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Chapter 1

Introduction and Review of Probability
Theory

These notes contain the main definitions and results and a small number of examples. The majority
of the examples covered in the module are not in the printed notes but will be provided and worked
through in lectures.

1.1 Introduction
Realistic modelling of real world systems such as business, economics, finance, biology, medicine,
weather or climate prediction etc. often requires the inclusion of probabilistic elements, i.e.,
stochastic modelling to deal with uncertainties in the systems (e.g. human decisions in the fi-
nancial market) or high complexity of the system (e.g., in case of the weather which is a chaotic
system).

This module is about stochastic processes which are families of random variables Xt, where t
is time and Xt lives in some state space to be specified.

1.2 Review of Probability Theory
• (Properties of probabilities) Ω set of events;

(i) Pr(∅) = 0 (impossible event)

(ii) Pr(Ω) = 1 (certain event)

(iii) 0 ≤ Pr(A) ≤ 1 for all A ∈ Ω.

(iv) If A,B ∈ Ω are disjoint, i.e., A ∩ B = ∅ then Pr(A ∪ B) = Pr(A) + Pr(B).

(v) let A = A1 ∪A2 ∪ . . .∪An ∪ . . . be a disjoint union, i.e., Ai ∩Aj = ∅ for i �= j. Then
Pr(A) =

�∞
j=1 Pr(Aj) (Law of total probability).

• Conditional probability: A,B ⊂ Ω, Ω set of elementary events,

Pr(A | B) := Pr(A ∩ B)/Pr(B).

• A,B ⊂ Ω independent events if Pr(A | B) = Pr(A) and Pr(B | A) = Pr(B).
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2 CHAPTER 1. INTRODUCTION AND REVIEW OF PROBABILITY THEORY

• Lemma A ⊆ Ω, Ω = B1 ∪ B2 ∪ . . . ∪Bn with n ∈ N ∪ {∞}, Bj ∩Bi = ∅ for i �= j. Then

Pr(A) =
n�

i=1

Pr(A | Bi)Pr(Bi).

Proof. Let Ai = A ∩ Bi. Then Ai ∩ Aj = ∅ for i �= j and A = A1 ∪ A2 ∪ . . . ∪ An ∪ . . ..
So by the law of total probability

Pr(A) =
n�

i=1

Pr(Ai) =
n�

i=1

Pr(A ∩ Bi) =
n�

i=1

Pr(A | Bi)Pr(Bi).

• A random variable (RV) X is a variable that takes its values “by chance”, i.e., X : Ω → V .
If V is a finite or denumerable set then X is called discrete RV.

• Let X : Ω → V = {x1, x2, . . .} be a discrete RV, then p : V → [0, 1] with pi = Pr(X = xi)
is the probability mass function (distribution) of X .

• Let X : Ω → V = {x1, x2, . . .} be a discrete RV, then

E(X) =
∞�

n=1

xn Pr(X = xn)

is the expected value of X .

• Example: (Binomial distribution) Consider n independent events A1, A2, . . . , An with p =
Pr(Ai), i = 1, . . . , n. Let Y be the total number of events that occur. Then

pk = Pr(Y = k) =

�
n

k

�
pk(1− p)n−k, E(Y ) = np.

where
�
n
k

�
is the number or possible choices of picking k elements out of n. A concrete

example would be to toss a coin n times, with Ai the event that the ith toss results in a
“head” and Y the number of “heads” thrown in n tosses.



Chapter 2

Random walks

2.1 Difference equations
Definition 2.1.1. We call

anyn+k + an−1yn+k−1 + . . .+ a0yk = 0 for all k ∈ Z (HDE)

a homogeneous linear difference equation (HDE) with constant coefficients a0, . . . , an for the se-
quence {yn}.

Example 2.1.2. Check that any yk = C12
k + C23

k where C1, C2 ∈ R is a solution for

yk+2 − 5yk+1 + 6yk = 0.

In order to solve (HDE) substitute yk = rk where r ∈ R. Then (HDE) becomes

anr
n+k + an−1r

n+k−1 + . . .+ a0r
k = 0.

Dividing by rk assuming r �= 0 gives

Q(r) = anr
n + an−1r

n−1 + . . .+ a0 = 0,

a polynomial of degree n in r. So there are n roots of Q(r) (which may be complex and may not
be distinct). We consider two cases:

Case 1: All roots {r1, r2, . . . , rn} of Q(r) = 0 are real and distinct. Then yk = rk1 , yk = rk2 ,. . . ,
yk = rkn are solutions of (HDE) and we have the following:

Theorem 2.1.3. Let Q(r) = anr
n+an−1r

n−1+ . . .+a0. If all roots {r1, r2, . . . , rn} of Q(r) = 0
are real and distinct, then any solution of (HDE) is of the form

yk = c1r
k
1 + c2r

k
2 + . . .+ cnr

k
n

where c1, . . . , cn ∈ R.

Case 2: Some roots are equal, say r1 = r2. Then

yk = (C1 + C2k)r
k
1

3



4 CHAPTER 2. RANDOM WALKS

is a solution of (HDE) for any C1, C2 ∈ R.
Proof. Since Q(r1) = 0 we know that C1r

k
1 is a solution. Since r1 is a double root of Q(r) we

have
Q�(r1) = 0 = nanr

n−1
1 + (n− 1)an−1r

n−2
1 + . . .+ a1.

Then

0 = rk+1
1 Q�(r1) + krk1Q(r1) = nanr

n+k
1 + (n− 1)an−1r

n+k−1
1 + . . .+ a1r

k+1
1

+ kanr
n+k
1 + kan−1r

n+k−1
1 + . . .+ a0kr

k
1

= an(n+ k)rn+k
1 + an−1(n+ k − 1)rn+k−1

1 + . . .+ a1(1 + k)rk+1
1 + a0kr

k
1

which proves that yk = krk1 solves (HDE) too.

More generally we have:

Theorem 2.1.4. If r = r1 = . . . = r� is a root of multiplicity � of Q(r) = 0 then

yk = (c1 + c2k + . . .+ c�k
�−1)rk

is a solution of (HDE).

Example 2.1.5. Find the general solution of

yk+2 − 6yk+1 + 8yk = 0

and the particular solution with y0 = 3, y1 = 2.

Remark 2.1.6. Note that cases 1 and 2 do not cover all cases, but in our applications complex
roots will not occur.

Definition 2.1.7. We call

anyn+k + an−1yn+k−1 + . . .+ a0yk = qk for all k ∈ Z (DE)

a non-homogeneous linear difference equation (DE) with constant coefficients a0, . . . , an.

Theorem 2.1.8. If yhomk is a solution of (HDE) and ypartk is a particular solution of (DE) then
yk = yhomk + ypartk is a solution of (DE).

Example 2.1.9. Check that ypartk = 4k + 6 is a particular solution of

yk+2 − 5yk+1 + 6yk = 8k

and find the general solution of this DE.

Guidelines 2.1.10. (Finding a particular solution) To find particular solutions in the case qk =
βk we try ypartk = Aβk. For qk a polynomial of degree m in k,

qk = cmk
m + cm−1k

m−1 + . . .+ c0

we try
ypartk = bm+�k

m+� + bm+�−1k
m+�−1 + . . . bmk

m + . . .+ b0

as polynomial of degree m+ � in k where � is the multiplicity of the root r = 1 of Q(r) = 0.

Example 2.1.11. Find the general solution of

yk+2 − yk = 4.
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2.2 Random Walks and Gambler’s Ruin

2.2.1 Example: Gambling Problem
Suppose player A starts with £3 and player B with £2. At each bet A wins £1 from B with
probability 1/3 and B wins £1 from A with probability 2/3. The game continues until either
player wins all money. We want to compute

pA = Pr(A wins all money),
pB = Pr(B wins all money),
pC = Pr(game goes on forever).

Then
pA + pB + pC = 1.

Let us concentrate on player A. Let An be the amount of money that A has after the nth bet, so
An ∈ {0, 1, 2, 3, 4, 5} which is the state space of the random variable An. This is an example of a
random walk. We have

A0 = 3, A1 ∈ {2, 4}, A2 ∈ {1, 3, 5}
etc. We could draw a tree diagram to compute the probabilities for An. But a better method is to
generalize to the case when A starts with £k and B with £5− k, where 0 ≤ k ≤ 5. Let

uk = Pr(A wins starting with £k | A0 = k).

We are interested in u3. We know that u0 = 0 since if A starts with £0 he has already lost; also
u5 = 1 since if A starts with all the money £5 he has already won. Moreover, by the law of total
probability we have

uk = Pr(A wins starting with £k | A wins first bet) ∗ Pr(A wins first bet)
+ Pr(A wins starting with £k | A loses first bet) ∗ Pr(A loses first bet)
= Pr(A wins starting with £k | A1 = k + 1) ∗ 1/3
+ Pr(A wins starting with £k | A1 = k − 1) ∗ 2/3
= Pr(A wins starting with £k | A0 = k + 1) ∗ 1/3
+ Pr(A wins starting with £k | A0 = k − 1) ∗ 2/3
= 1

3
uk+1 +

2
3
uk−1

So we get the difference equation

uk+1 − 3uk + 2uk−1 = 0, u0 = 0, u5 = 1.

Let uk = rk. Then we need to solve

r2 − 3r + 2 = 0 ⇔ (r − 2)(r − 1) = 0.

So the general solution is
uk = c12

k + c2.

From
0 = u0 = c1 + c2, 1 = u5 = 32c1 + c2
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we get
c1 =

1
31
, c2 = − 1

31

and so
uk =

1
31
(2k − 1),

and therefore
u1 =

1
31
, u2 =

3
31
, u3 =

7
31

= pA, u2 =
15
31
.

2.2.2 The general gambling problem
Assume in a game the total capital is £N , player A starts with £k and player B with £(N − k),
assume that A wins each bet with probability p and B with probability q = 1 − p. Let An be
the amount of money that A has at time n. This is an example of a random walk on the integers
k ∈ {0, 1, . . . , N} with absorbing boundaries at 0, N . Let

uk = Pr(A wins starting with £k | A0 = k).

Then u0 = 0 since if A starts with £0 he has already lost. Moreover uN = 1 since if A starts with
£N he has already won. If 1 ≤ k ≤ N − 1 then

uk = Pr(A wins starting with £k + 1) ∗ Pr(A wins first bet)
+ Pr(A wins starting with £k − 1) ∗ Pr(A loses first bet)
= puk+1 + quk−1

Theorem 2.2.1. The probability for player A to win solves the difference equation

uk = puk+1 + quk−1, u0 = 0, uN = 1,

and has the following solution:

uk =
1−

�
q
p

�k

1−
�

q
p

�N
for p �= q

and
uk =

k

N
for p = q = 1/2.

Proof.
Case a): Assume uk = rk. Then we get

rk = prk+1 + qrk−1;

dividing by rk−1 assuming r �= 0 this gives

Q(r) = r − pr2 − q = 0

with solution
r = 1, q

p
.

So the general solution is

uk = c1 + c2

�
q
p

�k

.
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Now apply the boundary conditions:

u0 = 0 = c1 + c2

uN = 1 = c1 + c2

�
q
p

�N

.

This gives

c1 = −c2, c1 − c1

�
q
p

�N

= 1

and so

c1 =
1

1−
�

q
p

�N

and

uk =
1−

�
q
p

�k

1−
�

q
p

�N

as claimed.
Case b). If q = p then Q(r) has a double root r1 = r2 = 1. So the general solution is, by Theorem
2.1.4,

uk = c1 + c2k.

Applying the boundary conditions we get

0 = u0 = c1

1 = u1 = c1 + c2N,

and so c1 = 0 and c2 = 1/N , giving uk =
k
N

as claimed.

Proposition 2.2.2. The probability p∞ for the game to last forever is 0, i.e. pA + pB = 1 where pA
(pB) is the probability that player A (B) wins the game.

Proof.
Case a): p = q = 1

2
. then by Theorem 2.2.1 we have

pA = k/N, pB = (N − k)/N

and so pA + pB = 1.
Case b): p �= q. Then by Theorem 2.2.1

pA =
1−

�
q
p

�k

1−
�

q
p

�N
, pB =

1−
�

q̃
p̃

�k̃

1−
�

q̃
p̃

�N

where
p̃ = q, q̃ = p, k̃ = N − k,
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and so

pB =
1−

�
p
q

�N−k

1−
�

p
q

�N
.

Let s = p
q
. Then

p∞ = 1− pA − pB = 1− 1− sk

1− sN
− 1−

�
1
s

�N−k

1−
�
1
s

�N

= 1− 1− sk

1− sN
− sN − sk

sN − 1
= 0.

Remark 2.2.3. The gain for player A starting with £k is the random variable G with

Pr(G = N − k) = uk, Pr(G = −k) = 1− uk

Hence the expected gain of player A is

E(G) = (N − k)uk − k(1− uk) = Nuk − k.

E.g., if p = q = 1
2

then E(G) = N k
N
− k = 0.

Theorem 2.2.4. Let Dk be the expected duration of the game (number of bets) if A0 = k. Then

Dk = pDk+1 + qDk−1 + 1, D0 = 0, DN = 0,

with solution

Dk =
1

p− q



N

�
1−

�
q
p

�k
�

1−
�

q
p

�N
− k


 for p �= q

and
Dk = k(N − k) for p = q = 1/2.

Proof. Let Pr(dk = n) be the probability that the game finishes after n plays. Then

Dk = E(dk) =
∞�

n=1

nPr(dk = n)

is the expected duration of the game when A starts with £k.
Let An be the amount of money player A has after n plays. By assumption A0 = k. Since in

the first step player A may win or lose £1, the law of total probability gives

Pr(dk = n) = Pr(dk = n|A1 = k + 1)Pr(A1 = k + 1|A0 = k)

+Pr(dk = n|A1 = k − 1)Pr(A1 = k − 1|A0 = k)

= Pr(dk = n|A1 = k + 1)p+ Pr(dk = n|A1 = k − 1)q.
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If A has won the first trial then after this first trial the event that the game last n trials and A starts
with £k becomes the event that game lasts n− 1 trials and A starts with £(k + 1). Hence

Pr(dk = n|A1 = k + 1) = Pr(dk+1 = n− 1).

Similarly Pr(dk = n|A1 = k − 1) = Pr(dk−1 = n − 1). Inserting this into the above equation
proves that

Pr(dk = n) = pPr(dk+1 = n− 1) + qPr(dk−1 = n− 1).

Therefore

Dk =
�∞

n=1 nPr(dk = n) =
�∞

n=1 n (pPr(dk+1 = n− 1) + qPr(dk−1 = n− 1))

= p
�∞

n=1 nPr(dk+1 = n− 1) + q
�∞

n=1 nPr(dk−1 = n− 1)

= p
�∞

m=0 mPr(dk+1 = m) + p
�∞

m=0 Pr(dk+1 = m)
= +q

�∞
m=0 mPr(dk−1 = m) + q

�∞
m=0 Pr(dk−1 = m)

= pDk+1 + p+ qDk−1 + q = pDk+1 + qDk−1 + 1.

Here we used that
�∞

n=0 Pr(dk±1 = n) = 1 because this is a certain event. So we obtain the
nonhomogenous linear difference equation

Dk = pDk+1 + qDk−1 + 1.

To solve this difference equation we first have to solve the homogeneous system

Dhom
k = pDhom

k+1 + qDhom
k−1 .

Note that we have already solved the same equation for uk, with different boundary conditions, in
the proof of Theorem 2.2.1. Setting Dhom

k = rk we get rk = prk+1 + qrk−1. Dividing by rk−1

assuming r �= 0 we get Q(r) = pr2 − r + q = 0. The roots are r1 = 1 and r2 =
q
p
.

Case a): p �= q. The general solution of the homogeneous system is

Dhom
k = C1 + C2

�
q

p

�k

.

Now we need to find a particular solution of the nonhomogeneous system. Since Q(r) = 0 has
a root 1 of multiplicity � = 1 and since qk = 1 has degree 0, using Guidelines 2.1.10, we try
Dpart

k = b1k as a particular solution. Inserting this into the nonhomogenous equation we get
b1k = pb1(k + 1) + qb1(k − 1) + 1. Comparing coefficients we obtain 0 = b1(p − q) + 1 and so
b1 =

1
q−p

and Dpart
k = k

q−p
. So the general solution of the nonhomogeneous equation is

Dk =
k

q − p
+ C1 + C2

�
q

p

�k

.

Boundary conditions: We have D0 = DN = 0 since the duration of the game is 0 if player A has
no or all the money in the game. Setting D0 = DN = 0 we get

0 = C1 + C2, 0 =
N

q − p
+ C1 + C2

�
q

p

�N

.

Therefore

C1 = −C2 = N(p− q)−1

�
1−

�
q

p

�N
�−1
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and

Dk =
1

p− q



N

�
1−

�
q
p

�k
�

1−
�

q
p

�N
− k


 .

Case b): p = q = 1
2
. The general solution of the homogeneus equation

Dhom
k = pDhom

k+1 + qDhom
k−1 .

is (see proof of Theorem 2.2.1)
Dhom

k = c1 + c2k.

Since Q(r) = 0 has a root 1 of multiplicity � = 2 and since qk = 1 has degree 0, using Guidelines
2.1.10, we try Dpart

k = ck2 as a particular solution of the nonhomogeneus equation. Then

Dk =
1
2
Dk−1 +

1
2
Dk+1 + 1

becomes
ck2 = 1

2
c(k − 1)2 + 1

2
c(k + 1)2 + 1

which holds true if c = −1. So the general solution is

Dk = c1 + c2k − k2.

Boundary conditions. From D0 = DN = 0 we get

0 = c1, 0 = c1 + c2N −N2

and so c2 = N and Dk = k(N − k).

Remark 2.2.5. (Gambler’s Ruin) If player A plays against an infinitely rich opponent, e.g. a
casino or a bank, then N → ∞. Let s = q

p
.

Case a) p > q. Here the probability for A to win a bit is bigger than for B so that s < 1. In this
case, by Theorem 2.2.1,

pA = lim
N→∞

uk = lim
N→∞

1− sk

1− sN
= 1− sk > 0,

and the expected duration of the game is, by Theorem 2.2.4,

lim
N→∞

Dk = lim
N→∞

1

p− q

�
N(1− sk)

1− sN
− k

�
=

1− sk

p− q
lim

N→∞
N − k

p− q
= ∞.

Case b) p < q. Then s > 1 and

pA = lim
N→∞

uk = lim
N→∞

1− sk

1− sN
= 0,

and

lim
N→∞

Dk = lim
N→∞

1

p− q

�
N(1− sk)

1− sN
− k

�
=

1− sk

p− q
lim

N→∞

N

1− sN
− k

p− q
=

k

q − p
.

Case c) p = q. Then

pA = lim
N→∞

uk = lim
N→∞

k

N
= 0

so the player is losing, despite the fact that the game is fair! Moreover

lim
N→∞

Dk = lim
N→∞

(N − k)k = ∞

is the expected duration of the game.



Chapter 3

Markov Chains - An Introduction

3.1 Basic Definitions
Definition 3.1.1. A stochastic process is a family of random variables (RVs) {Xt}t∈T . Two cases
arise frequently:

a) T = N0: discrete time stochastic process. In this case we write {Xn}n∈N0 .

b) T = [0,∞): continuous time stochastic process.

If X : T → S we call S the state space of the stochastic process Xt.

Definition 3.1.2. A Markov process {Xt} is a stochastic process with the property that given the
values of Xt the values of Xs for s > t only depend on Xt and not on Xr for r < t.

In short a Markov process is a stochastic process without memory.

Definition 3.1.3. A Markov chain (M.C.) {Xn} is a discrete time Markov process on a finite or
countable state space.
The Markov property for a M.C. reads:

Pr(Xn+1 = j | X0 = i0, . . . , Xn−1 = in−1, Xn = in) = Pr(Xn+1 = j | Xn = i).

Definition 3.1.4. We call Pr(Xn+1 = j | Xn = i) the one-step transition probabilities of the M.C.
{Xn} (for all n ∈ N0, i, j ∈ S.

Definition 3.1.5. The M.C. has stationary transition probabilities if pi,j := Pr(Xn+1 = j | Xn = i)
is independent of n for all i, j. In this case the M.C. is called homogeneous.

3.2 Transition Probability Matrices
Definition 3.2.1. {Xn} homogeneous M.C. on state space S = {1, 2, . . . , N}. Then

P = (pij)i,j=1,...,N

is called (one-step) transition probability matrix (TPM).

11
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Figure 3.1: Floor plan of house.

Example 3.2.2. Consider a cat in a house with 4 rooms. The doors between rooms are indicated
by slashes in the floor plan of Figure 3.1.

If the cat is in one room it chooses one of the doors to another room with equal probability. So
it goes from room 1 to room 2 with probability p12 = 1/2 and to room 3 with probabiity p13 = 1/2
etc.. What is P ?

P =




p11 p12 p13 p14
...

...
...

...
p41 p42 p43 p44


 =




0 1
2

1
2

0
1
3

0 1
3

1
3

1
3

1
3

0 1
3

0 1
2

1
2

0




Example 3.2.3. (Gambler’s problem with total capital N ) What is the state space and the TPM of
this Markov chain?

Definition 3.2.4. An (N,N)-matrix P is called row-stochastic if

0 ≤ pij ≤ 1,
N�

j=1

pij = 1 for all i = 1, . . . , N.

Proposition 3.2.5. The TPM P = (pij)i,j∈S of a homogeneous M.C. on S = {1, . . . , N} is row-
stochastic.

Proof. The entries pij of P are probabilities, so pij ∈ [0, 1]. For any state i ∈ S we have

N�

j=1

pij = 1

because the left hand side is the probability that the process has to go to some other state from state
i, which is the probability of the certain event.

Theorem 3.2.6. Let {Xn} be a homogeneous M.C. on the state space S = {1, 2, . . . , N} with
TPM P and initial distribution pi = Pr(X0 = i), i ∈ S. Then

Pr(X0 = i0, X1 = i1, . . . , Xn = in) = pi0pi0i1 . . . pin−1in .
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Proof. We have

Pr(X0 = i0, X1 = i1, . . . , Xn = in)

= Pr(Xn = in | X0 = i0, X1 = i1, . . . , Xn−1 = in−1)Pr(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

= Pr(Xn = in | Xn−1 = in−1)Pr(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

= pin−1inPr(X0 = i0, X1 = i1, . . . , Xn−1 = in−1).

Here we used the definition of conditional probability in the first line and the Markov property in
the second line. Iterating this argument we get

Pr(X0 = i0, X1 = i1, . . . , Xn = in) = pin−1inpin−2in−1Pr(X0 = i0, X1 = i1, . . . , Xn−2 = in−2)
...
= pin−1inpin−2in−1 . . . pi0i1pi0 .

Example 3.2.7. We send a binary message through a channel with several stages, each stage has
a fixed probability of error α, 0 < α < 1. Let X0 = 0 and let Xn be the signal received at the nth
stage. Assume that {Xn} is a homogeneous Markov chain.

a) What is the probability of no error in transmission up to and including stage 2?

b) What is the probability that a correct signal is received at stage 2?

3.3 n-step transition probability matrices
Definition 3.3.1. Let {Xn} be a homogeneous M.C. on the state space S = {1, 2, . . . , N}. Then
P (n) = (p

(n)
ij )i,j∈S with p

(n)
ij = Pr(Xm+n = j | Xm = i) is called the n-step transition probability

matrix of the Markov chain.

Example 3.3.2. Consider a Markov chain on the states {0, 1, 2} with TPM

P =




0.5 0 0.5
0.1 0.9 0
0.2 0.6 0.2




What is p(2)00 ?

Theorem 3.3.3. Let {Xn} be a homogeneous M.C. on the state space S = {1, 2, . . . , N} with
TPM P . Then P (n) = P n. Componentwise

∀i, j p
(n)
ij =

N�

k=1

p
(n−1)
ik pkj ⇔ P (n) = P (n−1)P, (3.1)

where we define p
(0)
ij = 1 if i = j and p

(0)
ij = 0 if i �= j.
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In words (3.1) can be explained as follows: to get from i to j in n steps (the probability of which
is p(n)ij ) the process has to go from state i to some state k in (n− 1) steps (the probability of which
is p(n−1)

ik ) and then from state k to state j in one step (the probability of which is pkj). Summing
over all states k gives (3.1).

For a detailed proof of this theorem we need the following lemma:

Lemma 3.3.4. If {Ck}k=1,...,N are disjoint events such that
�N

k=1 Pr(Ck) = 1 then

Pr(A | B) =
N�

k=1

Pr(A | B ∩ Ck) Pr(Ck | B)

Proof of Lemma 3.3.4.

Pr(A | B) =
Pr(A ∩ B)

Pr(B)
=

1

Pr(B)

N�

k=1

Pr((A ∩ B) ∩ Ck)

=
N�

k=1

Pr(A | B ∩ Ck) Pr(B ∩ Ck)/Pr(B) =
N�

k=1

Pr(A | B ∩ Ck) Pr(Ck | B).

Proof of Theorem 3.3.3. Now with A = {Xn = j}, B = {X0 = i} and Ck = {Xn−1 = k} we
get

p
(n)
ij = Pr(Xn = j | X0 = i) =

N�

k=1

Pr(Xn = j | X0 = i, Xn−1 = k) Pr(Xn−1 = k | X0 = i)

=
N�

k=1

Pr(Xn = j | Xn−1 = k) Pr(Xn−1 = k | X0 = i) =
N�

k=1

pkjp
(n−1)
ik

=
N�

k=1

p
(n−1)
ik pkj = (P (n−1)P )ij. (∗)

In words: To get from i to j in n steps, the probability of which is p(n)ij , the process has to go from
i to some state k in (n− 1) steps, the probability of which is p(n−1)

ik , and then from state k to state
j in one step, the probability of which is pkj . Summing over all states k gives (*).

Hence P (n) = P (n−1)P . So if it is true that P (n−1) = P n−1 then the above proves that also
P (n) = P (n−1)P = P n−1P = P n. For n = 1 we know that P (1) = P 1 = P . So by induction,
P (n) = P n for all n.

Example 3.3.5. A particle moves among the states {0, 1, 2} with TPM

P =




0 1
2

1
2

1
2

0 1
2

1
2

1
2

0


 .

Compute p
(2)
00 and p

(3)
00 .

Corollary 3.3.6. Let {Xn} be a homogeneous Markov chain with TPM P , state space S =
{1, 2, . . . , N} and initial distribution p = (pi)i∈S = (p1, . . . , pN). Then for all i ∈ S,

Pr(Xn = i) = (pP n)i.
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Proof By Theorem 3.3.3

Pr(Xn = i) =
�

k∈S
Pr(Xn = i | X0 = k) Pr(X0 = k) =

�

k∈S
p
(n)
ki pk = (pP n)i.

Note that p and pP are row vectors.

3.4 First Step Analysis of Markov Chains

First step analysis analyzes the probabilities arising in the first transition for all initial states. We
have used first step analysis already for the gambling problem in Section 2.2.2 and will now intro-
duce first step analysis for general Markov chains.

Figure 3.2: Floor plan of house.

Example 3.4.1. Assume a cat is in a house with 9 rooms, see Figure 3.2. If it has k choices to
leave a room the cat chooses each room with probability 1

k
. What is the probability that the cat

encounters the food before the water given that it starts in room 4? Let uk be the probability of
absorption into the food compartment given that the cat starts in room k. Then by the law of total
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probability

u0 =
1

2
u1 +

1

2
u2

u1 =
1

3
u0 +

1

3
u3 +

1

3

u3 =
1

4
u1 +

1

4
u2 +

1

4
u4 +

1

4
u5

u4 =
1

3
+

1

3
u3 +

1

3
u6

u5 =
1

3
u3 +

1

3
u6

u6 =
1

2
u4 +

1

2
u5

u7 = 1

u8 = 0.

Symmetry implies

u0 = u6, u2 = u5, u1 = u4, u3 =
1

2
.

Then we get u0 =
1
2
= u6, u1 =

2
3
= u4, u2 =

1
3
= u5.

Example 3.4.2. Consider the following model of the life span of females in a population. The
state space is S = {0, 1, . . . , 5} with state 0 = prepuberty, state 1 = single, state 2 = married, state
3 = divorced, state 4 = widowed, state 5= dead. Suppose the model has the following TPM:

P =




0 0.9 0 0 0 0.1
0 0.5 0.4 0 0 0.1
0 0 0.6 0.2 0.1 0.1
0 0 0.4 0.5 0 0.1
0 0 0.4 0 0.5 0.1
0 0 0 0 0 1




What is the expected duration in state 2 (married)?

Example 3.4.3. On the state space S = {0, 1, 2, 3} consider a M.C. with TPM

P =




1 0 0 0
0.1 0.6 0.1 0.2
0.2 0.3 0.4 0.1
0 0 0 1


 .

a) Starting in state 1 what is the probability of absorption in state 0?

b) What is the expected time to absorption (i.e., M.C. ends up in one of the absorbing states)
starting from state i.

More generally, let {Xn} homogeneous M.C. on the state space S = {0, 1, 2, . . . , N} with
TPM P . We label the states such that {0, 1, . . . , r − 1} are not absorbing, {r, r + 1, . . . , N} are
absorbing, i.e. pii = 1 for i > r. Then the TPM P of {Xn} takes the form

P =

�
Q R
0 I

�
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where Q is an (r, r)-matrix describing the transitions between non-absorbing states, qij = pij , I is
the (N + 1− r,N + 1− r) identity matrix, and R is the matrix that describes the transitions from
non-absorbing to absorbing states.

We want to compute the probability of absorption into an absorbing state k, the expected num-
ber of visits to a state j before absorption and the expected time before absorption starting from
state i.

Theorem 3.4.4. Let k be an absorbing state, and let ui be the probability of being absorbed into
state k starting from state i, i = 0, . . . , r − 1. Then

ui = pik +
r−1�

j=0

pijuj, i ∈ {0, 1, . . . , r − 1},

and uj = 0 for j �= k, j ≥ r.

Proof. From state i the process can go in one step directly into state k, with probability pik or it
can go to another non-absorbing state 0 ≤ i < r or into another absorbing state j with r ≤ j ≤ N ,
with j �= k. Hence

ui =
N�

j=0

Pr(absorption in state k | X0 = i, X1 = j)pij

= pik + 0 +
r−1�

j=0

Pr(absorption in state k | X0 = i, X1 = j)pij

where we get the 0 term if the process goes in the first step to another absorbing state j �= k and
the sum corresponds to transitions to another non-absorbing state j, 0 ≤ j < r, in the first step.
By the Markov property we get

ui = pik +
r−1�

j=0

Pr(absorption in state k | X1 = j)pij = pik +
r−1�

j=0

ujpij.

Let di = min{n ≥ 0, Xn ≥ r | X0 = i} is the time which the process spends in non-absorbing
states before being absorbed, starting in state i. Assume Pr(di < ∞) = 1 for all i. More generally,
let g : {0, 1, . . . , r − 1} → R and set g(k) = 0 for k ≥ r (for all absorbing states). We wish to
calculate the expected sum of values of g during the stochastic process starting from state i until
absorption,

wi = E(

di−1�

n=0

g(Xn) | X0 = i).

Examples 3.4.5.

a) If g(i) ≡ 1 for all non-absorbing states i then wi = Di is the expected time until absorption;

b) If g ≡ 1{j}, where j is a fixed non-absorbing state, i.e., g(i) = 1 for i = j, and g(i) = 0
otherwise, then wi is the expected number of visits to state j.
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Theorem 3.4.6. With the above notation we have

wi = g(i) +
r−1�

k=0

pikwk. (3.2)

Proof. Using First Step Analysis, if the process starts in state i then
�di−1

n=0 g(Xn) always contains
g(X0) = g(i). The expected value of

�di−1
n=1 g(Xn) starting from state i going to state k in the first

step is pikwk. Summing over all states k we get (3.2).
In more detail:

wi = E(

di−1�

n=0

g(Xn) | X0 = i)

= E(g(X0) | X0 = i) + E(

di−1�

n=1

g(Xn) | X0 = i)

= g(i) + E(

di�

n=1

g(Xn) | X0 = i)

= g(i) +
r−1�

k=0

E(

di�

n=1

g(Xn) | X1 = k,X0 = i)Pr(X1 = k | X0 = i).

Here we used in the third line that g(Xdi) = 0 since Xdi is an absorbing state, and in the last line
we used the law of total probability. By the Markov property

wi = g(i) +
r−1�

k=0

E(

di�

n=1

g(Xn) | X1 = k)pik.

Shifting time n = m+ 1 we get

wi = g(i) +
r−1�

k=0

E(

di−1�

m=0

g(Xm) | X0 = k)pik = g(i) +
r−1�

k=0

wkpik.

Examples 3.4.7.

a) If wi = Di is the expected time until absorption starting from state i then for all i ∈
{0, 1, . . . , r − 1}

Di = 1 +
r−1�

k=0

pikDk.

b) If wi is the expected number of visits to a given non-absorbing state j starting from state i
then

wj = 1 +
r−1�

k=0

pjkwk, wi =
r−1�

k=0

pikwk i �= j.
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Example 3.4.8. Consider a M.C. on {0, 1, 2, 3} with TPM

P =




0.2 0.8 0 0
0.1 0.3 0.3 0.3
0.6 0.1 0 0.3
0 0 0 1




a) What is the expected number of visits to state 2 before absorption into state 1?

b) What is the expected number of visits to state 1 before absorption into state 2?



Chapter 4

Long-time Behaviour of Markov Chains

4.1 Transience, Recurrence, and Periodicity
Definition 4.1.1. Let j be a state in a M.C. with TPM P . Then we call any n ∈ N such that
p
(n)
jj > 0 a possible return time for state j; moreover we call the greatest common divisor of all

possible return times for state j the period τ(j) of state j:

τ(j) = gcd(n ∈ N, p(n)jj > 0).

If p(n)jj = 0 for all n then we set τ = 0.
If τ(j) > 1 we call the state j periodic; if τ(j) = 1 we call state j aperiodic. A M.C. is called
aperiodic if all its states are aperiodic.

Note that all possible return times for state j are multiples of the period τ(j) of state j.

Example 4.1.2. Consider a random walk on the integers such that

Pr(Xn = j + 1 | Xn−1 = j) = p, Pr(Xn = j − 1 | Xn−1 = j) = q, p+ q = 1.

To determine the period τ of each state we need to find τ such that the return times are multiples
of τ only. Since p

(n)
jj = 0 for n odd the period of each state j is τ = 2.

Example 4.1.3. Consider a random walk on the integers such that

Pr(Xn = j − 1 | Xn = j) = α, Pr(Xn = j + 1 | Xn = j) = β, Pr(Xn = j | Xn = j) = γ,

where
α, β, γ > 0, α + β + γ = 1.

This is an aperiodic Markov chain.

Example 4.1.4. Suppose a Markov chain has state space {0, 1, 2, 3} and TPM

P =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

Then all states have period τ = 4.

20
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Definition 4.1.5. Let i, j be states of a homogeneous M.C.. Then we denote by f (n)
ij the probability

that starting at state i the M.C. first reaches state j at time n. We set f (0)
ij = 0 for i �= j.

NOTE: in contrast p(n)ij the probability that starting at state i the M.C. is in state j at time n.

Proposition 4.1.6. Let i, j be states of a homogeneous M.C.. Set fij :=
�∞

n=1 f
(n)
ij . For i �= j

this is the probability that the M.C. ever reaches state j starting from state i; moreover fii is the
probability of ever returning to state i.

Proof. Let An be the event that the M.C. is in state j for the first time at time n starting from state
i �= j and the event that the M.C. first returns to state i at time n starting from state i if i = j. Then
An ∩ Am = ∅ for n �= m. By definition f

(n)
ij = Pr(An). Furthermore

�∞
n=1 An is the event that

there is some time n such that the M.C. is in state j. Hence

Pr(
∞�

n=1

An) =
∞�

n=1

Pr(An) =
∞�

n=1

f
(n)
ij .

When fii = 1 then {f (n)
ii }n∈N is a probability mass function such that f (n)

ii is the probability that
the M.C. first returns to state i starting from state i at time n.

Definition 4.1.7. When fii = 1 then µi =
�∞

n=1 nf
(n)
ii is the expected recurrence time to state i.

Definition 4.1.8.

a) State i of a Markov chain is called recurrent if fii = 1 and transient if fii < 1.

b) If state i is recurrent it is called positive recurrent if µi < ∞ and null-recurrent if µi = ∞.

c) A M.C. is called (positive) recurrent if all its states are (positive) recurrent.

Theorem 4.1.9. Let {Xn} be a homogeneous M.C. with TPM P . Then

p
(n)
ii =

n�

k=0

f
(k)
ii p

(n−k)
ii for all states i.

Proof. Assume the process starts in state i, so X0 = i. For 1 ≤ k ≤ n let Ek be the event that
Xn = i and that the first return to state i is at time k. Then

Ej ∩ Ek = ∅ for j �= k,

and
Pr(Ek) = Pr(first return to i at time k) ∗ Pr(Xn = i | Xk = i) = f

(k)
ii p

(n−k)
ii

and so

p
(n)
ii = Pr(Xn = i | X0 = i) =

n�

k=1

Pr(Ek) =
n�

k=1

f
(k)
ii p

(n−k)
ii

as claimed.
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Example 4.1.10. We can use Theorem 4.1.9 to calculate first return probabilities. Suppose a M.C.
has state space {0, 1, 2, 3} and TPM

P =




0 1
2

0 1
2

0 0 1 0
0 0 0 1
1
2

0 0 1
2


 .

Compute f
(1)
33 , f (2)

33 , f (3)
33 .

Lemma 4.1.11. Let {Xn} be a homogeneous M.C. and let i be a statesof it. Then for any k ∈ N

Pr(#{Xn = i} ≥ k | X0 = i) = (fii)
k.

Proof. If the process starts at state i then to hit state i at least k times it must first return to state i
once and then return at least (k − 1) times more. Thus inductively the probability is fii(fii)k−1 =
(fii)

k.

In the following “i.o.” means “infinitely often”.

Theorem 4.1.12. Let {Xn} be a homogeneous M.C. and let i be a state of it. Then

a) i transient ⇔ Pr(Xn = i i.o. | X0 = i) = 0;

b) i recurrent ⇔ Pr(Xn = i i.o. | X0 = i) = 1.

Proof.

Pr(Xn = i i.o. | X0 = i) = lim
k→∞

Pr(#{Xn = i} ≥ k | X0 = k) = lim
k→∞

(fii)
k

=

�
1 if fii = 1 (state i recurrent)
0 if fii < 1 (state i transient).

where we used Lemma 4.1.11.

Theorem 4.1.13. Let {Xn} be a homogeneous M.C. and let i be a state of it. Then

Mi :=
∞�

n=1

p
(n)
ii

is the expected number of returns to state i. Moreover

a) i transient ⇔Mi < ∞ (i.e., the expected number of returns to state i is finite).

b) i recurrent ⇔Mi = ∞ (i.e., the expected number of returns to state i is infinite).

Proof. Let mi be the random variable that counts the number of visits to state i:

mi =
∞�

n=1

1{i}(Xn)

where

1{i}(j) =

�
1 if j = i
0 if j �= i
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Then the expected number of visits to state i starting from state i is

Mi = E(mi | X0 = i) =
∞�

n=1

E(1{i}(Xn) | X0 = i) =
∞�

n=1

p
(n)
ii .

Furthermore, by Lemma 4.1.11

Pr(mi ≥ k | X0 = i) = (fii)
k, k = 1, 2, 3, . . . .

For any integer valued random variable Y we have

E(Y ) =
∞�

k=1

k Pr(Y = k) =
∞�

k=1

Pr(Y ≥ k).

Therefore, with Y = mi,

Mi =
∞�

k=1

Pr(mi ≥ k | X0 = i) =
∞�

k=1

(fii)
k =

� fii
1−fii

< ∞ if fii < 1 (i transient)
∞ if fii = 1 (i recurrent)

where we used the geometric series formula in the first case.

Example 4.1.14. Consider the random walk on Z with

Pr(Xn = i+ 1 | Xn−1 = i) = p, Pr(Xn = i− 1 | Xn−1 = i) = q, p+ q = 1.

Then p
(2n+1)
00 = 0 for all n ∈ N0 since the Markov chain can only return to state 0 at even times.

Moreover,

p
(2n)
00 =

�
2n

n

�
pnqn =

(2n)!

n!n!
pnqn.

Stirling’s approximation gives
n! ∼ nne−n

√
2πn

for n large (with an ∼ bn if limn→∞
an
bn

= 1). Using Stirling’s formula we get

p
(2n)
00 =

(2n)!

n!n!
pnqn ∼ (2n)2ne−2n

√
4πn

nnnne−2n
√
2πn

√
2πn

pnqn =
(4pq)n√

πn
.

We have
4pq = 4p(1− p) ≤ 1

with equality if and only if p = 1
2
. To check that

4p(1− p) < 1 if p �= 1/2 and p ∈ [0, 1]

note that for
f(x) = 4x(1− x)

we have f(0) = f(1) = 0 and
f �(x) = 4− 8x

so that f �(x) = 0 if x = 1/2 and this is the maximum of f with f(1/2) = 1.
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Case a): p �= q (Asymmetric random walk). Let r = 4pq < 1. Then for large n,

p
(n)
00 ∼ rn√

nπ
< rn.

Thus, for large m,
∞�

n=m

p
(n)
00 <

∞�

n=m

rn =
rm

1− r
< ∞.

Hence, by Theorem 4.1.13 the state 0 is transient for p �= q.

Case b): p = q = 1
2

(Symmetric random walk). If p = q = 1/2 then 4pq = 1 and so for large m,

∞�

n=m

p
(n)
00 ∼

∞�

n=m

1√
πn

= ∞

Hence by Theorem 4.1.13 the state 0 is recurrent. Here we used that
�∞

n=1
1
nα < ∞ if and only if

α > 1.

4.2 Irreducible Markov Chains and Communicating Classes
Definition 4.2.1. Let i and j be states of a homogeneous M.C.. State j is called accessible from
state i if p(n)ij > 0 for some n ∈ N0. If j accessible from i and i accessible from j then i and j are
said to communicate, denoted by i ↔ j.

Proposition 4.2.2. ↔ is an equivalence relation on the state space S of a homogeneous M.C..

Proof. Let i, j, k be any states of the M.C.. Reflexivity i ↔ i follows from the fact that p(0)ii = 1
for all i. Symmetry i ↔ j ⇐ j ↔ i is built into the definition of ↔. To prove transitivity, i.e.,
i ↔ j and j ↔ k imply i ↔ k note that, since i ↔ j, there is some m ∈ N0 such that p(m)

ij > 0,
and, since j ↔ k, there is some n ∈ N0 such that p(n)jk > 0. This implies that

p
(m+n)
ik =

�

�∈S
p
(m)
i� p

(n)
�k ≥ p

(m)
ij p

(n)
jk > 0, (4.1)

where we used that P (m+n) = P (m)P (n). Therefore k is accessible from i. Exchanging the roles of
i and k and arguing as before we see that i is also accessible from k and so i and k communicate.

In words the first inequality of (4.1) can be explained as follows: one way of going from state i to
state k in (m + n) steps is to visit state j after m steps and then state k after another n steps. The
probability of this event is p(m)

ij p
(n)
jk .

Definition 4.2.3. We can partition the state space into disjoint equivalence classes which we call
communicating classes.

Remark 4.2.4. A Markov chain might start in a communicating class C1 and then enter another
communicating class C2, but then it cannot return to C1.

Definition 4.2.5. A M.C. is called irreducible if it only has one communicating class.
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Example 4.2.6. The Markov chain with TPM

P =




1
2

0 1
2

1
2

0 1
2

1
2

1
4

1
4




on S = {1, 2, 3} is irreducible.

Example 4.2.7. If a Markov chain with state space S has TPM

P =

�
P1 0
0 P2

�
,

i.e., P , is block-diagonal such that S = C1 ∪ C2 with P1 = P |C1 and P2 = P |C2 and C1, C2 are
communicating classes then the M.C. stays in C1 forever if it starts in C1 and stays in C2 forever if
it starts in C2.

Definition 4.2.8. A communicating class C is called closed if

Pr(Xn ∈ C | X0 ∈ C) = 1.

Example 4.2.9. Determine the closed communicating classes of the random walk on the integers
{0, 1, . . . , N} with absorbing boundaries at site 0 and N .

Remark 4.2.10. A closed communicating class of a M.C. with TPM P on the state space S is a
M.C. itself. To see this let C ⊆ S be a communicating class of the Markov chain. Then

�
k∈C pik =

1 for all i ∈ C since pir = 0 for all r /∈ C. Thus C has its own TPM given by P |C .

Theorem 4.2.11. (Invariants under communication) Let i and j be states of a homogeneous
M.C. with TPM P . Then the following holds:

a) If i ↔ j then i and j have the same period.

b) If i ↔ j then i is recurrent if and only if j is recurrent.

Proof.

a) Let i ↔ j. Recall that the period τ(i) of state i is the greatest number which divides all its
possible return times, i.e., τ(i) = gcd(n ≥ 1, p

(n)
ii > 0). Since i ↔ j there are r, s ∈ N0

such that p(r)ij > 0 such that p(s)ji > 0. Hence by (4.1)

p
(r+s)
jj ≥ p

(s)
ji p

(r)
ij > 0,

and so r+ s is a possible return time for state j and hence τ(j) divides r+ s. Next note that
for r, s, n ∈ N0 we have

p
(r+n+s)
jj ≥ p

(s)
ji p

(n)
ii p

(r)
ij , (4.2)

because (similarly to the proof of (4.1)) one way of returning to state j after r + n+ s steps
is to visit state j after s steps (the probability of this is p

(s)
ji ), then return to state i after n

steps (the probability of this is p(n)ii ) and then to visit state j after r steps (the probability of
this is p

(r)
ij ), with the probability of the whole event given as the product p(s)ji p

(n)
ii p

(r)
ij of the

probabilities.



26 CHAPTER 4. LONG-TIME BEHAVIOUR OF MARKOV CHAINS

Now let n ∈ N be a possible return time for state i, so that p(n)ii > 0; then by (4.2)

p
(r+n+s)
jj ≥ p

(s)
ji p

(n)
ii p

(r)
ij > 0,

and so n+ r+ s is a possible return time for state j as well; therefore τ(j) divides n+ r+ s.
Since τ(j) also divides r + s it divides n. Hence τ(j) divides all possible return times n of
state i. But τ(i) is the largest integer with the property that it divides all possible return times
n ∈ N of state i. Hence τ(i) ≥ τ(j). Exchanging the role of i and j shows that τ(j) ≥ τ(i)
and so τ(i) = τ(j).

b) Suppose state i is recurrent. By Theorem 4.1.13 this is equivalent to

Mi =
∞�

n=1

p
(n)
ii = ∞,

where Mi is the expected number of visits to state i. Suppose i ↔ j. Then we need to prove
that

Mj =
∞�

n=1

p
(n)
jj = ∞.

Since i ↔ j there are r ∈ N such that p(r)ij > 0 and s ∈ N such that p(s)ji > 0 (as in part a)).
Hence (4.2) gives

p
(s+n+r)
jj ≥ p

(s)
ji p

(n)
ii p

(r)
ij > 0,

and so

∞�

�=1

p
(�)
jj ≥

∞�

�=r+s+1

p
(�)
jj ≥

∞�

n=1

p
(s)
ji p

(n)
ii p

(r)
ij = p

(s)
ji

� ∞�

n=1

p
(n)
ii

�
p
(r)
ij = p

(s)
ji Mip

(r)
ij = ∞.

Hence by Theorem 4.1.13 state j is recurrent. So we have proved that i recurrent ⇒ j
recurrent. Exchanging the roles of i and j in the above argument also shows j recurrent ⇒ i
recurrent.

Theorem 4.2.12. Any finite homogeneous irreducible M.C. {Xn} is recurrent.

Proof. Since the M.C. is irreducible either all states are recurrent or all states are transient by
Theorem 4.2.11. Suppose by contradiction that all states are transient. Let X0 = i0. By transience
Pr(Xn = i0 i.o.) = 0 due to Theorem 4.1.12. So there is n0 ∈ N such that at time n0 is the last
visit to state i0. Let Xn0+1 = i1. Then i1 �= i0. By transience, Pr(Xn = i1 i.o.) = 0. So there is
n1 ≥ n0 + 1 ∈ N such that at time n1 is the last visit to state i1. Then Xn �= i0, i1 for n > n1. Let
Xn1+1 = i2. Then i2 �= i0, i1. Continuing like this, after finitely many steps we have excluded all
possibilities which is a contradiction.

Corollary 4.2.13. Finite closed communicating classes are Markov chains themselves (see Remark
4.2.10) and hence recurrent.
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Example 4.2.14. Consider a Markov chain on the state space S = {0, 1, 2, 3, 4, 5} with TPM

P =




1
2

0 0 0 1
2

0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1

3
1
3

0 1
3




Find the recurrent communicating classes and compute the periods of all states.

Proposition 4.2.15. Recurrent communicating classes of homogeneous Markov chains are closed.

Proof. We prove the contraposition: non-closed communicating classes are transient. Let C be a
non-closed communicating class. . Then there are j /∈ C, i ∈ C such that j is accessible from i.
If C was a recurrent communicating class then i would be recurrent, gebce state i would have to
be be accessible from state j. But this would imply i ↔ j and so j ∈ C which is a contradiction.
Thus C is transient.

Theorem 4.2.16. A M.C. can be partitioned into disjoint classes T,C1, C2, . . . such that T consists
of transient states and the Ci are closed recurrent communicating classes.

Proof. Any state i in the Markov chain is either transient or recurrent. If it is recurrent then it
belongs to a recurrent communicating class (by Theorem 4.2.11 b)) and by Proposition 4.2.15 this
communicating class is closed.

Definition 4.2.17. A state j of a homogeneous Markov chain is called ergodic if it is recurrent and
aperiodic.

Proposition 4.2.18. Let i, j be two states of a homogeneous Markov chain. If i ↔ j then i ergodic
⇔ j ergodic.

Proof. follows from Theorem 4.2.11 (invariants under communication).

Definition 4.2.19. A communicating class C of a homogeneous Markov chain is called ergodic if
all its states are ergodic.

Theorem 4.2.20. Let {Xn} be a finite, irreducible, homogeneous M.C.. Then

{Xn} is ergodic ⇔ {Xn} is aperiodic.

Proof. The recurrence follows from Theorem 4.2.12.

Definition 4.2.21. Let {Xn} be a homogeneous Markov chain. Then Tj = inf(n ∈ N, Xn = j) is
called first passage time of state j.

If X0 = j we also call Tj first return time of state j. Note that

fjj = Pr(Tj < ∞ | X0 = j)

and so Pr(Tj < ∞ | X0 = j) = 1 if and only if j is a recurrent state.
The next theorem shows that in a recurrent irreducible M.C. every state is visited by the process

with probability one.
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Theorem 4.2.22. Let {Xn} be a homogeneous M.C. with state space S.

a) Let i, j ∈ S and assume that state j is recurrent and i ↔ j. Then

fij := Pr(Tj < ∞ | X0 = i) = 1.

b) Assume that the M.C. is irreducible and recurrent. Then for all states j ∈ S we have Tj < ∞.

Proof in words:

a) Since i is accessible from j it is possible that the Markov chain visits j starting from i

(p(n)ji > 0 for some n ∈ N). But the Markov chain visits state j infinitely often by Theorem
4.1.12 since state j is recurrent. Therefore the Markov chain has to returrn to state j starting
from i. This means that fij = 1.

b) By a), since the Markov chain is now assumed irreducible and recurrent, whatever state
i ∈ S the Markov chain is in at time 0 it will visit every state j at some time Tj . Hence
Tj < ∞ for all j ∈ S.

Formal Proof.1

a) Since i ↔ j there is some m such that p(m)
ji > 0. Since state j is recurrent we have

1 = Pr(Xn = j i.o. | X0 = j)

≤ Pr(Xn = j for some n ≥ m+ 1 | X0 = j)

=
�

k∈S
Pr(Xn = j for some n ≥ m+ 1 | Xm = k,X0 = j) Pr(Xm = k | X0 = j)

=
�

k∈S
fkjp

(m)
jk .

So we have both �

k∈S
fkjp

(m)
jk = 1,

�

k∈S
p
(m)
jk = 1.

For the first equation to hold true we therefore need fkj = 1 whenever p(m)
jk �= 0, in particular

this holds for k = i.

b) We have Tj < ∞ if Pr(Tj < ∞) = 1 and

Pr(Tj < ∞) =
�

i∈S
Pr(Tj < ∞ | X0 = i) Pr(X0 = i) =

�

i∈S
fij Pr(X0 = i)

=
�

i∈S
Pr(X0 = i) = 1,

where we have used part a).

1Material not covered in lectures and not examinable
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4.3 Stationary Distributions of Markov Chains
Definition 4.3.1. Given a homogeneous M.C. {Xn} on a state space S = {0, 1, . . . , N}, N ∈
N ∪ {∞}, with TPM P a probabiity mass function π = {πj}j∈S is called stationary distribution
for the Markov chain if if πP = π, which is in coordinates

N�

j=0

πipij = πj, j = 0, 1, . . . , N.

Remarks 4.3.2.

a) For a stationary initial distribution Pr(X0 = i) = πi, i ∈ S we have

Pr(Xn = i) = πi for all n ∈ N, i ∈ S,

because by Corollary 3.3.6 for all i ∈ S

Pr(Xn = i) = (πP n)i

and by the definition of a stationary distribution

(πP n)i = πi, for all i ∈ S.

In other words, a stationary distribution π does not change with time.

b) The column vector πT corresponding to the row vector of the stationary distribution π =
(π0, π1, . . . , πN) of a homogeneous M.C. on a state space S = {0, 1, . . . , N} with TPM P
satisfies

πT = P TπT ,

so that π lies in the null space of P T − id (where id is the identity matrix). To find π we solve
πT = P TπT together with the constraint

π0 + π1 + . . .+ πN = 1.

Example 4.3.3. Compute the stationary distribution of the Markov chain with state space S =
{1, 2, 3} and TPM

P =




1
2

0 1
2

1
3

1
3

1
3

0 1
2

1
2




Example 4.3.4. Clearly the Markov chain with TPM

P =

�
1 0
0 1

�

has infinitely many stationary distributions.

In this section we will find conditions which guarantee a stationary distribution to exist and to
be unique.
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Definition 4.3.5. Let {Xn} be a homogeneous Markov chain with finite or infinite state space
S = {0, 1, 2, . . . , N} where N ∈ N ∪ {∞}. If there exists a probability distribution π on S with

lim
n→∞

Pr(Xn = i) = πi

for all initial distributions p = {pj = Pr(X0 = j)}j∈S then π is called the limiting distribution of
the Markov chain.

Proposition 4.3.6. If a homogeneous Markov chain {Xn} has a limiting distribution π then π is a
stationary distribution.

Proof. A limiting distribution π satisfies πi = limn→∞ Pr(Xn = i) for all i ∈ S and so does not
change after a time step: we have limn→∞ Pr(Xn+1 = i) = πi as well. Formally we compute,
using Corollary 3.3.6, that

πj = lim
n→∞

Pr(Xn = j) = lim
n→∞

(pP n)j = lim
n→∞

(pP n+1)j = (( lim
n→∞

pP n)P )j = (πP )j

for all j ∈ S and so πP = π.

Definition 4.3.7. Let {Xn} be a homogeneous, irreducible, recurrent M.C. and let i, j be states of
it. Let, as before, 1{i}(k) = 1 if k = i and 0 otherwise. Define

γj
i = E(

Tj−1�

n=0

1{i}(Xn) | X0 = j),

where Tj is the first return time to state j, see Definition 4.2.21.

Note that γj
i is the expected number of visits to state i between visits to state j for i �= j. Moreover

for i = j

γj
j = E(

Tj−1�

n=0

1{j}(Xn) | X0 = j) = 1{j}(j) + E(

Tj−1�

n=1

1{j}(Xn) | X0 = j) = 1 + 0 = 1.

Theorem 4.3.8. Let {Xn} be a homogeneous, irreducible, recurrent M.C. with state space S =
{0, 1, . . . , N}, N ∈ N ∪ {∞}, and let j ∈ S. Let γj = (γj

0, γ
j
1, . . . , γ

j
N). Then

a) γjP = γj;

b) 0 < γj
i < ∞ for all i, j ∈ S.

Proof.1

a) We will not prove part a) here, for a proof see the book “Markov Chains” by Norris. But
note that it is reasonable that γj

i , the expected number of visits to a state i in between visits
to j is invariant under time evolution which gives γjP = γj .

b) To prove b) notice that by Theorem 4.2.22 we have Tj < ∞ and therefore, due to the
definition of γj

i also γj
i < ∞ for all i, j. We will not prove here that γj

i > 0 (a proof can be
found in the book “Markov Chains” by Norris); but note that we already know that γj

j = 1.
Moreover any state i �= j is accessible from state j so that it is reasonable that the expected
number γj

i of visits to state j between visits to state i is not zero.

1Material not covered in lectures and not examinable
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Theorem 4.3.9. An irreducible, recurrent homogeneous M.C. {Xn} on the state space S with a
positive recurrent state j has a stationary distribution π = 1

µj
γj with πi > 0 for all i ∈ S. In

particular πj =
1
µj

.

Proof. Let S = {0, 1, . . . , N} be the state space of the Markov chain. Then

N�

i=0

γj
i = expected number of visits to other states between visits to j

= expected time between visits to j = expected return time to j = µj

and
µj < ∞ if and only if j is positively recurrent.

Since µj > 0 by definition we can define π = 1
µj
γj . Since µj < ∞ we then know that π is not the

zero vector, i.e., π �= 0. Moreover πP = π by Theorem 4.3.8. Since by definition γj
i ≥ 0 we have

πi = γj
i /µj ≥ 0 for all i ∈ S. Moreover

N�

i=0

πi =
1
µj

N�

i=0

γj
i = 1.

Further, since γj
j = 1 we have πj = γj

j/µj = 1/µj . Note that indeed πi = γj
i /µj > 0 for all i ∈ S

because γj
i > 0 for all i ∈ S by Theorem 4.3.8 and because by assumption µj < ∞.

Theorem 4.3.10. A finite irreducible homogeneous M.C. has a stationary distribution.

Proof. Let S = {0, 1, . . . , N}, where N ∈ N0, be the state space of the Markov chain. By
Theorem 4.2.12 all states are recurrent. Moreover by Theorem 4.3.8 we know that 0 < γj

i < ∞
for all i, j ∈ S. Since N is finite and µj =

�N
i=0 γ

j
i we see that µj < ∞ and so state j is positive

recurrent. Therefore by Theorem 4.3.9 the Markov chain has a stationary distribution.

Theorem 4.3.11. An irreducible, recurrent, homogeneous M.C. has at most one stationary distri-
bution π and if it exists then πj =

1
µj

> 0 for all j.

Proof.1 The proof is in the book “Markov chains” by Norris.

Corollary 4.3.12. If an irreducible, homogeneous M.C. has a positive recurrent state j, then all
states are positive recurrent.

Proof By Theorem 4.3.9 the Markov chain has a stationary distribution π and by Theorem 4.3.11
is is given by πi =

1
µi

with πi > 0 for all i ∈ S. Since πi > 0 if and only if µi < ∞ state i is
positive recurrent for all i ∈ S.

Corollary 4.3.13. A positive recurrent, irreducible homogeneous M.C. has exactly one stationary
distribution π with πj =

1
µj

> 0 for all states j.

Proof By Theorem 4.3.9 the Markov chain has a stationary distribution π and by Theorem 4.3.11
it is unique and given by πi =

1
µi

for all i ∈ S.
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Examples 4.3.14.

a) Any finite irreducible homogeneous Markov chain has a unique stationary distribution (by
Theorems 4.3.10 and 4.3.11)

b) The symmetric random walk is irreducible and recurrent (see Example 4.1.14). Therefore
by Theorem 4.3.8 there is a sequence γj with components γj

i satisfying 0 < γj
i < ∞ and

γjP = γj . Suppose that there is also a stationary distribution π. Then πP = π is equivalent
to πi =

�∞
j=−∞ πjpji. Since pi,i+1 =

1
2
= pi,i−1 for the symmetric random walk and pij = 0

for j �= i± 1, this gives

πj =
1

2
πj−1 +

1

2
πj+1.

Moreover,
�∞

k=−∞ πk = 1. To solve this difference equation try πj = λj . Then, dividing by
λj−1, assuming λ �= 0 we get λ = 1

2
(1 + λ2) and λ = 1 is a double root of this equation. So

the general solution of this difference equation is πk = c1 + c2k. Since 0 ≤ πk ≤ 1 for all
k we have c2 = 0. But then π is given by πi ≡ c1 and so does not satisfy

�∞
k=−∞ πk = 1.

Therefore the symmetric random walk does not have a stationary distribution and is therefore
null-recurrent.

4.4 The Basic Limit Theorem for Markov Chains
Theorem 4.4.1. (Basic Limit Theorem, [BLT]) An irreducible, positive recurrent, aperiodic ho-
mogeneous M.C. with TPM P and state space {0, 1, . . . , N}, N ∈ N ∪ {∞}, has a distribution π
such that

lim
n→∞

p
(n)
ji = πi for all j, i.

A proof can be found in the book ”Markov chains” by Norris.

Remarks 4.4.2.

a) The distribution π from the BLT is a limiting distribution, i.e., for any initial distribution p
(i.e., Pr(X0 = i) = pi, i = 0, . . . , N ) we have

lim
n→∞

Pr(Xn = i) = πi.

This follows from

lim
n→∞

Pr(Xn = i) = lim
n→∞

(pP n)i = lim
n→∞

N�

j=0

pjp
(n)
ji =

N�

j=0

pjπi = πi,

where we used Corollary 3.3.6 in the first equation.

b) By Proposition 4.3.6 the limiting distribution is stationary, and by Theorem 4.3.11 it is given
by πj =

1
µj

, j = 0, . . . , N .

Theorem 4.4.3. Let P be the TPM of a homogeneous M.C. {Xn} and assume that

lim
n→∞

p
(n)
ji =

1

µi

for all states i. Then the M.C. spends an average fraction 1
µi

in state i.
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Proof. Let m(n)
i be the random variable that counts the number of visits of the M.C. to state i

during the times 0, 1, . . . , n− 1. Then

m
(n)
i =

n−1�

k=0

1{i}(Xk)

where, as before,

1{i}(j) =

�
1 if j = i
0 otherwise.

Then, as we saw before (with i = j, see proof of Theorem 4.1.13)

E(m
(n)
i | X0 = j) =

n−1�

k=0

E(1{i}(Xk) | X0 = j) =
n−1�

k=0

p
(k)
ji .

Thus,

E(
m

(n)
i

n
| X0 = j) =

1

n

n−1�

k=0

p
(k)
ji

is the expected fraction of time spent in state i in the period of time 0, 1, . . . , n − 1 if the process
starts in state j. Since limn→∞ p

(n)
ji = 1

µi
we conclude that

lim
n→∞

1

n

n−1�

k=0

p
(k)
ji =

1

µi

,

where we used that if limn→∞ an = a for a sequence {an}n∈N then

lim
n→∞

1

n

n−1�

k=0

an = a.

Thus, in the long run, the M.C. spends a fraction of time 1
µi

in state i.

Example 4.4.4. Suppose an irreducible, aperiodic, recurrent, homogeneous M.C. on S = {0, 1, 2}
satisfies

µ0 = µ1 = 4, µ2 = 2.

Then the BLT applies and so, by Theorem 4.4.3, on average the M.C. spends half of its time in
state 2, a quarter in state 0 and a quarter in state 1.

Example 4.4.5. A Markov chain with state space {1, 2, 3} has transition probability matrix

P =




1/2 1/2 0
1/3 1/3 1/3
1/2 0 1/2


 .

Compute the stationary distribution of this Markov chain. The costs incurred in spending one unit
period are £2 in state 1, £1 in state 2 and £3 in state 3. What is the long run cost per unit period
of this Markov chain?

Remark 4.4.6. A finite closed communicating class C of a homogeneous M.C. is a M.C. itself
(see Remark 4.2.10) and so by Corollary 4.3.13 it has a unique stationary distribution π with
πi = 1/µi > 0 for all i ∈ C. If C is aperiodic, then the BLT (Theorem 4.4.1) and Theorem 4.4.3
hold too.



Chapter 5

Poisson Processes

The Poisson distribution and Poisson processes come up frequently in applications when studying
“rare events”, e.g. break downs in transmissions, traffic accidents, arrivals at queues etc.

5.1 Poisson Distribution
Definition 5.1.1. The Poisson distribution with parameter µ ≥ 0 is the probability mass function
given by pk = e−µµk/k!, k ∈ N0. A random variable X with values in N0 is Poisson distributed, if
Pr(X = k) = e−µµk/k!.

Proposition 5.1.2. The Poisson distribution is indeed a probability mass function, i.e.,

a) 0 ≤ pk ≤ 1 for all k ∈ N0;

b)
�∞

k=0 pk = 1.

Proof. We use the Taylor expansion of eµ:

eµ = 1 + µ+
µ2

2!
+

µ3

3!
+ . . .

a) It is clear that pk ≥ 0. To prove that pk ≤ 1 note that

pk =
µk

k!
e−µ ≤ (1 + µ+

µ2

2!
+

µ3

3!
+ . . .)e−µ = eµ · e−µ = 1.

b)
�∞

k=0 pk =
�∞

k=0
µk

k!
e−µ = eµ · e−µ = 1.

Proposition 5.1.3. Let X be a random variable which is Poisson distributed with parameter µ.
Then E(X) = µ.

Proof.

E(X) =
∞�

k=0

kpk =
∞�

k=0

k
µk

k!
e−µ = µe−µ

∞�

k=1

µk−1

(k − 1)!
= µe−µ

∞�

k=0

µk

k!
= µe−µeµ = µ.
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5.2 Law of Rare Events
When an event can occur in a large number of independent ways and the probability of each such
event is the same arbitrarily small number then the number of events follows a Poisson distribution:

Theorem 5.2.1. Consider n independent trials, probability of success in each trial is p; let Xn,p

be the number of successes in n trials. Keep µ = np = E(Xn,p) constant and n → ∞. Then

lim
n→∞
µ=np

Pr(Xn,p = k) =
µke−µ

k!
.

Proof. We have

Pr(Xn,p = k) =

�
n

k

�
pk(1− p)n−k

= n(n− 1) · . . . (n− k + 1)
pk(1− p)n

k!(1− p)k

= n(n− 1) · . . . (n− k + 1)
(µ
n
)k(1− µ

n
)n

k!(1− µ
n
)k

= 1(1− 1

n
) · . . . · (1− k − 1

n
)
µk(1− µ

n
)n

k!(1− µ
n
)k

and so

lim
n→∞

Pr(Xn,p=µ
n
= k) =

µk

k!
lim
n→∞

(1− µ

n
)n =

µke−µ

k!

which is the Poisson distribution.

5.3 Poisson Processes
A Poisson process X(t) models that number of rare events up to time t and is characterized by the
rate of occurence of rare events λ ≥ 0. It is used to model for example disintegration of radioactive
particles, occurence of accidents etc.

Definition 5.3.1. A Poisson process of rate λ > 0 is an integer valued stochastic process {Xt}t≥0

for which

(i) for any times t0 < t1 < . . . < tn < . . . the process increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1), . . .

are independent.

(ii) For s ≥ 0, t > 0 the random variable X(s+ t)−X(s) is Poisson distributed with parameter
λt,

Pr(X(s+ t)−X(s) = k) =
(λt)ke−λt

k!
, k = 0, 1, 2, . . .

(iii) X(0) = 0.
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Remarks 5.3.2.

a) From X(0) = 0 and (ii) we get

Pr(X(t) = k) =
(λt)ke−λt

k!
,

b) Note also that E(X(t)) = λt by Proposition 5.1.3 with µ = λt.

Example 5.3.3. Defects occur along a communication cable according to a Poisson process at rate
λ = 0.1 per minute.

a) What is the probability that no defects occur in the first two minutes of operation?

b) Suppose it is known that there we no defects in the first two minutes. What is the probability
of no defects between t = 2 and t = 3?

5.4 Derivation of the Poisson Process
We have constructed the Poisson process from the Poisson distribution. We can also derive it from
the postulates below using First step analysis.

Definition 5.4.1.

a) f : R → R is o(h) if limh→0 f(h)/h = 0.

b) f(h) is O(h) if there is c ∈ R with |f(h)/h| ≤ c as h → 0.

Note that o(h)− o(h) = o(h), it is in general not 0! Also −o(h) = o(h).

Example 5.4.2.

a) Let f(h) = h3/2. Is f(h) O(h) or o(h) or none?

b) Let f(h) = 3h. Is f(h) O(h) or o(h) or none?

Postulates 5.4.3. (Poisson process)
Let N((a, b]) be the number of events occuring during the time interval (a, b].

1) For t0 = 0 < t1 < . . . < tm the random variables N((t0, t1]), N((t1, t2]), . . . , N((tm−1, tm])
are independent.

2) For any t > 0, h > 0, the probability distribution of N((t, t+h]) (# events occuring between
time t and t+ h) depends only on the interval length h, not on t.

3) ∃λ > 0 such that Pr(N((t, t+ h]) ≥ 1) = λh+ o(h) as h → 0.

4) Pr(N((t, t+ h]) ≥ 2) = o(h) as h → 0.

Theorem 5.4.4. Let Pn(t) = Pr(N((0, t]) = n). The postulates above imply that

Pn(t) =
(λt)ne−λt

n!

i.e., Pn(t) is Poisson distributed with parameter µ = λt, and X(t) = N((0, t]) is a Poisson
process.
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Proof. First step analysis gives for n ≥ 1

Pn(t+ h) = Pn(t)P0(h) + Pn−1(t)P1(h) +
n�

i=2

Pn−i(t)Pi(h). (5.1)

By postulate 3
P0(h) = 1− Pr(N((t, t+ h]) ≥ 1) = 1− λh+ o(h)

and

Pr(N((t, t+h]) ≥ 1) = λh+o(h) = Pr(N((t, t+h]) = 1)+Pr(N((t, t+h]) ≥ 2) = P1(h)+o(h)

where we used postulate 4. Hence

P1(h) = λh+ o(h).

Finally we can estimate the third term of (5.1) as follows:

n�

i=2

Pn−i(t)Pi(h) ≤
n�

i=2

Pi(h) ≤
∞�

i=2

Pi(h) = Pr(N((t, t+ h]) ≥ 2) = o(h),

where we have used postulate 4. Substituting this into (5.1) gives

Pn(t+ h) = (1− λh)Pn(t) + Pn−1(t)λh+ o(h)

and
Pn(t+ h)− Pn(t)

h
= −λPn(t) + Pn−1(t)λ+

o(h)

h

for n ≥ 1. Letting h → 0 we get

dPn(t)

dt
= −λPn(t) + λPn−1(t), n ≥ 1,

If n = 0 then the second term in this ODE has to be dropped (since the number of events is always
non-negative). So we get

P0(t+ h) = P0(t)(1− λ0h+ o(h))

and
P0(t+ h)− P0(t)

h
= −λP0(t) +

o(h)

h

Letting h → 0 we get
dP0(t)

dt
= −λP0(t)

This gives the system of ODEs

dPn(t)

dt
= −λPn(t) + λPn−1(t), n ≥ 1,

dP0(t)

dt
= −λP0(t)

with initial values
P0(0) = 1, Pn(0) = 0 for n ≥ 1
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(this follows from Pn(0) = Pr(N((0, 0]) = n) = Pr(N(∅) = n) which is 0 as no events happen
in an empty time interval. Hence P0(t) = e−λt and

P �
1(t) = −λP1(t) + λe−λt.

Multiplying through with eλt we obtain

d

dt
(eλtP1(t)) = λ

and so
eλtP1(t) = λt+ c

and
P1(t) = λte−λt + ce−λt

Since P1(0) = 0 we have P1(t) = λte−λt. This proves the theorem for n = 1. Now assume that
the theorem holds for some n ∈ N, i.e., Pn(t) =

(λt)n

n!
e−λt. Then

dPn+1(t)

dt
= −λPn+1(t) + λPn(t) = −λPn+1(t) + λ

(λt)n

n!
e−λt

which is equivalent to

d(eλtPn+1(t))

dt
=

λn+1tn

n!
=⇒ eλtPn+1(t) =

λn+1tn+1

(n+ 1)!
+ c

Since Pn+1(0) = 0 we have c = 0 and so Pn+1(t) =
λn+1tn+1

(n+1)!
e−λt as claimed.

Remark 5.4.5. The postulates for the Poisson process imply

1) Pr(X(t+ h)−X(t) = 1 | X(t) = j) = λh+ o(h) for all j ∈ N0;

2) Pr(X(t+ h)−X(t) = 0 | X(t) = j) = 1− λh+ o(h) for all j ∈ N0;

3) X(0) = 0.

5.5 Examples of Poisson Processes
Example 5.5.1. (Radioactive decay) Let X(t) be the number of radioactive disintegrations de-
tected by a counter in the time interval [0, t]. The process is Poisson as long as the half life time of
the substance is large compared to [0, t].

Example 5.5.2. (Fishing) Let X(t) be the number of fish caught in the time interval [0, t]. Assume
that the number of fish is large and that fish are equally likely to bite at any time. Then {X(t)}
may be considered as a Poisson process.
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Continuous Time Markov Processes

6.1 Pure Birth Process
The simplest generalization of the Poisson process allows the probability of events to depend on
how many have appeared previously, for example, the number of births goes up with the number
of members in the population.

Consider a sequence {λk}k≥N with λk ≥ 0, k ≥ N .

Postulates 6.1.1. (Pure birth process)

1) Pr(X(t+ h)−X(t) = 1 | X(t) = j) = λjh+ o(h) for all j ∈ N0;

2) Pr(X(t+ h)−X(t) = 0 | X(t) = j) = 1− λjh+ o(h) for all j ∈ N0;

3) X(0) = N (initial population).

Note that these postulates also hold for the Poisson process with λk ≡ λ.

Theorem 6.1.2. Let Pn(t) = Pr(N((0, t]) = n) as above. Then the above postulates imply that

P �
n(t) = −λnPn(t) + λn−1Pn−1(t), n ≥ 1, P �

0(t) = −λ0P0(t)

with initial values
PN(0) = 1, Pn(0) = 0 for n �= N.

Proof. As for the Poisson process, first step analysis yields

Pn(t+ h) = Pn(t)(1− λnh+ o(h)) + Pn−1(t)(λn−1h+ o(h))

for n ≥ 1 and
P0(t+ h) = P0(t)(1− λ0h+ o(h))

which gives
Pn(t+ h)− Pn(t)

h
= −λnPn(t) + Pn−1(t)λn−1 +

o(h)

h
,

for n ≥ 1 and
P0(t+ h)− P0(t)

h
= −λ0P0(t) +

o(h)

h
.

Letting h → 0 we get

dPn(t)

dt
= −λnPn(t) + λn−1Pn−1(t), n ≥ 1, and

dP0(t)

dt
= −λ0P0(t).
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Note that
0 ≡ P0(t) ≡ P1(t) ≡ . . . ≡ PN−1(t).

Hence PN(t) satisfies
P �
N(t) = −λNPN(t).

Since PN(0) = 1 we get PN(t) = e−λN t.

Example 6.1.3. (Yule process) Consider a population of members who give birth, but do not die.
Assume that each member acts independently and has a probability λh+ o(h) of giving birth to a
new member during a time interval of length h. Assume that the initial population at time t = 0 is
X(0) = 1. If at time t the population has n members then

Pr(X(t+ h)−X(t) = 1 | X(t) = n) =

�
n

1

�
(λh+ o(h))(1− λh+ o(h))n−1

= nλh(1−O(h)) = nλh+ o(h).

The probability of k > 1 members giving birth is
�
n

k

�
(λh+ o(h))k(1− λh+ o(h))n−k = o(h).

This is a special pure birth process with λn = nh which we call a Yule process. The corresponding
ODEs are

P �
n(t) = −nλPn(t) + (n− 1)λPn−1(t), P �

1(t) = −λP1(t)

with
P1(1) = 1, Pn(0) = 0 for n ≥ 1,

since the initial population is X(0) = 1. These differential equations can be solved iteratively to
give

Pn(t) = e−λt(1− e−λt)n−1.

6.2 Birth and Death Process
The pure birth process models early stages of population growth, but not population growth where
members can die or be removed. So we generalize to Birth and Death Processes.

Postulates 6.2.1. (Birth and Death Process) Consider non-negative sequences {λk}, {µk}, k ∈
N0.

1) Pr(X(t+ h)−X(t) = 1 | X(t) = j) = λjh+ o(h) for all j ∈ N0;

2) Pr(X(t+ h)−X(t) = −1 | X(t) = j) = µjh+ o(h) for all j ∈ N0;

3) Pr(|X(t+ h)−X(t)| > 1 | X(t) = j) = o(h) for all j ∈ N0.

Theorem 6.2.2. Let Pn(t) = Pr(N((0, t]) = n) as above. Then the above postulates imply that

P �
n(t) = −(λn + µn)Pn(t) + λn−1Pn−1(t) + λn+1Pn+1(t), n ≥ 1,

P �
0(t) = −λ0P0(t) + µ1P1(t).
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Proof. By first step analysis we have

Pn(t+ h) = Pn(t)(1− λnh− µnh) + Pn−1(t)λn−1h+ Pn+1(t)µn+1h+ o(h) for n ∈ N,
P0(t+ h) = P0(t)(1− λ0h) + P1(t)µ1h+ o(h).

The first term in the first equation is the probability that the population size equals n at time t
and that no birth or death occurs in the time interval (t, t + h]. For n ≥ 1 the second term is the
probability that the population size equals n− 1 at time t and one birth occurs in the time interval
(t, t + h]. The third term is the probability that the population size equals n + 1 at time t and one
death occurs in the time interval (t, t + h]. Due to the postulate 3 the probability of more than
one death or birth in the time interval (t, t+ h] is o(h). Since the population size is a nonnegative
number, the last term is absent in the case n = 0 and µ0 = 0. Rearranging we get

Pn(t+ h)− Pn(t)

h
= −(λn + µn)Pn(t) + λn−1Pn−1(t) + µn+1Pn+1(t) + o(1)

P0(t+ h)− P0(t)

h
= −λ0P0(t) + µ1P1(t) + o(1).

Letting h → 0 we get the differential equations as required.


