Exercise Sheet 4, Proseminar Stochastic Processes Winter Semester 2016-17, 250069 PS

Exercise 1 Let $(X_n)_{n\geq 0}$ be a random walk on the non-negative integers, with $p_{0,1} = 1$ and $p_{n,n-1} = p$, $p_{n,n+1} = 1 - p$ for $n \geq 1$. For which p is this random walk positive recurrent/null-recurrent/transient? In case of positive recurrence, what is the stationary distribution?

Exercise 2 Let G be an infinite rooted binary graph, i.e., there is a single root R and every other vertex has exactly three neighbours (so two "below" it), and there are no loops. Let $(X_n)_{n>0}$ be a random walk on G.

- 1. Suppose, in one step you can only go to a neighbouring vertex, and from every vertex there is equal probability to jump to any of its neighbours. Is this random walk positive recurrent/null-recurrent/transient?
- 2. Same question, but now the probability to jump to the neighbour closer to the root is $\frac{1}{2}$ (and from the root you always jump to its single neighbour).

Exercise 3 Let $(X_n)_{n\geq 0}$ be a random walk on \mathbb{Z} , with transition probabilities $p_{n,n-2} = \frac{1}{4}$, $p_{n,n-1} = \frac{1}{4}$ and $p_{n,n+1} = \frac{1}{2}$. Is this random walk positive recurrent/null-recurrent/transient?

Exercise 4 Let $(X_n)_{n\geq 0}$ be a symmetric random walk on \mathbb{Z} with $X_0 = 0$. Let $u_{2n} = \mathbb{P}(X_{2n} = 0)$ and $f_{2n} = \mathbb{P}(\min\{k \geq 1 : X_{2k} = 0\} = n)$.

- 1. Show that $f_{2n} = \frac{1}{2n-1}u_{2n}$.
- 2. Show that $u_{2n} = \sum_{k=1}^{n} f_{2k} u_{2(n-k)}$.
- 3. Show that $\sum_{k=0}^{n} u_{2k} u_{2(n-k)} = 1$.