisfy the bounds.

It would be good if we could replace P isolated & finite with a weaker condition.

Actually, we can drop the isolated condition, but we pay with a factor of 2 on the LHS

Applying to an example

$$\begin{split} \mathcal{A} &= \mathbb{N}^* = \mathbb{N} \cup \{\infty\} \\ \phi \colon \begin{cases} 0 &\mapsto 0 \ 1 \\ i &\mapsto 0 \ (i-1) \ (i+1) \\ \infty &\mapsto 0 \ \infty \ \infty \end{cases} \end{split}$$
Take *P* = {0}.

Easy to see that $\rho^2 \ge 5$ because $\min_{a \in A} |\phi^2(a)| = 5$. We have $\#\{b \triangleleft \phi(a) \mid b \neq 0\} \le 2 < \sqrt{5} \le \rho$, so condition holds. Hence X_{ϕ} is uniquely ergodic!

Applying to an example

. A

$$\begin{split} \mathcal{A} &= \mathbb{N}^* = \mathbb{N} \cup \{\infty\} \\ \phi \colon \left\{ \begin{array}{ccc} 0 &\mapsto & 0 \ 1 \\ i &\mapsto & 0 \ (i-1) \ (i+1) \\ \infty &\mapsto & 0 \ \infty \ \infty \end{array} \right. \end{split}$$
Take $P = \{0\}$.

Easy to see that $ho^2 \geq 5$ because $\min_{a \in \mathcal{A}} |\phi^2(a)| = 5.$ We have $\#\{b \triangleleft \phi(a) \mid b \neq 0\} \le 2 < \sqrt{5} \le \rho$, so condition holds. Hence X_{ϕ} is uniquely ergodic!

In fact, $\rho = \frac{5}{2}$, and we can find (with some difficulty) the frequencies and natural tile lengths of the letters.

$$\mu[i] = 2^{-(i+1)}, \qquad L(i) = 2 - 2^{-i}$$

 $\mathcal{A} = S^1$

$$[z] \mapsto [z][\alpha z]$$

Then *T* is not quasi-compact!

T is strongly power convergent though, and X_{ϕ} is uniquely ergodic

Can show that if the columns of a primitive, constant length substitution generate a uniformly equicontinuous family then T is strongly power convergent, which is also enough for unique ergodicity (similar to result of [Queffelec '87])

Question: What condition *P* on *T* gives "primitivity $+ P \implies$ unique ergodicity"?

Thank you!

unless I have extra time?

19/7/2022 20 / 23

[Frank–Sadun '14] Without continuity, one can get ρ not isolated — this causes lots of problems!

Question: Do our conditions stop this from happening?

[Frank–Sadun '14] Without continuity, one can get ρ not isolated — this causes lots of problems!

Question: Do our conditions stop this from happening?

Theorem (Mañibo-R.-Walton '22)

If ϕ is primitive and T is quasi-compact, then T has a spectral gap. That is, there is $r < \rho$ such that $\sigma \setminus \{\rho\} \subset B_r(0)$.

Follows from classic result that T strongly positive and quasi-compact \implies spectral gap.

Discrepancy estimates

If we have a spectral gap, then for all $f \in C(\mathcal{A})$, $a \in \mathcal{A}$, $n \geq 1$

$$\operatorname{Err}(f, a, n) := |\overbrace{\rho^n L(a) \cdot \mu(f)}^{\operatorname{expected value}} - \overbrace{T^n f(a)}^{\operatorname{actual value}}| = O(r^n)$$

If we have a spectral gap, then for all $f \in \mathcal{C}(\mathcal{A})$, $a \in \mathcal{A}$, $n \geq 1$

$$\operatorname{Err}(f, a, n) := |\overbrace{\rho^n L(a) \cdot \mu(f)}^{\operatorname{expected value}} - \overbrace{T^n f(a)}^{\operatorname{actual value}}| = O(r^n)$$

This is a key property used in the finite alphabet setting as it bounds 'discrepancy estimates'. Will be useful in the future.

Means we can look at questions like weak-mixing, topological mixing, when a tiling is bounded distance to a lattice, cut-and-project methods, what it means to be a 'Pisot' substitution, (i.e., when r < 1), etc., ...

Thank you!