Exercise Sheet 3, Proseminar Stochastic Processes Winter Semester 2016-17, 250069 PS

Exercise 1 Let $P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix}$ be the transition matrix of a Markov chain on state space $E = \{1, 2\}$. Compute the expected return time $\mu_i = \mathbb{E}(T_i)$ for i = 1, 2. What is the distribution of T_i ?

Exercise 2 Given a finite irreducible Markov chain, show that all states are not just recurrent, but **positive** recurrent, i.e., $\mu_i = \mathbb{E}(T_i) < \infty$ for the return time T_i to state *i*, and any $i \in E$. Show that T_i has finite variance as well.

Exercise 3 Let P be the transition matrix of a finite state Markov chain, and assume that P is irreducible, but periodic with period $d \ge 2$. Show that E decomposes into d communication classes for them d-th iterate of the process, i.e., for the process $(X_{dn})_{n\ge 0}$. Show that $e^{2\pi i c/d}$ is an eigenvalue of P for all integers $0 \le c < d$.

Exercise 4 We are given an irreducible aperiodic Markov chain with finite state space E, transition matrix P and stationary distribution π .

- 1. Show that the first return process to a subset E' is also a Markov chain; what is the stationary distribution of this Markov chain?
- 2. If there are states $i, i' \in E$ such that $p_{ij} = p_{i'j}$ and $p_{ji} = p_{ji'}$ for all $j \in E$, show that we find a new Markov chain by merging states i and i'; what is the stationary distribution of this Markov chain?