Asymptotic invariants of measure preserving vector fields

Marianne Rydzek

IRMA, University of Strasbourg (France)
2022 July 21, at SumTopo22

| Université |
| :--- |$|$

Motivation

Helicity and linking number

New asymptotic invariants

Example

Motivation

Euler's equations for the velocity v_{t} of a perfect fluid:

$$
\left\{\begin{aligned}
\nabla \cdot v_{t} & =0 \\
\frac{\partial v_{t}}{\partial t}+\left(v_{t} \cdot \nabla\right) v_{t}+\nabla p & =\overrightarrow{0}
\end{aligned}\right.
$$

Motivation

Euler's equations for the velocity v_{t} of a perfect fluid:

$$
\left\{\begin{aligned}
\nabla \cdot v_{t} & =0 \\
\frac{\partial v_{t}}{\partial t}+\left(v_{t} \cdot \nabla\right) v_{t}+\nabla p & =\overrightarrow{0}
\end{aligned}\right.
$$

- the circulation of v_{t} along $c_{t}(s)$ is constant
- $\omega_{t}=\nabla \times v_{t}$ preserves the volume and is carried by the flow

Motivation

Euler's equations for the velocity v_{t} of a perfect fluid:

$$
\left\{\begin{aligned}
\nabla \cdot v_{t} & =0 \\
\frac{\partial v_{t}}{\partial t}+\left(v_{t} \cdot \nabla\right) v_{t}+\nabla p & =\overrightarrow{0}
\end{aligned}\right.
$$

- the circulation of v_{t} along $c_{t}(s)$ is constant
- $\omega_{t}=\nabla \times v_{t}$ preserves the volume and is carried by the flow

Given X preserving μ on \mathbb{S}^{3},
can we construct invariants by μ-preserving diffeomorphism ?

Helicity and linking number

Suppose μ is a volume.
Proposition
$\operatorname{Hel}(X, \mu)=\int_{\mathbb{S}^{3}} \alpha_{X} \wedge d \alpha_{X}$ is the helicity of X, where $d \alpha_{X}=i_{X} \mu$.

Helicity and linking number
Suppose μ is a volume.
Proposition
$\operatorname{Hel}(X, \mu)=\int_{\mathbb{S}^{3}} \alpha_{X} \wedge d \alpha_{X}$ is the helicity of X, where $d \alpha_{X}=i_{X} \mu$.

Theorem (Arnold-Vogel)
Suppose μ is a volume. Then μ-almost everywhere we have :

$$
L k_{x}\left(p_{1}, p_{2}\right):=\lim _{t_{1}, t_{2} \rightarrow \infty} \frac{1}{t_{1} t_{2}} \operatorname{Link}\left(k_{X}\left(p_{1}, t_{1}\right), k_{X}\left(p_{2}, t_{2}\right)\right)
$$

and the average of the quantity $L k_{X}\left(p_{1}, p_{2}\right)$ is equal to $\frac{1}{\mu\left(\mathbb{S}^{3}\right)} \operatorname{Hel}(X, \mu)$.

- Take a link (or knot) invariant I;
- Form the knots $k_{X}\left(p_{i}, T_{i}\right)$;
- If for almost $\left(p_{1}, . . p_{n}\right), I\left(k_{X}\left(p_{1}, T_{1}\right), \ldots, k_{x}\left(p_{n}, T_{n}\right)\right)$ is asymptotically $I_{\infty}\left(p_{1}, \ldots p_{n}\right) \times T_{1}^{m_{1}} \ldots T_{n}^{m_{n}}$ and if the function $\left(p_{1}, \ldots, p_{n}\right) \mapsto I_{\infty}\left(p_{1}, \ldots p_{n}\right)$ is integrable with respect to μ, then its integral is an invariant!

A lot of knot invariants \Longrightarrow a lot of asymptotic invariants ?

- Take a link (or knot) invariant $/$;
- Form the knots $k_{X}\left(p_{i}, T_{i}\right)$;
- If for almost $\left(p_{1}, . . p_{n}\right), I\left(k_{X}\left(p_{1}, T_{1}\right), \ldots, k_{X}\left(p_{n}, T_{n}\right)\right)$ is asymptotically $I_{\infty}\left(p_{1}, \ldots p_{n}\right) \times T_{1}^{m_{1}} \ldots T_{n}^{m_{n}}$ and if the function $\left(p_{1}, \ldots, p_{n}\right) \mapsto I_{\infty}\left(p_{1}, \ldots p_{n}\right)$ is integrable with respect to μ, then its integral is an invariant!

A lot of knot invariants \Longrightarrow a lot of asymptotic invariants ?

Theorem (Kudryavtseva'15, Encisco-Peralta-Torres'16)

If X is ergodic for μ, every regular integral invariant is a \mathcal{C}^{1} function of helicity.
Even if we ask for less regular invariants, some turn out to be function of helicity when X is ergodic for $\mu \ldots$

The trunkenness of vector fields [Dehornoy-Rechtman'17]

©Dehornoy

The trunkenness of vector fields [Dehornoy-Rechtman'17]

Definition
The trunk of a knot k is given by
$\operatorname{Trunk}(k)=\min _{h \text { height } f c t} \max _{t \in] 0,1[} \sharp\left\{h^{-1}(t) \cap k\right\}$.
©Dehornoy

The trunkenness of vector fields [Dehornoy-Rechtman'17]

Definition
The trunk of a knot k is given by

$$
\operatorname{Trunk}(k)=\min _{h \text { height } f c t} \max _{t \in] 0,1[} \sharp\left\{h^{-1}(t) \cap k\right\} .
$$

©Dehornoy

Definition (Generalisation)

Let X be a vector field on \mathbb{S}^{3} preserving a probability measure μ. The trunkenness of (X, μ) is given by

$$
\operatorname{Tks}(X, \mu)=\inf _{h \text { height function }} \max _{t \in[0,1]} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \mu\left(\phi_{X}^{[0, \epsilon]}\left(h^{-1}(t)\right)\right) .
$$

The trunkenness of vector fields [Dehornoy-Rechtman'17]

Theorem (Dehornoy-Rechtman'17)

Invariance: The trunkenness is invariant by μ-preserving homeomorphisms.
Continuity: There is a topology for the vector field and the measure which makes the trunkenness continuous in some sense.
Asymptotic: For μ-almost every $p \in \mathbb{S}^{3}$, the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \operatorname{Trunk}\left(k_{X}(p, t)\right)
$$

exists and is equal in average to $\operatorname{Tks}(X, \mu)$.

Bridge number of vector fields [R. '21]

Bridge number of vector fields [R. '21]

Bridge number of vector fields [R. '21]

Definition (Generalisation)

The bridge number of (X, μ) is given by

$$
b(X, \mu)=\inf _{h \text { height function }} \frac{1}{2} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \mu\left(\phi_{X}^{[0, \epsilon]}\left(\cup_{t=0}^{1} T_{X}\left(h^{-1}(t)\right)\right)\right) .
$$

Bridge number of vector fields [R. '21]

Theorem (R.'21)

Invariance: The bridge number of vector fields is invariant by μ-preserving \mathcal{C}^{1}-diffeomorphisms.
Continuity: Let $\left(X_{n}, \mu_{n}\right)$ a sequence of measure-preserving vector fields such that $\left(X_{n}\right)_{n \in \mathbb{N}}$ tends to X in the \mathcal{C}^{0} topology and $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ converges to μ in the weak* sense. Then

$$
\lim _{n \rightarrow \infty} b\left(X_{n}, \mu_{n}\right)=b(X, \mu)
$$

Asymptotic: For μ-almost every $p \in \mathbb{S}^{3}$, the limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \operatorname{Bridge}\left(k_{x}(p, t)\right)
$$

exists and is equal in average to $b(X, \mu)$.

Example

Seifert flow on \mathbb{S}^{3} of parameters $(\alpha, \beta) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$.
$\phi_{\alpha, \beta}^{t}\left(z_{1}, z_{2}\right)=\left(e^{i \alpha t} z_{1}, e^{i \beta t} z_{2}\right)$

- Torii $\left|\frac{z_{1}}{z_{2}}\right|=c$ are invariant ;

Example

Seifert flow on \mathbb{S}^{3} of parameters $(\alpha, \beta) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$.
$\phi_{\alpha, \beta}^{t}\left(z_{1}, z_{2}\right)=\left(e^{i \alpha t} z_{1}, e^{i \beta t} z_{2}\right)$

- Torii $\left|\frac{z_{1}}{z_{2}}\right|=c$ are invariant;
- If α / β is rational, orbits are torus knots ;

Example

Seifert flow on \mathbb{S}^{3} of parameters $(\alpha, \beta) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$.
$\phi_{\alpha, \beta}^{t}\left(z_{1}, z_{2}\right)=\left(e^{i \alpha t} z_{1}, e^{i \beta t} z_{2}\right)$

- Torii $\left|\frac{z_{1}}{z_{2}}\right|=c$ are invariant ;
- If α / β is rational, orbits are torus knots ;
- Preserves the volume (Haar measure) ; non-ergodic but
 can be \mathcal{C}^{1}-perturbated into an ergodic vector field.

Independance

- $\operatorname{Hel}(X, V o l)=\alpha \beta$
- $b(X, V o l)=\min \{\alpha, \beta\}$
- $\operatorname{Tks}(X, V o l)=2 \min \{\alpha, \beta\}$

Independance

- $\operatorname{Hel}(X, V o l)=\alpha \beta$
- $b(X, V o l)=\min \{\alpha, \beta\}$
- $\operatorname{Tks}(X, V o l)=2 \min \{\alpha, \beta\}$

Independance of the trunkenness and the bridge number ?

Independance

- $\operatorname{Hel}(X, V o l)=\alpha \beta$
- $b(X, V o l)=\min \{\alpha, \beta\}$
- $\operatorname{Tks}(X, V o l)=2 \min \{\alpha, \beta\}$

Independance of the trunkenness and the bridge number ?

- Bridge $\left(k_{1} \sharp k_{2}\right)=$ $\operatorname{Bridge}\left(k_{1}\right)+\operatorname{Bridge}\left(k_{2}\right)-1$.
- Trunk $\left(k_{1} \sharp k_{2}\right)=$ $\max \left\{\operatorname{Trunk}\left(k_{1}\right), \operatorname{Trunk}\left(k_{2}\right)\right\}$.

Further questions

Theorem (Dehornoy-Rechtman'17)
Let X be a non-singular vector field on \mathbb{S}^{3} preserving the measure μ and h a height function such that

$$
\operatorname{Tks}(X, \mu)=\max _{t \in[0,1]} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \mu\left(\phi_{X}^{[0, \epsilon]}\left(h^{-1}(t)\right)\right) .
$$

Then X has an unknotted periodic orbit.

Further questions

Theorem (Dehornoy-Rechtman'17)

Let X be a non-singular vector field on \mathbb{S}^{3} preserving the measure μ and h a height function such that

$$
\operatorname{Tks}(X, \mu)=\max _{t \in[0,1]} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \mu\left(\phi_{X}^{[0, \epsilon]}\left(h^{-1}(t)\right)\right)
$$

Then X has an unknotted periodic orbit.

- Could the difference $2 b$ - Tks indicate the existence of composite knots among the orbits ?
- Are the trunkenness or the bridge number related to energy ?
- Generalisation of these invariants to foliations of higher dimension in spaces of higher dimension ?

Thank you for listening !

