Topological Groups with Strong Disconnectedness Properties

Ol'ga Sipacheva Moscow State University

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F'*-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F'*-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F'*-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F'*-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F'*-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F'*-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F*'-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F*'-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

 \implies basically disconnected \implies *F*-space \implies *F*'-space

P-space

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F*'-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

 \implies basically disconnected \implies *F*-space \implies *F*'-space

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- an *F*'-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

 \implies basically disconnected \implies *F*-space \implies *F*'-space

- extremally disconnected if any two disjoint open subsets of X have disjoint closures (⇔ the closure of any open set is open);
- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in X;
- an *F*'-space if any two disjoint cozero sets in *X* have disjoint closures;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

maximal \implies extremally disconnected

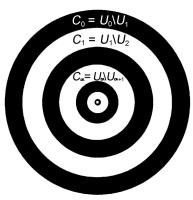
$$\implies \text{basically disconnected} \implies F\text{-space} \implies F'\text{-space}$$

$$\Uparrow$$

$$P\text{-space}$$

\exists extremally disconnected P-space $\implies \exists$ measurable cardinal.

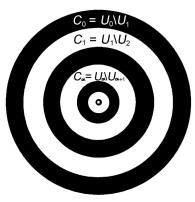
Indeed, let X be a zero-dimensional space, and let $x \in X$ be such that $x \notin \overline{U} \cap \overline{V}$ for any disjoint open $U, V \subset X$. We construct a strictly decreasing sequence $(U_{\alpha})_{\alpha < \kappa}$ of clopen neighborhoods of x such that $x \notin \operatorname{Int} \bigcap_{\alpha < \kappa} U_{\alpha}$. Clearly, κ is limit.



\exists extremally disconnected P-space $\implies \exists$ measurable cardinal.

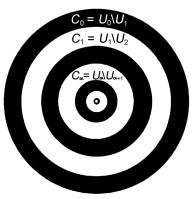
Indeed, let X be a zero-dimensional space, and let $x \in X$ be such that $x \notin \overline{U} \cap \overline{V}$ for any disjoint open $U, V \subset X$.

We construct a strictly decreasing sequence $(U_{\alpha})_{\alpha < \kappa}$ of clopen neighborhoods of x such that $x \notin Int \bigcap_{\alpha < \kappa} U_{\alpha}$. Clearly, κ is limit.



\exists extremally disconnected P-space $\implies \exists$ measurable cardinal.

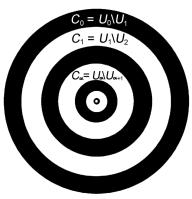
Indeed, let X be a zero-dimensional space, and let $x \in X$ be such that $x \notin \overline{U} \cap \overline{V}$ for any disjoint open $U, V \subset X$. We construct a strictly decreasing sequence $(U_{\alpha})_{\alpha < \kappa}$ of clopen neighborhoods of x such that $x \notin \operatorname{Int} \bigcap_{\alpha < \kappa} U_{\alpha}$. Clearly, κ is limit.



For each $\alpha \in \kappa$ let $C_{\alpha} =$ $U_{\alpha} \setminus U_{\alpha+1}$. The sets C_{α} are clopen and pairwise disjoint, and for any neighbor-

\exists extremally disconnected P-space $\implies \exists$ measurable cardinal.

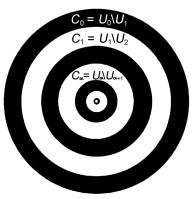
Indeed, let X be a zero-dimensional space, and let $x \in X$ be such that $x \notin \overline{U} \cap \overline{V}$ for any disjoint open $U, V \subset X$. We construct a strictly decreasing sequence $(U_{\alpha})_{\alpha < \kappa}$ of clopen neighborhoods of x such that $x \notin \operatorname{Int} \bigcap_{\alpha < \kappa} U_{\alpha}$. Clearly, κ is limit.



For each $\alpha \in \kappa$ let $C_{\alpha} =$ $U_{\alpha} \setminus U_{\alpha+1}$. The sets C_{α} are clopen and pairwise disjoint, and for any neighborhood $V \ni x \exists \alpha \in \kappa$ such that $V \cap C_{\alpha} \neq \emptyset \implies$ the sets { $\alpha \in \kappa : V \cap C_{\alpha} \neq \emptyset$ } for all neighborhoods V of X form an ultrafilter. It is

 \exists extremally disconnected P-space $\implies \exists$ measurable cardinal.

Indeed, let X be a zero-dimensional space, and let $x \in X$ be such that $x \notin \overline{U} \cap \overline{V}$ for any disjoint open $U, V \subset X$. We construct a strictly decreasing sequence $(U_{\alpha})_{\alpha < \kappa}$ of clopen neighborhoods of x such that $x \notin \operatorname{Int} \bigcap_{\alpha < \kappa} U_{\alpha}$. Clearly, κ is limit.



For each $\alpha \in \kappa$ let $C_{\alpha} =$ $U_{\alpha} \setminus U_{\alpha+1}$. The sets C_{α} are clopen and pairwise disjoint, and for any neighborhood $V \ni x \exists \alpha \in \kappa$ such that $V \cap C_{\alpha} \neq \emptyset \implies$ the sets { $\alpha \in \kappa : V \cap C_{\alpha} \neq \emptyset$ } for all neighborhoods V of X form an ultrafilter. It is countably complete if x is a P-point.

Extremally disconnected compact spaces = projective objects in the category of compact spaces and continuous maps (that is, if E, X, and Y are compact spaces, E is extremally disconnected, $f: E \to X$ is continuous, and $g: Y \to X$ is continuous and surjective, then there exists a continuous $\varphi: E \to Y$ such that $f = g \circ \varphi$:

Extremally disconnected completely regular (regular, Hausdorff) spaces = projective objects in the category of completely regular (regular, Hausdorff) spaces and perfect continuous maps Extremally disconnected compact spaces = projective objects in the category of compact spaces and continuous maps (that is, if E, X, and Y are compact spaces, E is extremally disconnected, $f: E \to X$ is continuous, and $g: Y \to X$ is continuous and surjective, then there exists a continuous $\varphi: E \to Y$ such that $f = g \circ \varphi$:

Extremally disconnected completely regular (regular, Hausdorff) spaces = projective objects in the category of completely regular (regular, Hausdorff) spaces and perfect continuous maps

X is extremally disconnected \iff the Boolean algebra CO(X) of clopen sets is complete and forms a base of the topology of X;

X is basically disconnected \iff CO(X) is countably complete and forms a base of the topology of X;

X is a strongly zero-dimensional F-space \iff CO(X) is weakly countably complete and forms a base of the topology of X ("weakly countably complete" means that if $A, B \subset CO(X)$ are countable and $a \wedge b = 0$ for $a \in A, b \in B$, then $\exists c \in CO(X)$ such that $a \leq c$ and $b \leq \neg c$ for all $a \in A, b \in B$). X is extremally disconnected \iff the Boolean algebra CO(X) of clopen sets is complete and forms a base of the topology of X;

X is basically disconnected \iff CO(X) is countably complete and forms a base of the topology of X;

X is a strongly zero-dimensional *F*-space \iff CO(X) is weakly countably complete and forms a base of the topology of X ("weakly countably complete" means that if $A, B \subset CO(X)$ are countable and $a \wedge b = 0$ for $a \in A, b \in B$, then $\exists c \in CO(X)$ such that $a \leq c$ and $b \leq \neg c$ for all $a \in A, b \in B$). X is extremally disconnected \iff the Boolean algebra CO(X) of clopen sets is complete and forms a base of the topology of X;

X is basically disconnected \iff CO(X) is countably complete and forms a base of the topology of X;

X is a strongly zero-dimensional F-space \iff CO(X) is weakly countably complete and forms a base of the topology of X ("weakly countably complete" means that if $A, B \subset CO(X)$ are countable and $a \land b = 0$ for $a \in A, b \in B$, then $\exists c \in CO(X)$ such that $a \leq c$ and $b \leq \neg c$ for all $a \in A, b \in B$). For each $f \in C(X)$ $P_f = \bigcap (\text{all minimal prime ideals containing } f)$.

- X is extremally disconnected \iff every intersection of ideals P_f is principal.
- X is a P-space ⇐⇒ every nonunit element of C(X) is a zero divisor and every ideal P_f is principal ⇐⇒ every prime ideal in C(X) is principal.
- X is basically disconnected \iff every ideal P_f is principal.
- X is an F-space \iff every finitely generated ideal in C(X) is principal.

Basically disconnected \implies strongly zero-dimensional $\Leftarrow F$ -space

For each $f \in C(X)$ $P_f = \bigcap (\text{all minimal prime ideals containing } f)$.

- X is extremally disconnected \iff every intersection of ideals P_f is principal.
- X is a P-space ⇐⇒ every nonunit element of C(X) is a zero divisor and every ideal P_f is principal ⇐⇒ every prime ideal in C(X) is principal.
- X is basically disconnected \iff every ideal P_f is principal.
- X is an F-space \iff every finitely generated ideal in C(X) is principal.

Basically disconnected \implies strongly zero-dimensional $\Leftarrow F$ -space

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V · V ⊂ U, then (V) is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.
 In any Boolean group B(X) = [X]^{≤ω} with uncountable neighborhoods of 1 the sets {F ∈ B(X): the power of 2 in the prime factorization of |F| is even/odd} are dense and disjoint

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V · V ⊂ U, then (V) is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.
 In any Boolean group B(X) = [X]^{≤ω} with uncountable neighborhoods of 1 the sets {F ∈ B(X): the power of 2 in the prime factorization of |F| is even/odd} are dense and disjoint

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V · V ⊂ U, then (V) is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.
 In any Boolean group B(X) = [X]^{<ω} with uncountable neighborhoods of 1 the sets {F ∈ B(X): the power of 2 in th prime factorization of |F| is even/odd} are dense and disjoint.

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V ⋅ V ⊂ U, then ⟨V⟩ is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.
 In any Boolean group B(X) = [X]^{<ω} with uncountable neighborhoods of 1 the sets {F ∈ B(X): the power of 2 in th prime factorization of |F| is even/odd} are dense and disjoint

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

MALYKHIN:

• $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups

- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V · V ⊂ U, then ⟨V⟩ is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.
 In any Boolean group B(X) = [X]^{≤ω} with uncountable neighborhoods of 1 the sets {F ∈ B(X): the power of 2 in the prime factorization of |F| is even/odd} are dense and disjoint.

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

MALYKHIN:

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, × ↦ × ↓, is a self-homeomorphism. Frolik's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V + V ⊂ U, then (V) is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.

In any Boolean group $B(X) = [X]^{<\omega}$ with uncountable neighborhoods of 1 the sets $\{F \in B(X)$: the power of 2 in the prime factorization of |F| is even/odd $\}$ are dense and disjoint.

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V ⋅ V ⊂ U, then ⟨V⟩ is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.
 In any Boolean group B(X) = [X]^{<ω} with uncountable neighborhoods of 1 the sets {F ∈ B(X): the power of 2 in the prime factorization of |F| is even/odd} are dense and disjoint

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

MALYKHIN:

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V ⋅ V ⊂ U, then ⟨V⟩ is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.

In any Boolean group $B(X) = [X]^{<\omega}$ with uncountable neighborhoods of 1 the sets $\{F \in B(X): \text{ the power of 2 in the} prime factorization of <math>|F|$ is even/odd} are dense and disjoint.

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

MALYKHIN:

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V ⋅ V ⊂ U, then ⟨V⟩ is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.

In any Boolean group $B(X) = [X]^{<\omega}$ with uncountable neighborhoods of 1 the sets $\{F \in B(X)\}$: the power of 2 in the prime factorization of |F| is even/odd} are dense and disjoint.

Problem

Do there exist (in ZFC) strongly disconnected topological groups not being P-spaces?

MALYKHIN:

- $\mathfrak{p} = \mathfrak{c} \implies \exists$ nondiscrete maximal topological groups
- Any extremally disconnected topological group has an open Boolean subgroup (Boolean = all elements are of order 2)
 h: G → G, x ↦ x⁻¹, is a self-homeomorphism. Frolík's theorem ⇒ U = Fix f is a neighborhood of 1. If V ∋ 1 and V ⋅ V ⊂ U, then ⟨V⟩ is a Boolean subgroup.
- Any maximal topological group contains a countable neighborhood of 1.

In any Boolean group $B(X) = [X]^{<\omega}$ with uncountable neighborhoods of 1 the sets $\{F \in B(X): \text{ the power of 2 in the} \text{ prime factorization of } |F| \text{ is even/odd} \}$ are dense and disjoint.

Maximal groups: The nonexistence of maximal nondiscrete groups is consistent with ZFC.

∃ countable nondiscrete extremally disconnected group \implies ∃ rapid filter on ω [Reznichenko+S].

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F*'-groups: a countable group is an *F*'-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 \nexists rapid filters \implies any countable subspace of an F'-group is closed and discrete.

Maximal groups: The nonexistence of maximal nondiscrete groups is consistent with ZFC.

 $\exists \text{ countable nondiscrete extremally disconnected group } \Longrightarrow \\ \exists \text{ rapid filter on } \omega \text{ [Reznichenko+S]}.$

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F*'-groups: a countable group is an *F*'-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 \nexists rapid filters \implies any countable subspace of an F'-group is closed and discrete.

 \exists countable nondiscrete extremally disconnected group \implies \exists rapid filter on ω [Reznichenko+S].

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC.

(b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F*'-groups: a countable group is an *F*'-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 $\exists \text{ countable nondiscrete extremally disconnected group } \Longrightarrow \\ \exists \text{ rapid filter on } \omega \text{ [Reznichenko+S]}.$

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F'*-groups: a countable group is an *F'*-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 $\exists \text{ countable nondiscrete extremally disconnected group } \Longrightarrow \\ \exists \text{ rapid filter on } \omega \text{ [Reznichenko+S].}$

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F'*-groups: a countable group is an *F'*-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 $\exists \text{ countable nondiscrete extremally disconnected group } \Longrightarrow \\ \exists \text{ rapid filter on } \omega \text{ [Reznichenko+S]}.$

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F'*-groups: a countable group is an *F'*-space \iff it is an *F*-space \iff it is extremally disconnected.

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 $\exists \text{ countable nondiscrete extremally disconnected group } \Longrightarrow \\ \exists \text{ rapid filter on } \omega \text{ [Reznichenko+S].}$

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F'*-groups: a countable group is an *F'*-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

 $\exists \text{ countable nondiscrete extremally disconnected group } \Longrightarrow \\ \exists \text{ rapid filter on } \omega \text{ [Reznichenko+S].}$

Extremally disconnected groups: (a) The nonexistence of countable nondiscrete extremally disconnected groups is consistent with ZFC. (b) \exists measurable cardinals $\implies \exists$ nondiscrete extremally disconnected groups.

(c) \exists a nondiscrete extremally disconnected group with linear (generated by subgroups) topology $\implies \exists$ either a measurable cardinal or such a group of cardinality $\leq 2^{\omega}$.

F- and *F'*-groups: a countable group is an *F'*-space \iff it is an *F*-space \iff it is extremally disconnected. \implies

The nonexistence of countable nondiscrete F'-groups is consistent with ZFC.

(Consistently) exists a basically disconnected group G, not a P-space, containing no open Boolean subgroups:

 $G = G_1 \times G_2$, where G_1 is a countable nondiscrete extremally disconnected group and G_2 is an arbitrary nondiscrete P-group [Comfort+Hindman+Negrepontis].

Fact (Hart+Vermeer)

If K is a compact finite-dimensional F-space and $\phi: K \to K$ is a continuous injective map, then the fixed-point set of ϕ is a P-set of K, that is, every G_{δ} -set containing it is a neighbourhood of it.

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

(Consistently) exists a basically disconnected group G, not a P-space, containing no open Boolean subgroups:

 $G = G_1 \times G_2$, where G_1 is a countable nondiscrete extremally disconnected group and G_2 is an arbitrary nondiscrete P-group [Comfort+Hindman+Negrepontis].

Fact (Hart+Vermeer)

If K is a compact finite-dimensional F-space and $\phi: K \to K$ is a continuous injective map, then the fixed-point set of ϕ is a P-set of K, that is, every G_{δ} -set containing it is a neighbourhood of it.

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

(Consistently) exists a basically disconnected group G, not a P-space, containing no open Boolean subgroups:

 $G = G_1 \times G_2$, where G_1 is a countable nondiscrete extremally disconnected group and G_2 is an arbitrary nondiscrete P-group [Comfort+Hindman+Negrepontis].

Fact (Hart+Vermeer)

If K is a compact finite-dimensional F-space and $\phi: K \to K$ is a continuous injective map, then the fixed-point set of ϕ is a P-set of K, that is, every G_{δ} -set containing it is a neighbourhood of it.

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Theorem

Any basically disconnected Abelian topological group either is a *P*-space or has a nondiscrete topological quotient of countable pseudocharacter containing an open basically disconnected Boolean subgroup.

Corollary

The existence of an Abelian basically disconnected group which is not a P-space is equivalent to the existence of a nondiscrete Boolean basically disconnected group of countable pseudocharacter.

Theorem

Any basically disconnected Abelian topological group either is a *P*-space or has a nondiscrete topological quotient of countable pseudocharacter containing an open basically disconnected Boolean subgroup.

Corollary

The existence of an Abelian basically disconnected group which is not a P-space is equivalent to the existence of a nondiscrete Boolean basically disconnected group of countable pseudocharacter. $F_G(X)$, $A_G(X)$, and $B_G(X)$ are the free, free Abelian, and free Boolean topological groups of a $T_{3\frac{1}{2}}$ -space X in the sense of Graev: given an arbitrary fixed point $x_0 \in X$, the group $F_G(X)$ is the unique topological group with $1 = x_0$ containing X as a subspace and such that any continuous map of X to any topological group G that takes x_0 to the identity element of G can be extended to a continuous homomorphism $F_G(X) \to X$. $F_G(X)$ does not depend on x_0 . Any free topological group in the sense of Markov is a free topological group in the sense of Graev.

The free Abelian and Boolean topological groups are defined in a similar way. Algebraically, the free Boolean group generated by a set X is $[X]^{<\omega}$ with the operation of symmetric difference.

Fact

The free Abelian topological group $A_G(X)$ is the topological quotient of $F_G(X)$ by the commutator subgroup, and the free Boolean topological group $B_G(X)$ is the topological quotient of $A_G(X)$ by the subgroup $A_G(2X)$ of squares.

Fact

If G is a topological group, H is its subgroup, and G/H is the quotient space of left or right cosets, then the canonical quotient map $G \rightarrow G/H$ is open.

Fact

Extremal disconnectedness, basic disconnectedness, and the property of being an F'-space are preserved by open continuous maps.

Indeed, for such a map $f: X \to Y$ and any $A \subset Y$, we have $\overline{A} = f(\overline{f^{-1}(A)})$.

Fact

For any $T_{3\frac{1}{2}}$ -space X, the following conditions are equivalent:

- X is a P-space;
- **2** $F_G(X)$ is a *P*-space;
- **3** $A_G(X)$ is a *P*-space;
- \bigcirc $B_G(X)$ is a P-space.

Theorem

- If For a $T_{3\frac{1}{2}}$ -space X, the following conditions are equivalent:
 - the free topological group of X is an F'-space,
 - the free Abelian topological group of X is an F'-space
 - X is a P-space.
- The existence of a free Boolean topological F'-group which is not a P-space is equivalent to the existence of a selective ultrafilter on ω.

Fact

For any $T_{3\frac{1}{2}}$ -space X, the following conditions are equivalent:

- X is a P-space;
- **2** $F_G(X)$ is a *P*-space;
- **3** $A_G(X)$ is a *P*-space;
- \bigcirc $B_G(X)$ is a P-space.

Theorem

- For a $T_{3\frac{1}{2}}$ -space X, the following conditions are equivalent:
 - the free topological group of X is an F'-space,
 - the free Abelian topological group of X is an F'-space,
 - X is a P-space.

The existence of a free Boolean topological F'-group which is not a P-space is equivalent to the existence of a selective ultrafilter on ω.

THANK YOU