Homeomorphisms of Tiling Spaces

Lorenzo Sadun

University of Texas

July 20, 2022

Image: A mathematical states and a mathem

Outline

イロト イボト イヨト イヨト

æ

Outline

1 Results (joint with Antoine Julien)

2 What is a Tiling Space?

(日)

Outline

- 1 Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces

< D > < A > < B > < B >

Outline

- 1 Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- Homeomorphisms of tiling spaces
- 4 Tiling cohomology

Outline

- 1 Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants

< (司 ▶

Outline

- 1 Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem

Outline

- 1 Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- The Ruelle-Sullivan map

Table of Contents

- 1 Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- 🕜 The Ruelle-Sullivan map

The classification theorem

In the category of minimal, uniquely ergodic FLC tiling spaces, homeomorphisms $h: \Omega \to \Omega'$ of a given tiling space Ω are classified, up to homotopy and MLD, by an open subset of the Čech cohomology $\check{H}^1(\Omega, \mathbb{R}^d)$.

The decomposition theorem

In the same category, every homeomorphism is a composition of

- A "weak translation" $\psi: \Omega \to \Omega$, homotopic to the identity map.
- A shape change homeomorphism $h_{sc}:\Omega \to \Omega''$, and
- An MLD equivalence $\phi: \Omega'' \to \Omega'$.

Table of Contents

Results (joint with Antoine Julien)

- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- 🕜 The Ruelle-Sullivan map

What is an FLC tiling?

An FLC tiling is a collection of regions ("tiles") in \mathbb{R}^d such that

- Each tile is a closed topological disk $t = \overline{t^0}$, together with a label. WLOG, tiles are labeled polyhedra.
- Any two tiles with the same label must be translates of one another.
- Tiles intersect only on their boundaries.
- The union of all the tiles is all of \mathbb{R}^d .
- There are only finitely many tile labels.
- There are only finitely many ways for two tiles to overlap. (No continuous shears.)

< ロ > < 同 > < 三 > < 三

A pretty tiling

A different pretty tiling

Lorenzo Sadun

イロト イボト イヨト イヨト

э

The tiling metric

- Two tilings T and T' are ϵ -close if they agree on $B_{1/\epsilon}(0)$, up to translation by up to ϵ .
- Behavior of ${\cal T}$ and ${\cal T}'$ near ∞ is irrelevant.
- Metric is *not* translation-invariant, but resulting topology *is* translation-invariant. (Convergence on compact sets)

< D > < A > < B > < B >

Definition of a tiling space

A tiling space Ω is a non-empty compact translation-invariant set of tilings, using the topology induced by the tiling metric. We usually also assume:

- Non-periodicity: If T x = T, then x = 0.
- Minimality: If $T \in \Omega$, then $\Omega = \overline{\{T x\}}$.
- Unique ergodicity, aka existence of uniform patch frequencies.

< ロ > < 同 > < 三 > < 三 >

Local topology of Ω

 ϵ -neighborhood N of T is $B \times C$, where B is a ball in \mathbb{R}^d and C is a Cantor set. To get $T' \in N$,

- Erase T outside of $B_{1/\epsilon}(0)$.
- Translate by up to ϵ (this gives B).
- Fill in near ∞ . Infinitely many discrete choices gives C.

Global topology of Ω

- Ω is the inverse limit of a sequence of CW-complexes, describing a tiling out to greater and greater distances.
- Ω is connected but not path-connected. There are uncountably many path-components.
- Many constructions, all very similar. Here's Franz Gähler's.

Image: A math a math

The Anderson-Putnam complex

Describes how to place a single tile containing the origin.

- Which type of tile? Finite choice.
- Where is the origin in that tile? Need copy of that tile.
- What if 0 is on the boundary of two or more tiles? Identify common edges/faces/etc.

< D > < A > < B > < B >

The AP complex of the Fibonacci tiling

- *ab* is legal, so $\beta = \gamma$.
- ba is legal, so $\delta = \alpha$.
- *aa* is legal, so $\alpha = \beta$.
- This forces $\gamma = \delta$, even though *bb* isn't legal.
- Γ is a figure 8, with all four vertices identified.

Results (joint with Antoine Julien)	
What is a Tiling Space?	
Homeomorphisms of tiling spaces	
Tiling cohomology	
Topological invariants	
The structure theorem	
The Ruelle-Sullivan map	

Collaring

Relabel tiles by the pattern of nearest neighbors. For Fibonacci:

- $A_1 = (a)a(b)$
- $A_2 = (b)a(a)$

•
$$A_3 = (b)a(b)$$

•
$$B_1 = (a)b(a)$$

 \dots abaababa \dots becomes $\dots A_{?}B_{1}A_{2}A_{1}B_{1}A_{3}B_{1}A_{?}\dots$

Gähler's construction

- $\Gamma^n = AP$ complex with *n*-collared tiles.
- A point in Γ^n is instructions for laying a tile at the origin plus n rings around it. (OK, tile touching the origin plus n-1 rings if origin is on the boundary.)
- $\rho_n: \Gamma^n \to \Gamma^{n-1}$ is forgetful.
- $\Omega = \varprojlim(\Gamma^n, \rho_n) = \text{consistent instructions for tiling all of } \mathbb{R}^d$.

< ロ > < 同 > < 三 > < 三 >

Table of Contents

- Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- 🕜 The Ruelle-Sullivan map

Weak translations

• Pick a continuous map $f: \Omega \to \mathbb{R}^d$.

•
$$\psi(T) = T - f(T)$$

- Homotopic to the identity map $(\Psi_s(T) = T sf(T))$
- Homeomorphism as long as f is Lipschitz with constant < 1.

(日)

Shape changes

- Assign vector $\vec{v}(e)$ to every edge e of every face.
- Corresponding edges of same tile type get same vector.
- $\sum \vec{v}(e) = 0$ for edges around a tile.
- Consistency: If two tile share an edge, both tiles give same vector (up to sign).
- \vec{v} is closed \mathbb{R}^d valued 1-cochain on AP complex.
- Can also work with *n*-collared tiles.

• □ ▶ • □ ▶ • □ ▶

Same thing in pictures

э

э

▲ 同 ▶ ▲ 三

Shape change maps

- Replace each edge e with $\vec{v}(e)$.
- Use piecewise linear map on each tile type to fix origin.
- Preserves combinatorics of how tiles meet.
- Changes the geometry
- Avoiding crossings is an open condition. Maps are parametrized, up to MLD, by H˜¹(Ω, ℝ^d).

• □ ▶ • < </p>
• □ ▶ • < </p>

Mutual Local Derivability (MLD)

• $\ell:\Omega\to\Omega'$ is a local derivation if

- ℓ is a factor map (commutes with translations), and
- There is a radius R such that $B_1(0) \cap \ell(T)$ is determined exactly by $B_R(0) \cap T$.
- Analogue of "sliding block code"
- $m: \Omega \to \Omega'$ is MLD if both m and m^{-1} are LD.

< 同 × I = >

Examples of MLD maps

- Translation by a fixed vector $\vec{x_0}$.
- Relabeling tiles (... *abba*... vs. ...0110...)
- Splitting or rejoining tiles. E.g. replace every *a* tile with two smaller tiles labeled *a*₁ and *a*₂.
- Land grabs. E.g. move the boundary of every *ab* meeting 1 cm to the right. This affects *collared* tiles, making *a*(*b*) bigger and (*a*)*b* smaller.

< ロ > < 同 > < 三 > < 三 >

That's all there is!

Restatement of main result (part 2): Any homeomorphism $h: \Omega \to \Omega'$ of minimal, uniquely ergodic FLC tiling spaces can be decomposed as $h = \phi \circ h_{SC} \circ \Psi$, where

- Ψ is a weak translation
- *h_{SC}* is a shape change
- ϕ is an MLD equivalence.

< 4 ₽ > < Ξ

Table of Contents

- Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- 🕜 The Ruelle-Sullivan map

The usual algebraic topology invariants don't work

- Ω is connected but not path connected.
- Each path component is contractible.
- Invariants that probe one path component at a time, like π_n and singular (co)homology, are useless.
- Need something that measures connections at ∞ .

Čech cohomology

- Definition of $\check{H}^*(X)$ is complicated (and unnecessary!)
- If X is a CW complex, then $\check{H}^*(X)$ is isomorphic to every other cohomology theory (singular, cellular, simplicial).

• If
$$X = \varprojlim \Gamma^n$$
, then $\check{H}^*(X) = \varinjlim H^*(\Gamma^n)$.

•
$$\check{H}^*(\Omega, A) = \varinjlim \check{H}^*(\Gamma^n, A) = \varinjlim H^*(\Gamma^n, A).$$

• □ > • □ > • □ > ·

The dyadic solenoid

•
$$\mathbb{S}_2 = \varprojlim(S^1, \rho)$$
 where $\rho(z) = z^2$.

•
$$H^0(S^1)=\mathbb{Z},\
ho_0^*= ext{identity},\ \check{H}^0(\mathbb{S}_2)=\mathbb{Z}.$$

•
$$H^1(S^1) = \mathbb{Z}, \ \rho_1^* = \times 2, \ \check{H}^1(\mathbb{S}_2) = \mathbb{Z}[1/2].$$

イロト イボト イヨト イヨト

æ

Pattern-equivariant (PE) cohomology (Kellendonk-Putnam)

- Start with tiling T, not with tiling space Ω .
- PE function on T with radius R is a function whose value at x only depends on $B_R(0) \cap (T x)$.
- "*f* is PE" means "*f* is PE with some finite but unspecified radius *R*."
- $C^k = PE$ functions on k-cells of T.

•
$$\delta_k : C^k \to C^{k+1}, \ \delta\alpha(c) := \alpha(\partial c). \ \delta^2 = 0.$$

•
$$H_{PE,T}^* = \frac{Ker(\delta)}{Im(\delta)}$$

< ロ > < 同 > < 三 > < 三 >

Theorem (Kellendonk-Putnam, S-)

If Ω is a minimal space of FLC tilings, $T \in \Omega$, and A is an abelian group, then $H^*_{PE,T}$ with values in A is isomorphic to $\check{H}^*(\Omega, A)$.

Lorenzo Sadun Homeomorphisms of Tiling Spaces

< ロ > < 同 > < 三 > < 三 >

What are PE cochains?

$$C^{k} = \{ PE \text{ k-cochains on } T \}$$

= $\varinjlim (k\text{-cochains on } \Gamma^{n})$

Lorenzo Sadun Homeomorphisms of Tiling Spaces

イロト イボト イヨト イヨト

э

Proof

$$H_{PE,T}^{k} = \frac{Ker\delta_{k}}{Im\delta_{k-1}}$$

$$= \frac{\lim_{K \to \infty} (Ker \text{ of } \delta_{k} \text{ on } \Gamma^{n})}{\lim_{K \to \infty} (Im \text{ of } \delta_{k-1} \text{ on } \Gamma^{n})}$$

$$= \lim_{K \to \infty} \left(\frac{Ker \text{ of } \delta_{k} \text{ on } \Gamma^{n}}{Im \text{ of } \delta_{k-1} \text{ on } \Gamma^{n}} \right)$$

$$= \lim_{K \to \infty} H^{k}(\Gamma^{n}, A) = \lim_{K \to \infty} \check{H}^{k}(\Gamma^{n}, A)$$

<ロ> (日) (日) (日) (日) (日)

æ

Table of Contents

- Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- 🕜 The Ruelle-Sullivan map

The fundamental shape class

- $\alpha(\text{edge}) = \text{actual vector along that edge.}$
- $\delta \alpha(face) = \alpha(\partial(face)) = 0.$
- α is a closed PE 1-cochain with values in \mathbb{R}^d .
- Defines a cohomology class $\mathcal{F}(\Omega) = [\alpha]$.

▲ 同 ▶ ▲ 三

The cohomology class of a homeomorphism

- Given homeomorphism $h: \Omega \to \Omega'$,
- Class of h is $[h] = h^*[\mathcal{F}(\Omega')] \in \check{H}^1(\Omega, \mathbb{R}^d).$
- Pullback is in Čech cohomology.
- Can also do pullback of PE cochain, but only after homotoping *h* so that it preserves transversals and so preserves PE functions.

Example: Shape changes for Fibonacci

- Let Ω be a Fibonacci tiling space whose tiles *a* and *b* have length ℓ_a and ℓ_b . $\mathcal{F}(\Omega) = \ell_a i_a + \ell_b i_b$.
- Let Ω' be Fibonacci tilings whose tiles A and B have length L_A and L_B . $\mathcal{F}(\Omega') = L_A i_A + L_B i_B$.
- h is shape change. $h^*(i_A) = i_a$, $h^*(i_B) = i_b$.
- $[h] = L_A i_a + L_B i_b.$

・ 同 ト ・ ヨ ト ・ ヨ

Table of Contents

- Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- 🕜 The Ruelle-Sullivan map

Statement of the theorem

Theorem

If $h_1 : \Omega \to \Omega_1$ and $h_2 : \Omega \to \Omega_2$ are homeomorphisms of minimal FLC tiling spaces, and if $[h_1] = [h_2]$, then there is a commutative diagram

where Ψ is a weak translation and ϕ is an MLD equivalence.

< ロ > < 同 > < 回 > < 回 >

Proof sketch, part 1

- Let $\alpha_{1,2}$ represent $[h_{1,2}]$.
- By continuity, big patch P at origin of T determines patch P₁ (resp P₂) at origin of h₁(T) (resp h₂(T)), up to small translation.
- If *P* occurs at points *x* and *y* in *T*, displacement between corresponding P_i 's in $h_i(T)$'s is approximately $\int^y \alpha_i$.
- Since $\alpha_2 = \alpha_1 + \delta f$, integrals are the same for big enough *P*.
- P_1 's in $h_1(T)$ almost line up with P_2 's in $h_2(T)$.

< ロ > < 同 > < 三 > < 三 >

Proof sketch, part 2

- By applying a weak translation, we can change "almost line up" to "line up exactly".
- "Line up exactly" plus homeomorphism implies MLD equivalence (possibly with gigantic radius).

• □ ▶ • < </p>
• □ ▶ • < </p>

Proof sketch, part 2

- By applying a weak translation, we can change "almost line up" to "line up exactly".
- "Line up exactly" plus homeomorphism implies MLD equivalence (possibly with gigantic radius).
- Lots of technical details. I did say "sketch"!

Image: A math a math

Table of Contents

- Results (joint with Antoine Julien)
- 2 What is a Tiling Space?
- 3 Homeomorphisms of tiling spaces
- 4 Tiling cohomology
- 5 Topological invariants
- 6 The structure theorem
- The Ruelle-Sullivan map

The RS map with forms

Can represent classes in H^{*}_{PE,T}(Ω, ℝ^d) with vector-valued PE forms on ℝ^d. (Original construction)

• E.g., represent
$$\mathcal{F}(\Omega)$$
 by $\sum_{j=1}^d d\mathsf{x}^j\otimes e_j$

0

• Define
$$RS(\alpha) = \int_{\Omega} \alpha d\mu$$
.

• Need unique ergodic measure μ .

< A >

What does RS([h]) tell us?

- Ergodic theorem: Averaging α over a big region in \mathbb{R}^d gives $RS(\alpha)$, up to small error.
- Convergence is uniform, thanks to unique ergodicity.
- If $\alpha \in H^1(\Omega, \mathbb{R}^d)$, $RS(\alpha)$ is a linear transformation.
- *RS*([*h*]) gives distortion induced on each leaf, at large scale. (Requires technical estimates)

< ロ > < 同 > < 三 > < 三 >

Theorem 1

Claim: RS([h]) is invertible. Sketch of proof:

- If RS([h])(v) = 0, then h collapses things in v direction at large scale.
- But then h^{-1} stretches things by arbitrarily large factor over long distances.
- Contradicts uniform continuity of h^{-1} .

< ロ > < 同 > < 三 > < 三 >

Theorem 2

Claim: If $\alpha \in \check{H}^1(\Omega, \mathbb{R}^d)$ and $RS(\alpha)$ is invertible, then there is a shape change whose class is α .

• Danger is map folding things over at small scale.

- Not a problem if α is shape change done by pointwise almost constant form.
- Take any representative of α and convolve with very wide bump function. Becomes pointwise close to $RS(\alpha)$.

Proof of decomposition theorem

- Given homeomorphism $h:\Omega \to \Omega'$
- Let $\alpha = [h]$.
- By Theorem 1, $RS(\alpha)$ is invertible.
- By Theorem 2, there is a shape change h_{sc} with $[h_{sc}] = \alpha$.
- By structure theorem, h and h_{sc} are related by ...

The punch line

 $h = \phi^{-1} \circ h_{sc} \circ \Psi$ as claimed.

(日)

э

The punch line

< ロ > < 同 > < 三 > < 三 >

э

The classification theorem, revisited

- Set of possible [h]'s is RS^{-1} (invertible matrices).
- RS^{-1} (invertible matrices) is an open subset of $\check{H}^1(\Omega, \mathbb{R}^d)$.
- This open subset parametrizes all possible shape changes, up to homotopy and MLD.

The classification theorem, revisited

- Set of possible [h]'s is RS^{-1} (invertible matrices).
- RS^{-1} (invertible matrices) is an open subset of $\check{H}^1(\Omega, \mathbb{R}^d)$.
- This open subset parametrizes all possible shape changes, up to homotopy and MLD.
- By the decomposition theorem, the same subset parametrizes all homeomorphisms, up to homotopy and MLD.

Open questions

Let G be the group of self-homeomorphisms of Ω .

- How does G act on RS^{-1} (invertible matrices)?
- How does G act on all of $\check{H}^1(\Omega, \mathbb{R}^d)$?
- {Tiling spaces homeomorphic to Ω }/MLD = RS^{-1} (invertible matrices)/(Action of G).

▲ (日) ▶ ▲ (日)