Exercise Sheet 4, Proseminar Stochastic Processes Winter Semester 2016-17, 250069 PS

Exercise 1 Let $\left(X_{n}\right)_{n \geq 0}$ be a random walk on the non-negative integers, with $p_{0,1}=1$ and $p_{n, n-1}=p, p_{n, n+1}=1-p$ for $n \geq 1$. For which p is this random walk positive recurrent/null-recurrent/transient? In case of positive recurrence, what is the stationary distribution?

Exercise 2 Let G be an infinite rooted binary graph, i.e., there is a single root R and every other vertex has exactly three neighbours (so two "below" it), and there are no loops. Let $\left(X_{n}\right)_{n \geq 0}$ be a random walk on G.

1. Suppose, in one step you can only go to a neighbouring vertex, and from every vertex there is equal probability to jump to any of its neighbours. Is this random walk positive recurrent/null-recurrent/transient?
2. Same question, but now the probability to jump to the neighbour closer to the root is $\frac{1}{2}$ (and from the root you always jump to its single neighbour).

Exercise 3 Let $\left(X_{n}\right)_{n \geq 0}$ be a random walk on \mathbb{Z}, with transition probabilities $p_{n, n-2}=\frac{1}{4}$, $p_{n, n-1}=\frac{1}{4}$ and $p_{n, n+1}=\frac{1}{2}$. Is this random walk positive recurrent/null-recurrent/transient?

Exercise 4 Let $\left(X_{n}\right)_{n \geq 0}$ be a symmetric random walk on \mathbb{Z} with $X_{0}=0$. Let $u_{2 n}=$ $\mathbb{P}\left(X_{2 n}=0\right)$ and $f_{2 n}=\mathbb{P}\left(\min \left\{k \geq 1: X_{2 k}=0\right\}=n\right)$.

1. Show that $f_{2 n}=\frac{1}{2 n-1} u_{2 n}$.
2. Show that $u_{2 n}=\sum_{k=1}^{n} f_{2 k} u_{2(n-k)}$.
3. Show that $\sum_{k=0}^{n} u_{2 k} u_{2(n-k)}=1$.
