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Motivation

Euler’s equations for the velocity vt of a perfect fluid :{
∇ · vt = 0

∂vt
∂t + (vt · ∇)vt +∇p = ~0

I the circulation of vt
along ct(s) is constant

I ωt = ∇× vt preserves
the volume and is carried
by the flow

Given X preserving µ on S3,
can we construct invariants by µ-preserving diffeomorphism ?
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Helicity and linking number

Suppose µ is a volume.
Proposition
Hel(X , µ) =

∫
S3 αX ∧ dαX is the helicity of X , where dαX = iXµ.
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Theorem (Arnold-Vogel)
Suppose µ is a volume. Then µ-almost everywhere we have :

LkX (p1, p2) := lim
t1,t2→∞

1
t1t2

Link(kX (p1, t1), kX (p2, t2))

and the average of the quantity LkX (p1, p2) is equal to
1

µ(S3)Hel(X , µ).



I Take a link (or knot) invariant l ;
I Form the knots kX (pi ,Ti ) ;
I If for almost (p1, ..pn), l(kX (p1,T1), ..., kX (pn,Tn)) is

asymptotically l∞(p1, ...pn)× T m1
1 ...T mn

n and if the function
(p1, ..., pn) 7→ l∞(p1, ...pn) is integrable with respect to µ,
then its integral is an invariant !

A lot of knot invariants =⇒ a lot of asymptotic invariants ?

Theorem (Kudryavtseva’15, Encisco-Peralta-Torres’16)
If X is ergodic for µ, every regular integral invariant is a C1

function of helicity.
Even if we ask for less regular invariants, some turn out to be
function of helicity when X is ergodic for µ...
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The trunkenness of vector fields [Dehornoy-Rechtman’17]

©Dehornoy

Definition
The trunk of a knot k is given by

Trunk(k) = min
h height fct

max
t∈]0,1[

]{h−1(t) ∩ k} .

Definition (Generalisation)
Let X be a vector field on S3 preserving a probability measure µ.
The trunkenness of (X , µ) is given by

Tks(X , µ) = inf
h height function

max
t∈[0,1]

lim
ε→0

1
ε
µ
(
φ

[0,ε]
X

(
h−1(t)

))
.
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The trunkenness of vector fields [Dehornoy-Rechtman’17]

Theorem (Dehornoy-Rechtman’17)
Invariance : The trunkenness is invariant by µ-preserving

homeomorphisms.
Continuity : There is a topology for the vector field and the measure

which makes the trunkenness continuous in some sense.
Asymptotic : For µ-almost every p ∈ S3, the limit

lim
t→∞

1
t Trunk(kX (p, t))

exists and is equal in average to Tks(X , µ).



Bridge number of vector fields [R. ’21]

Definition
The bridge number of the knot k is given
by

Bridge(k) = min
h height fct

1
2]{Local extrema of h|k} .

Definition (Generalisation)
The bridge number of (X , µ) is given by

b(X , µ) = inf
h height function

1
2 lim
ε→0

1
ε
µ
(
φ

[0,ε]
X

(
∪1

t=0TX
(

h−1(t)
)))

.



Bridge number of vector fields [R. ’21]

Definition
The bridge number of the knot k is given
by

Bridge(k) = min
h height fct

1
2]{Local extrema of h|k} .

Definition (Generalisation)
The bridge number of (X , µ) is given by

b(X , µ) = inf
h height function

1
2 lim
ε→0

1
ε
µ
(
φ

[0,ε]
X

(
∪1

t=0TX
(

h−1(t)
)))

.



Bridge number of vector fields [R. ’21]

Definition
The bridge number of the knot k is given
by

Bridge(k) = min
h height fct

1
2]{Local extrema of h|k} .

Definition (Generalisation)
The bridge number of (X , µ) is given by

b(X , µ) = inf
h height function

1
2 lim
ε→0

1
ε
µ
(
φ

[0,ε]
X

(
∪1

t=0TX
(

h−1(t)
)))

.



Bridge number of vector fields [R. ’21]

Theorem (R.’21)
Invariance : The bridge number of vector fields is invariant by

µ-preserving C1-diffeomorphisms.
Continuity : Let (Xn, µn) a sequence of measure-preserving vector

fields such that (Xn)n∈N tends to X in the C0 topology and
(µn)n∈N converges to µ in the weak* sense. Then

lim
n→∞

b(Xn, µn) = b(X , µ) .

Asymptotic : For µ-almost every p ∈ S3, the limit

lim
t→∞

1
t Bridge(kX (p, t))

exists and is equal in average to b(X , µ).



Example

Seifert flow on S3 of parameters
(α, β) ∈ (R∗+)2.

φt
α,β(z1, z2) =

(
eiαtz1, eiβtz2

)
I Torii | z1

z2
| = c are invariant ;

I If α/β is rational, orbits are
torus knots ;

I Preserves the volume (Haar
measure) ; non-ergodic but
can be C1-perturbated into
an ergodic vector field.
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Independance

I Hel(X ,Vol) = αβ

I b(X ,Vol) = min{α, β}
I Tks(X ,Vol) = 2 min{α, β}

Independance of the trunkenness
and the bridge number ?
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Independance

I Hel(X ,Vol) = αβ

I b(X ,Vol) = min{α, β}
I Tks(X ,Vol) = 2 min{α, β}

Independance of the trunkenness
and the bridge number ?
I Bridge(k1]k2) =

Bridge(k1) + Bridge(k2)−1.
I Trunk(k1]k2) =

max {Trunk(k1),Trunk(k2)}.



Further questions

Theorem (Dehornoy-Rechtman’17)
Let X be a non-singular vector field on S3 preserving the measure
µ and h a height function such that

Tks(X , µ) = max
t∈[0,1]

lim
ε→0

1
ε
µ
(
φ

[0,ε]
X

(
h−1(t)

))
.

Then X has an unknotted periodic orbit.

I Could the difference 2b − Tks indicate the existence of
composite knots among the orbits ?

I Are the trunkenness or the bridge number related to energy ?
I Generalisation of these invariants to foliations of higher

dimension in spaces of higher dimension ?
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Thank you for listening !
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