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Introduction

This script is based on the lecture “Stochastische Prozesse” hold by Univ.-
Prof. Dr. Josef Hofbauer in the winter semester of 2014. If you spot any
mistakes, please write an email to basti.fischer.wien@gmail.com. I will up-
load the recent version to
https://elearning.mat.univie.ac.at/wiki/images/e/ed/Stoch pro 14 hofb.pdf.

I want to thank Hannes Grimm-Strele and Matthias Winter for send-
ing me the files of their script of a similar lecture held by Univ.-Prof. Dr.
Reinhard Bürger in 2007.
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1 Random Walks

1.1 Heads or tails

Let us assume we play a fair game of heads or tails, meaning both sides of
our coin have the same probability p = 0.5. We play for N rounds, so there
are clearly 2N different possibilities of how our game develops, each with the
same probability of 1

2N
. We define the random variable

Xn :=

{
1, for head and

−1 for tails

as the outcome of our n’th throw and

SN :=
N∑
n=1

Xn.

So if we bet one euro on head each time (and since the game is fair, are able
to win one euro each time), Sn will tell us our capital after n rounds. Math-
ematically speaking, Sn describes a so called random walk on the natural
numbers.

Now let us look at the probability distribution of Sn. If we have k times
head with N repetitions in total, we get SN = k − (N − k) = 2k − N and
the probability of this event is

P (SN = 2k −N) =

(
N

k

)
1

2N
,

since we have to choose k out of N occasions for head and 2N is the total
number of paths. We can transform this to

P (Sn = j) =

{(
N
N+j
2

)
1

2N
, if N + j is even and

0 if N + j is odd,

since this is impossible.

Exercise 1. Compute the mean value and the variance of Sn in two ways
each.

With A(N, j) we denote the number of paths from (0, 0) to (N, j) and
clearly it is

A(N, j) =

{(
N
N+j
2

)
, if N + j is even and

0 if N + j is odd.
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Figure 1: The random walk belonging to the event
(−1, 1, 1, 1,−1, 1,−1, 1, 1,−1)

1.2 Probability of return

We now take a closer look on the probability of getting the same amount of
heads and tails after 2N repetitions, so S2N = 0. Stirlings formula

n! ∼
√

2πn

(
n

e

)n
tells us more about the long time development, we get

P (S2N = 0) =

(
2N

N

)
1

2N
=

(2N)!

22NN !2
∼

√
4πN(2Ne)2N

(
√

2πNNN)2(2e)2M
=

1√
πN

which tends to 0 as N grows to infinity.

Exercise 2. Let pn denote the probability P (S2n = 0) =
(

2n
n

)
2−2n. Prove

directly that [np2
n, (n+ 1

2
)p2
n] is a sequence of nested intervals.

Exercise 3. Show for a symmetrical random walk, that for j fixed and N →
∞ one has

P (SN = j) ∼
√

2

πN
.

6



1.3 Reflection principle

Lemma 1.1. The number of paths from (0, 0) to (N, j) that do not hit the
axis (i.e. Sk > 0 for k > 0) is given by

A(N − 1, j − 1)− A(N − 1, j + 1)

Proof. The number of paths from (0, 0) to (N, j) above the axis is given by
the total number of paths from (1, 1) to (N, j) minus the paths from (1, 1) to
(N, j) that do hit the axis. This second number is the same as the number
of paths from (1,−1) to (N, j + 2), because we can simply reflect the part of
the path before it reaches the axis for the first time.

A simple consequence of the reflection principle is the

Theorem 1.2 (Ballot theorem). The number of paths from (0, 0) to (N, j)
that do not hit the axis is j

N
times the number of paths from (0, 0) to (N, j).

We can use the Ballot theorem in daily life, imagine an election between
two candidates, there are N voters, candidate A gets k votes, so B gets k− l
votes. Assuming B wins,what is the probability that during the counting, B
is always in the lead? The theorem gives the answer by

k−l
N
A(N, k − l)

A(N, k − l)
=
k − l
N

=
k − l
k + l

.

Exercise 4. Prove the Ballot theorem.

1.4 Main lemma for symmetric random walks

We define u2M := P (S2M = 0) =
(

2M
M

)
1

22M
, then we get

Lemma 1.3 (Main lemma). The number of paths with length 2M from (0, 0)
that do not hit the axis is the same as the number of paths that end in (2M, 0).
Speaking in terms of probability it is

P (S1 6= 0, S2 6= 0, ..., S2M 6= 0) = P (S2M = 0).

Proof. Let us call the first number A 6=0 and the final point of each path
(2M, 2j). At first we observe simply by symmetrical reasons that A 6=0 is

7



twice the number of paths that lie above the axis. So, counting all possible
values of j we get

A6=0 = 2
M∑
j=1

[
A(2M − 1, 2j − 1)− A(2M − 1, 2j + 1)

]
= 2[A(2M − 1, 1)− A(2M − 1, 2M + 1)︸ ︷︷ ︸

=0

]

reflection
= A(2M − 1, 1) + A(2M − 1,−1) = A(2M, 0)

Now it is easy to see that

Corollary 1.4. The probability to have no tie within the first N rounds is

P (SN = 0) ∼
√

2

πN
→ 0 (N →∞).

1.5 First return

We define the probability that the first return of a path to the axis is after
2M rounds as f2m. Then we have

Theorem 1.5.
f2M = u2M−2 − u2M .

Proof.

# paths of length 2M from (0, 0) with first return at time 2M

= # paths of length 2M with Si 6= 0 for i = 1, ...,M − 1

−#paths of length 2M with Si 6= 0 for i = 1, ...,M

= 4# paths of length 2M − 2 that do not hit the axis

−#paths of length 2M with Si 6= 0 for i = 1, ...,M

= 4 · u2m−2 · 22M−2 − u2M · 22M

= 22M [u2m−2 − u2M ].

Corollary 1.6. f2M = 1
2M−1

u2m = 1
2M−1

(
2M
M

)
1

22M
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Corollary 1.7.
∑∞

M=1 f2M = u0 − u2 + u2 − u4 + ... = u0 = 1

Exercise 5. Show the following connection between the probabilities of return
u2n and first return f2n.

u2n = f2u2n−2 + f4u2n−4 + · · ·+ f2nu0.

Exercise 6. Show that

u2n = (−1)n
(
−1

2

n

)
, f2n = (−1)n−1

(
1
2

n

)
.

Exercise 7. From the main lemma (1.3) conclude (without calculations) that

u0u2n + u2u2n−2 + · · ·+ u2nu0 = 1.

1.6 Last visit

Now we look at a game which lasts 2M rounds and we define the probability,
that the last tie was at time 2k as α2k,2M .

Theorem 1.8 (Arcsin law of last visit). α2k,2M = u2k · u2M−2k.

Proof. The first segment of the path can be chosen in 22ku2k ways. Setting
the last tie as a new starting point the main lemma tells us, that the second
segment of length 2M − 2k can be chosen in 22M−2ku2M−2k ways.

Corollary 1.9. 1. α2k,2M is symmetric is respect of k and M − k.

2. P (“the last tie is in the first half of the game”) = 1
2
.

3. α2k,2M
(1.2)∼ 1√

πk
1√

π(M−k)
= 1

π
1√

k(M−k)

The third point describes the long term development of the last tie’s
appearance, which is pretty non-intuitional. For example, if we play our
head or tails game for one year each second, the probability that the last tie
is within the first 9 days is around ten percent and within the first 2 hours
and 10 minutes still around one percent. The term 1

π
1√

k(M−k)
is the density

of the so-called arc-sin-distribution, because∫ t

0

1

π

1√
k(M − k)

dx =
2

π
arcsin(

√
t).
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Figure 2: Arc-sin-distribution

1.7 Sojourn times

The next question is about the sojourn times. We look for which fraction of
time one of the players is in the lead.

Theorem 1.10. The probability that in the time interval from 0 to 2M the
path spends 2k time units on the positive side and 2M − 2k units on the
negative side is given by α2k,2M .

The proof can be found in [1].

Corollary 1.11. If 0 < t < 1, the probability that less than t2M time units
are spent on the positive and more than (1− t)2M units on the negative side
tends to 2/π arcsin(

√
t) as M tends to infinity.
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If we restrict our paths to those ending on the axis, we get a different
result.

Theorem 1.12. The number of paths of length 2M such that S2m = 0 and
exactly 2k of its sides lie above the axis is independent of k and is given by

1

M + 1

(
2M

M

)
,

which are the Catalan numbers.

Exercise 8. Prove the previous theorem.

The proof can also be found in [1].

1.8 Position of maxima

If we have a path of length 2M , we say the first maximum occurs at time k
if Si < Sk∀i < k and Si ≤ Sk∀i > k.

Theorem 1.13. The probability that the first maximum occurs at time k = 2l
or k = 2l + 1 is given by

1
2
u2lu2M−2l, if 0 < k < 2M,

u2M if k = 0 and
1
2
u2M if k = 2M.

Note that for the last maxima, the probabilities are simply interchanged.
If M tends to infinity and k/M tends to some fixed t, we get an arcsin-law
again.

1.9 Changes of sign

We say at time k there is a change of sign if and only if Sk−1Sk+1 < 0

Theorem 1.14. The probability ζr,2n+1 that up to time 2n + 1 there are
exactly r changes of sign is given by

ζr,2n+1 = 2P (S2n+1 = 2r + 1) =

(
2n+ 1

n+ r + 1

)
1

22n

for r = 0, . . . , n.
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A proof can be found in [1] in the third chapter.

Corollary 1.15. The following chain of inequalities holds:

ζ0,2n+1 ≥ ζ1,2n+1 > ζ2,2n+1 > . . .

As an example, we get ζ0,99 = 0.159, ζ1,99 = 0.153, ζ2,99 = 0.141 and
ζ13,99 = 0.004.

1.10 Return to the origin

Let Xk be a random variable which is 1 if S2k = 0 and 0 else. Then we have

P (Xk = 1) = u2k =
1

2k

(
2k

k

)
∼ 1√

πk
.

Define X(n) :=
∑n

i=1 Xi, then this random variable counts the number of
returns to the origin in 2n steps. For the mean value we get

E(X(n)) =
n∑
i=1

E(Xi) =
n∑
i=1

u2i

so for n large enough

E(X(n)) ∼
n∑
i=1

1√
πi

=
1√
π

n∑
i=1

1√
i

= 2

√
n

π

follows. To be more precisely, we get

E(X(n)) = (2n+ 1)

(
2n

n

)
1

22n
− 1 = 2

√
n

π
− 1 + o(1/n).

Exercise 9. Show that
n∑
i=1

1√
i
∼ 2
√
n.

Exercise 10. Compute the sum

n∑
i=1

u2i =
n∑
i=1

(
2i

i

)
2−2i

and find an asymptotic formula as n→∞.
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1.11 Random walks in the plane Z2

Let us look at a 2-dimensional random walk, we can go from a point (x, y) ∈
Z2 to (x ± 1, y ± 1) with the probability 1/4 each. After 2n steps we arrive
at (X2n, Y2n). Now Xn and Yn are independent random walks on Z, so our
previous results all work perfectly well. For example, the event Ak :=“after
2k steps the particle returns to the origin” is equal to

P (Ak) = P (X2k = Y2k = 0) = P (X2k = 0)P (Y2k = 0) = u2
2k.

Now define as in the section before Uk := χAk and U (n) as the sum over all
Uk, which counts the number of returns to the origin. Then we get

E(U (n)) =
n∑
k=1

u2
2k ∼

n∑
k=1

1

πk
=

1

π

n∑
k=1

1

k
∼ log(n)

π
,

so the number of returns tends to infinity if n does so.

1.12 The ruin problem

Now we look at a game where a gambler wins 1 unit with probability p and
looses 1 unit with probability q = 1− p. We denote his initial capital with z
and the adversary’s initial capital with a− z. The game continues until one
of the two is ruined, i.e. the capital of the gambler is either 0 or a. The two
things we are interested now is on one hand the probability of the gamblers
ruin and on the other hand the duration of our game. We can interpret this
scenario as a asymmetric (if p 6= q) random walk on the natural numbers N
(with 0) with absorbing barriers. If p < q we say we have a drift to the left.

We define qz as the probability of the gamblers ruin and pz as the prob-
ability of his winning. Our goal is to show that qz + pz = 1 and that the
duration of the game is finite.

It is easy to see that
qz = pqz+1 + qqz−1

holds for 0 < z < a. With the boundary conditions q0 = 1 and qa = 0 we get
a linear recurrence equation for qz of second order which can be solved using
the ansatz qz = λz. We get the two solutions λ = 1 and λ = q/p and since
the set of solutions is a vector space, our general solution is qz = A+B(q/p)z.
Using the boundary conditions, our final and unique solution is

qz =
( q
p
)a − ( q

p
)z

( q
p
)a − 1

.
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But remark that this solution does not work for p = q = 1/2! In the sym-
metric case, we get qz = 1− z

a
. Because of the symmetry of the problem (the

gambler is now the adversary), we get

pz =

1− a−z
z

= z
a
, if p = q and

( p
q

)a−( p
q

)a−z

( p
q

)a−1
else.

Now it is simple to check that pz + qz = 1.
What is the expected gain of our gambler? We denote this number with

G and observe

G =

{
a− z with probability 1− qz
−z with probability qz.

Now we have for the expected value in the asymmetric case

E(G) = a(1− qz)− z = a
( q
p
)a − ( q

p
)z

( q
p
)a − 1

− z.

It is easy to show that E(G) = 0 if p = q and E(G) < 0 if p < q.

Exercise 11. Consider a random walk on Z with probabilities p and q = 1−p
for moving right and left. Show that starting at 0, the probability of ever
reaching the state z > 0 equals 1 if p ≤ q and (p

q
)z if p < q.

1.13 How to gamble if you must

This section is named after the book of Dubbins and Savage. Assume a
gambler starts with capital z and stops when he reaches a > z or when he
is bankrupt. For example z = 90 and a = 100, what is the best strategy,
i.e. what is the right stake? It is clear that halving the stakes is the same as
doubling the capitals, so we get

qz =
( q
p
)2a − ( q

p
)2z

( q
p
)2a − 1

=
( q
p
)a − ( q

p
)z

( q
p
)a − 1

·
( q
p
)a + ( q

p
)z

( q
p
)a + 1

if p<q
> qz.

In the example above, if p = 0.45 if our stake is 10, the probability of ruin is
only 0.21, while if our stake is 1 it is 0.866. As a tends to infinity, we get

qz =

{
1 if p ≤ q
q
p

if q > p.
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1.14 Expected duration of the game

Let Dz be the expected duration of our game. In the chapter about Markov
chains, we will prove that Dz is finite. For now we have the trivial relation

Dz = pDz+1 + qDz−1 + 1,

where the 1 is added because of the time unit that we need to get to the
next condition of our game. So this time we get a non-homogeneous linear
recurrence equation of second order with the boundaries D0 = Da = 0. We
solve the homogeneous part as in the last section and use Dz = Cz as an
ansatz for the special solution. Again the symmetric case must be solved
separately by the ansatz Dz = A+Bz + Cz2 and so we get

Dz =

z(a− z) if p = q and
z
q−p −

a
q−p ·

1−( q
p

)z

1−( q
p

)a
else.

This result is very counterintuitive, for example, if a = 1000 and z = 500
and p = q we expect to play for 250000 rounds. And for the same probabilities
even if z = 1 and a = 1000 our expected duration is 999.

Exercise 12. Consider a random walk on 0, 1, 2, . . . with only one absorbing
barrier at 0 and probabilities p and q = 1 − p for moving right and left.
Denote again with Dz the expected time until the walk ends (i.e. it reaches
0) if we start at the state z. Show

Dz =

{
z
q−p if p < q

∞ if p ≥ q.

1.15 Generating function for the duration of the game

We now want to compute the probability, that the gambler is ruined in the
nth round. Of course, this depends also on the initial capital z, so we get a
linear recurrence relation in two variables, namely

uz,n+1 = p · uz+1,n + q · uz−1,n, 1 ≤ z ≤ a− 1, n ≥ 1 (1)

with the boundary conditions

• u0,n = ua,n = 0 for n ≥ 1
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• uz,0 = 0 for z ≥ 1 and

• u0,0 = 1.

We define the generating function Uz(s) :=
∑∞

n=0 uz,ns
n. Multiplying (1)

with sn+1 and summing over all different cases of n, we get

∞∑
n=0

uz,n+1s
n+1

︸ ︷︷ ︸
Uz(s)

= ps

∞∑
n=0

uz+1,ns
n

︸ ︷︷ ︸
Uz+1(s)

+qs
∞∑
n=0

uz−1,ns
n

︸ ︷︷ ︸
Uz−1(s)

.

Therefore we get a new recurrence relation and managed to eliminate one
variable. We solve 

Uz(s) = psUz+1(s) + qsUz−1(s)

U0(s) =
∑∞

n=0 u0,ns
n = 1

Ua(s) =
∑∞

n=0 ua,ns
n = 0

with the ansatz Uz(s) = λ(s)z and finally compute

λ1,2 =
1±

√
1− 4pqs2

2ps
,

which are real solutions for 0 < s < 1. Using the boundary values we get as
a final solution

Uz(s) =
λ1(s)aλ2(s)z − λ1(s)zλ2(s)a

λ1(s)a − λ2(s)a
.

In a similar way, we find the generating function for the probability, that the
gambler wins in the nth round. It is given by

λ1(s)z − λ2(s)z

λ1(s)a − λ2(s)a
.

One can also find an explicit formula for uz,n. It is given by

uz,n =
1

a
2np

n+z
2 q

n+z
2

n∑
k=1

cosn−1 πk

a
sin

πk

a
sin

πzk

a

and was already found by Lagrange.
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Exercise 13. Show the previous formula for uz,n.

The calculation can also be found in [1] in XIV.5.

Exercise 14. Banach’s match problem: Stefan Banach got a box of matches
in both of his two pockets. With probability 1

2
he took one match out of the

left respectively the right pocket. If he found one box empty, he replaced both
of them with new ones containing n matches. What is the probability that k
matches are left in the second box before the replacement?

1.16 Connection with the diffusion process

We now take a look at non-symmetric random walks. We define
∑n

k=1Xk

with P (Xk = 1) = p and P (Xk = −1) = 1 − p. Simple calculation gives
E[Sn] = (p− q)n and Var[Sn] = 4pqn. Now we rescale our steps so they have
length δ. Since Sn is linear, we get

• E[δSn] = (p− q)δn

• Var[δSn] = 4pqδ2n.

If p 6= q and n gets large, we choose δ in such a way that E[δSn] is bounded
and therefore Var[δSn] ∼ δ, by what the process looks like a deterministic,
linear motion. From the physical point of view, this process is in connec-
tion with the Brownian motion, the random movement of a particle in a
liquid. By collisions with other smaller particles, it gets displaced by ±δ (in
our situation, we only look at one dimension). If we measure the average
displacement C and the variance per time unit D and assume the number
of collisions per time unit is r, we should actually get C ≈ (p − q)δr and
D ≈ 4pqδ2r. So as δ → 0, r →∞ and p→ 1

2
we demand (p− q)δr → C and

4pqδ2r → D > 0.
In an accelerated random walk, the nth step (Sn = k) takes place at time n

r

at position δSn = δk. Define vk,n := P (Sn = k), therefore S0 = 0 and

vk,n+1 = p · vk−1,n + q · vk+1,n

holds. If n
r
→ t and kδ → x we deduce

v(x, t+
1

r
) = p · v(x− δ, t) + q · v(x+ δ, t).
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We demand v to be smooth so that we can use the Taylor expansion, therefore

v(x, t) +
1

v
vt(t, x) +O(

1

r2
) = p[v(x, t)− δvx(x, t) +

δ2

2
vxx(x, t) +O(δ3)]

+ q[v(x, t) + δvx(x, t) +
δ2

2
vxx(x, t) +O(δ3)]

and so we get

vt = (q − p)δr︸ ︷︷ ︸
→−c

+
1

2
δ2r︸︷︷︸
→D

vxx +O(
1

r
) +O(rδ3),

which leads in the limit to the Focker-Planck-equation (or forward Kolmogo-
roff equation)

vt = −cvx +
1

2
Dvxx,

where c denotes the drift and D the diffusion constant. The function v(t, .)
is a probability density, in fact

vk,n

(
n
n+k

2

)
p
n+k
2 q

n+k
2 ∼ 1√

2πnpq
e−

(k−n(p−q))2
δnpq ∼ 2δ√

2πDt
e−

(x−ct)2
2Dt .

As n→ rt and kδ → x our probability vk,n behaves like

vk,n ∼ P (kδ < δSn < (k + 2)δ) ≈ 2δv(x, t).

Notice that

v(x, t) =
1√

2πDt
e−

(x−ct)2
2Dt

is also a fundamental solution of the PDE above. Such a random process
(xt)t≥0 whose density is v(x, t) is called Brownian motion, Wiener process or
diffusion process.

2 Branching processes

2.1 Extinction or survival of family names

In the 18th century British scientist Francis Galton observed, that the number
of family names was decreasing. Together with the mathematician Henry
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William Watson, he tried to find a mathematical explanation. Today it is
known that the French mathematician Irénée-Jules Bienaymé worked on the
same topic around thirty years earlier and he, other than Galton and Watson,
managed to solve the problem correctly. Assume we have an individual with a
natural number of sons. Let pk denote the probability that he has k sons and
Xn the number of individuals with his name in the nth generation. Further q
is the probability that the name goes extinct (so there is some Xn = 0) and
m is the expected number of sons.

Theorem 2.1. 1. If m does not exceed 1, the name will die out (except
for the trivial case p1 = 1).

2. If m is greater than 1, q is smaller than 1, so extinction is possibly
avoided.

2.2 Proof using generating functions

For the proof, we look at the conditional probability P (Xn = i|Xm = j). It
has two important properties, namely

• time invariance P (Xn+1 = i|Xm+1 = j) = P (Xn = i|Xm = j) and

• independent reproducing P (Xn = 0|X0 = k) = P (Xn = 0|X0 = 1)k,

since the individuals multiply independently. Therefore we assume X0 = 1 by
now. We define the generating function F (s) =

∑∞
k=0 pks

k which converges
for |s| ≤ 1. Furthermore we define

Fn(s) =
∞∑
k=0

P (Xn = k)sk

as the generating function for Xn. Clearly F1(s) = F (s) holds and also
P (Xn = 0) = Fn(0) if we assume 00 = 1. Moreover, the sequence (Fn(0))n≥1

is non-decreasing and has the limit q. Using the both properties of the
conditional probability from above, we get

Fn+1(0) = P (Xn+1 = 0) =
∞∑
k=0

P (Xn+1 = 0|X1 = k)︸ ︷︷ ︸
P (Xn=0|X0=1)k

P (X1 = k)︸ ︷︷ ︸
pk

=
∞∑
k=0

pkFn(0)k = F (Fn(0)),
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and therefore, with n → ∞ we get the fixed point problem q = F (q). In
their paper, Watson and Gallon observed that 1 is a fixed point since F (1) =∑

k pk = 1, but they forgot to consider a smaller one.

Lemma 2.2. q is the smallest fixed point of F : [0, 1]→ [0, 1].

Proof. Let a ≥ 0, F (a) = a therefore we have F (0) ≤ F (a) = a since
F ′(s) =

∑
kpks

k−1 ≥ 0 hence F is increasing. Now by induction it follows

Fn(0) ≤ a⇒ F (Fn(0)) ≤ F (a)

⇒ Fn+1(0) ≤ a.

For n → ∞ we get q ≤ a. It is easy to see that F (s) is convex for s ∈ [0, 1]
by looking at the second derivative. Now we get two cases.

1. F ′(1) =
∑∞

k=0 kpk = m ≤ 1,
therefore F ′(s) ≤ F ′(1) = m ≤ 1∀s ∈ [0, 1], so there can’t be any fixed
point but 1 (cf. fig.3), so q = 1

Figure 3: F ′(1) ≤ 1

2. F ′(1) = m > 1
therefore since F (0) > 0 we get with a similar argument (cf. fig.4)
q < 1.
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Figure 4: F ′(1) > 1

There are two special cases, first assume p0 +p1 = 1 then F (s) = p0 + sp1

is linear and again we have the fixed point in 1. The other case is p1 = 1.
Here it is trivial that extinction is impossible and therefore q = 0 (in the
equation, every point is a fixed one). A Galton-Watson process is called

• subcritical if m < 1,

• critical if m = 1 and

• supercritical if m > 1.

As an easy example, suppose pk is given by a geometric distribution, thus
pk = apk with 0 < p < 1. The number a is determined by

1 =
∞∑
k=0

pk = a
∞∑
k=0

pk = a
1

1− p
⇒ a = 1− p.

The generating function is given by

F (s) = (1− p)
∞∑
k=0

pksk =
1− p
1− ps
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and solving the fixed point equation we get the two solutions 1 and 1
p
− 1

and therefore
1

p
− 1 ≤ 1⇔ 1

p
≤ 2⇔ p ≥ 1

2
.

So the name can only survive if and only if p ≥ 1
2
.

Exercise 15. Consider a Galton-Watson process with p0 = p3 = 1
2
. Find m

and q, the probability of extinction.

Exercise 16. Consider a Galton-Watson process with an almost geometric
distribution pk = bpk−1 for k = 1, 2, . . . and find p0. Compute the generation
function of Xn explicitly. Compute m and q, in particular for the specific
choice b = 1

5
, p = 3

5
.

2.3 Some facts about generating functions

Assume X is a random variable with values 0, 1, 2, . . . and denote P (X = k)
by pk. Then the generating function is given by Fx(s) =

∑∞
k=0 pks

k and has
the following properties:

• Fx(s) converges for |s| ≤ 1 and is analytic for |s| < 1.

• The function can also be interpreted as the expected value of sX .

• If two random variables have the same generating function, they have
the same distribution because pk is given by

pk =
1

k!
F (k)
x (0).

• If E[X] exists, it is given by E[X] = lims↗1 F
′
x(s).

• If Var[X] exists, it is given by Var[X] = F ′′x (1) + F ′x(1)− F ′x(1)2.

As an example, we look at the Poisson distribution P(λ). The generating
function is given by

F (s) =
∞∑
k=0

ske−λ
λk

k!
= e−λ

∞∑
k=0

skλk

k!
= eλ(s−1).

Therefore we get
E[X] = F ′(1) = λeλ(1−1) = λ.

We end this section with two theorems which remain unproved.
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Theorem 2.3. If X and Y are independent, then Fx+y(s) = Fx(s)Fy(s).

Theorem 2.4. If Xn is a sequence of random variables and X another one,
then

P (Xn = k)
n→∞−−−→ P (X = k)⇔ Fxn(s)

n→∞−−−→ Fx(s)∀s ∈ [0, 1].

2.4 Moment and cumulant generating functions

Again X shall be a discrete random variable with non-negative values and
we denote P (X = k) by pk. The moment generating function is defined by

Mx(t) = E[etX ] =
∞∑
k=0

pke
kt = Fx(e

t).

It converges for all t ≤ 0 and dependent of the distribution also for 0 < t ≤ α.
It has the following properties:

• Mx(0) = 1.

• M ′
x(0) = E[X].

• M ′′
x (0) = E[X2].

• M (n)
x (0) = E[Xn], which is also called the nth moment.

The cumulate generating function is defined by

Kx(t) = logMx(t) = logFx(e
t)

and has the useful properties

• K ′x(0) = E[X] and

• K ′′x(0) = Var[X].
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2.5 An example from genetics by Fischer (1930)

Imagine a population of N diploid individuals, so we have 2N genes. Assume
N large enough for later approximations, and let all individuals have initially
genotype AA. By mutation, one individual develops the genotype Aa. We
are now interested in the probability, that the mutant gene a will survive.
We need two assumptions:

• Aa should have a selective advantage, i.e. its fitness should exceed
the normal AA fitness by the factor (1 + h), where h is small (fitness
corresponds to the number of offspring).

• As long as Aa is rare, the homozygotes aa should be too rare to be
relevant.

Let the number of offspring be Poisson-distributed with parameter λ = 1 +
h, then the generating function is given as in the last example in 2.3 by
F (s) = eλ(s−1). To get the probability that Aa is lost, we have to solve the
transcendental equation q = F (q). With the approximation q = 1− δ, where
δ is small, and with Taylor’s theorem, we get

F (1− δ) = 1− δ

⇔ F (1)− δF ′(1) +
δ2

2
F ′′(1)− · · · = 1− δ

⇔ 1− δλ+
δ2

2
λ2 − · · · = 1− δ

⇔ δ

2
λ2 − δ + 1 = 0

⇔ δ = 2
λ− 1

λ2
= 2

1 + h− 1

(1 + h)2
≈ 2h.

Therefore, the probability of survival is given by δ ≈ 2h for small h.
We now take a look at the general offspring distribution. In our fixed point
equation assume q = eΘ, then we get

eΘ = F (eΘ) = M(Θ)⇔ Θ = logM(Θ) = K(Θ).

Therefore by the definition of the cumulative generating function

Θ = mΘ +
σ2

2
Θ2 + . . .

⇔ 1 = m+
σ2

2
Θ + · · · ⇒ Θ ≈ 2

1−m
σ2

.
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Since m should be larger than 1, Θ = −2h
σ2 is negative and again by Taylor’s

theorem

q = eΘ = e
−2h

σ2 ≈ 1− 2k

σ2
.

Theorem 2.5. The generating function of Xn is the nth iterate

Fx ◦ Fx ◦ Fx ◦ · · · ◦ Fx︸ ︷︷ ︸
n times

of the generating function Fx(s) =
∑∞

k=0 pks
k.

Proof. For notation reasons, be F0(s) = s, F1(s) = F (s) and Fn+1(s) =
F (Fn(s)). Further be F(n) the generating function of Xn. Therefore F(0)(s) =
s and F(1)(s) = F (s). Under the condition Xn = k the random variable
Xn+1 has the generating function F (s)k, since the k individuals reproduce
independently. Hence

F(n+1) = E[sXn+1 ] =
∞∑
k=0

E[sXn+1 |Xn = k)︸ ︷︷ ︸
gen. fct. of Xn+1|Xn=k

P (Xn = k)

=
∞∑
k=0

F (s)kP (Xn = k) = F(n)(F (s)),

so by induction, Fn = F(n) for all n.

Theorem 2.6. In a Galton-Watson process with X0 = 1 holds

1. E[Xn] = mn

2. Var[Xn] =

{
mn−1(mn−1)

m−1
σ2 if m 6= 1

nσ2 if m = 1.

Proof. We only show a proof for the first claim. Using 2.5, we get by induc-
tion and the chain rule

E[Xn] = F ′xn(1) = (Fx ◦ Fx ◦ · · · ◦ Fx︸ ︷︷ ︸
n times

)′(1) := F ′n(1)

= F ′n−1(F (1)) · F ′(1) = F ′n−1(1) ·m = mn−1m = mn.

Exercise 17. Prove the second part of the theorem above.
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2.6 Asymptotic behaviour

We look at the supercritical case 1 < m <∞ and define

Zn :=
Xn

mn

which tends to the random variable Z∞ as n tends to infinity. Hence

P (Z∞ = 0) = q = P (Xn = 0 for some n).

Without proof, we claim

VarZn =
σ2

m(m− 1)

(
1− 1

mn

)
and

VarZ∞ =
σ2

m(m− 1)
.

Now for the critical case m = 1 we have E[Xn] = 1 for all n, but q = 1,
hence Xn tends to 0 with probability 1. If δ2 = Var[X1] <∞, then

P (Xn > 0) = 1− Fn(0) ∼ 2

nδ2

and

E[Xn|Xn > 0] =
1− E[Xn|Xn = 0]P (Xn = 0)

P (Xn > 0)
=

1

P (Xn > 0)
∼ nδ2

2

as n tends to infinity. Finally we get

lim
n→∞

P (
Xn

n
> z|Xn > 0) = e−

2z
δ2 for z ≥ 0.

In the subcritical case m < 1, we have

lim
n→∞

P (Xn = k|Xn > 0) = bk with b0 = 0,

the limit law is conditional on survival. Define B(s) =
∑∞

k=0 bks
k, then

B(F (s)) = mB(s) + 1−m

and

1− Fn(0) = P (Xn > 0) ∼ m2

B′(1)

as n tends to∞. So the probability that the population is still alive increases
geometrically. A proof for all those claims can be found in 2.
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3 Markov chains

3.1 Definition

Definition 3.1.
A (stationary) Markov chain is a sequence (Xn)∞n=1 of random variables with
values in a countable state space (usually ⊆ Z) such that

1. P (Xn+1 = j|Xn = i) =: pij is independent of n, that means it is time
independent or stationary, and

2. P (Xn+1 = j|Xn = i,Xn−1 = i1, Xn−2 = i2, . . . , X1 = in) = P (Xn+1 =
j|Xn = i), so every state only depends on the foregoing one.

This concept is based on the work of Andrei A. Markov, who started
studying finite Markov chains in 1906. We call pij = P (Xn+1 = j|Xn = i) for
i, j ∈ S the transition probabilities. Then P := (pij) is a so-called transition
matrix with the following properties.

1. pij ≥ 0 ∀i, j ∈ S and

2.
∑

j∈S pij = 1 for all i ∈ S and therefore P · 1 = 1,

where 1 = (1, 1, . . . , 1)t.
A matrix with such properties is called a stochastic matrix. Assume that

an initial distribution for X0 is given by P (X0 = k) = ak, then

P (X0 = i ∧X1 = j) = P (X0 = i)P (X1 = j|X0 = i) = aipij

and with this equation we compute the probability of a sample sequence as

P (X0 = i0 ∧X1 = i1 ∧ · · · ∧Xn = in) = ai0 · pi0i1 · pi1i2 · · · · · pin−1in .

3.2 Examples of Markov chains

A.
The random walk with absorbing barriers has the state space S = {0, 1, . . . , N}
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and the transition matrix is given by

1 0 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...

. . . . . . . . .
...

0 p
0 0 0 0 · · · 0 1


where pi,i+1 = p and pi,i−1 = q for 0 6= i 6= N . For the boundary we have
p0i = δ0i and pNi = δNi.

In fact, all random walks from section 1 are Markov chains, but without
boundaries, the state space is infinite.

B.
The random walk with reflecting boundaries has the state space S = {1, 2, . . . , N}
and the corresponding transition matrix is given by

q p 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...

. . . . . . . . .
...

0 p 0
q 0 p

0 0 0 0 · · · 0 q p


C.
A cyclic random walk is a random walk where we can move from the state 1
to the state N and vice versa. The transition matrix is given by

0 p 0 0 0 · · · 0 q
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...

. . . . . . . . .
...

0 p 0
q 0 p

p 0 0 0 · · · 0 q 0
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D.
The Wright-Fisher model is a model from the field of genetics, the state space
is S = {0, 1, · · · , 2N} and the probabilities are given by

pij =

(
2N

j

)( i

2N

)j(
1− i

2N
)2N−j.

Therefore for a given N and i we have a binomial distribution with parame-
ters 2N and p = i

2N
. This describes a population of N individuals, on some

gene locus we have two alleles, A and a. Therefore we look at 2N genes
in total. If i is number of A’s and the frequency of A is i/2N . Now each
new generation chooses 2N genes randomly out of the pool of gametes. The
states 0 and 2N are absorbing, therefore the transition matrix has the form

1 0 0 · · · 0
+ + + · · · +
...

...
+ + + · · · +
0 0 · · · 0 1


where + denotes a positive probability.

E.
The Ehrenfest model describes two containers A and B with NA + NB =
N molecules in total. At each step we choose one molecule and move it
to the other container. The random variable Xn describes the number of
molecules which remained in container A, therefore the state space is again
S = {0, 1, . . . , N}. The transition probabilities are given by pi,i+1 = N−i

N
and

pi,i−1 = i
N

. It is pretty similar to a random walk, but the probabilities now
depend on the state.

F.
The Bernoulli–Laplace model is about a compressible fluid in two containers
A and B with N particles in each of them. One half of the particles is blue,
the other half is white. Let Xn be the number of white particles in A, then
if Xn = k there are N − k blue particles in A and therefore in B k blue ones
and N − k white ones. In every step we pick one particle from A and one
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from B and we swap them. This leads to the transition probabilities

pi,i−1 =
i

N

i

N
=
( i
N

)2

,

pi,i+1 =
(N − i

N

)2

and

pi,i = 2
i

N

N − i
N

.

G.
In the Galton-Watson process from chapter 2, the state space is given by
S = {0, 1, 2, . . . } and 0 is absorbing, that is p00 = 1 and p0j = 0 for j ≥ 1.

Exercise 18. In a Galton-Watson process with probabilities P (X1 = k|X0 =
1) = pk, find P (X1 = k|X0 = 2), and the transition probabilities pij =
P (Xn+1 = j|Xn = i).

3.3 Transition probabilities

A short calculation shows an important benefit of transition matrices,

P (Xn+2 = j|Xn = i) =
∑
k∈S

P (Xn+2 = j ∧Xn+1 = k|Xn = i)

=
∑
k∈S

P (Xn+2 = j|Xn+1 = k ∧Xn = i) · P (Xn+1 = k|Xn+1 = i)

=
∑
k∈S

P (Xn+2 = j|Xn+1 = k) · P (Xn+1 = k|Xn+1 = i)

=
∑
k∈S

pikpkj := p
(2)
ij .

Here, p
(2)
ij denotes the (i, j) entry of the matrix P 2. Notice that even for a

countable infinite state space S, the sum over all those products converges,
since ∑

k∈S

pikpkj ≤
∑
k∈S

pik = 1.

By induction we get P (Xn+m = j|Xn = i) = p
(m)
ij , the corresponding entry

of Pm. Further it is clear that Pm is again a stochastic matrix, since P 21 =
P · P1 = P1 = 1 and therefore again by induction Pm1 = 1.
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3.4 Invariant distributions

We are now looking at the probability vector u(n) with entries u
(n)
i = P (Xn =

i) for i ∈ S, therefore it corresponds to the probability distribution at time
n.

4(S) := {(ui)i∈S : ui ≥ 0 ∀i ∈ S,
∑
i∈S

ui = 1}

is the so-called probability simplex over S. (since all the vectors together
build a |S|−dimensional simplex in Rn). With the relation

P (Xn+1 = j) =
∑
i

P (Xn = i)pij

we get u(n+1) = u(n)P . Now (a row vector) u ∈ 4(S) is called a stationary
or invariant probability distribution for the Markov chain if u = uP , which
means that u is a left eigenvector of P to the eigenvalue 1. We will show
the existence of such a vector later. For the examples A,D and G, the state
0 is absorbing, i.e. p00 = 1 and p0j = 0 for j ≥ 1, therefore the vector
u = (1, 0, . . . , 0) satisfies uP = u. In fact, we can show (Exercise 20) that
for A and D, for α ∈ [0, 1] the vectors u = (α, 0, . . . , 0, 1 − α) gives all the
stationary probability distributions. In example C, we get

1
1
1
1
1
1
...
1



T

·



0 p 0 0 0 · · · 0 q
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...

. . . . . . . . .
...

0 p 0
q 0 p

p 0 0 0 · · · 0 q 0


=



p+ q
p+ q
p+ q
p+ q
p+ q
p+ q

...
p+ q



T

=



1
1
1
1
1
1
...
1



T

therefore u = 1
N

1 is a normalized vector for a stationary distribution.

3.5 Ergodic theorem for primitive Markov chains

We now show the existence of a stationary distribution in an important
special case. A stochastic matrix is called primitive if

∃M > 0 : ∀i, j : p
(M)
ij > 0.
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Theorem 3.1 (Ergodic theorem). If P is a primitive stochastic matrix be-
longing to a Markov chain over a finite state space S with |S| = N , then
there is a unique stationary probability distribution u ∈ 4(S). Furthermore

uj > 0 for every j ∈ S and p
(n)
ij tends to uj for every i and j as n → ∞.

Moreover, for every initial distribution P (X0 = i) the probability P (Xn = j)
tends to uj.

Examples for a primitive matrix are given by C (as long as N is odd), E

and F. In A and D, the state 0 is absorbing and we get p
(n)
00 = 1 and p

(n)
0i = 0

for i > 0. Therefore the matrices are not primitive.

Proof. 1) We first prove the theorem for a positive matrix, i.e., pij > 0 for all
i, j, i.e., M = 1. Define δ := mini,j pij and since the row sum cannot exceed
1, we assume 0 < δ < 1

2
. Now we fix j and define

Mn := max
i
p

(n)
ij and mn := min

i
p

(n)
ij .

Our claim is now that Mn is a decreasing and mn an increasing sequence and
that the difference Mn −mn tends to 0. Monotonicity follows from

Mn+1 = max
i
p

(n+1)
ij = max

i

∑
l

pilp
(n)
lj ≤ max

i

∑
l

pilMn = Mn

and similar

mn+1 = min
i
p

(n+1)
ij = min

i

∑
l

pilp
(n)
lj ≥ min

i

∑
l

pilmn = mn.

Let k = k(n) be such that mn = p
(n)
kj ≤ p

(n)
lj for all l. Then

Mn+1 = max
i

[
pikp

(n)
kj +

∑
l 6=k

pilp
(n)
lj

]
≤ max

i

[
pikmn +

∑
l 6=k

pilMn

]
= max[Mn − (Mn −mn)pik

]
≤Mn − (Mn −mn)δ < Mn,

and one can show just as well

Mn+1 ≥ mn + (Mn −mn)δ > mn.
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Now
Mn+1 −mn+1 ≤ (Mn −mn)(1− 2δ),

therefore the distance Mn − mn tends to 0. Define uj := limn→∞Mn =

limn→∞mn and since mn ≤ p
(n)
ij ≤ Mn, every value in the jth column tends

to uj. Since ∑
j

uj = lim
n→∞

∑
j

p
(n)
ij = lim

n→∞
1 = 1,

uj is a probability vector and we also get

P n → U :=


u1 u2 . . . uN
...

...
...

u1 u2 . . . uN

 =


1
1
...
1

 · (u1 u2 . . . uN
)

= 1 · u

and therefore

P n → U ⇒ P n+1 → UP = U ⇒ uP = u.

2) Now we look at the case that P is primitive but has entries with value
0, therefore M > 1. Define Q := PM then we know from the first case that
Q has a stationary vector u and q

(n)
ij → uj as n tends to infinity. Write

n = Ml + r for some r between 0 and M . Now for every ε > 0 exists some
N(ε) such that |q(n)

ij − uj| < ε for any l larger than N(ε). Hence

p
(n)
ij = p

(Ml+r)
ij =

∑
k

p
(r)
ik p

(Ml)
kj =

∑
k

p
(r)
ik q

(l)
kj ≤

∑
k

p
(r)
ik (uj + ε) = uj + ε

and

p
(n)
ij = p

(Ml+r)
ij =

∑
k

p
(r)
ik p

(Ml)
kj =

∑
k

p
(r)
ik q

(l)
kj ≥

∑
k

p
(r)
ik (uj − ε) = uj − ε

and therefore |p(n)
ij −uj| ≤ ε for n > MN(ε). The remaining part is the same

as in the first case.
3) For the uniqueness, we suppose there exists another ũ ∈ 4(S) such

that ũP = ũ. But then we get ũP n = ũ and therefore

ũ = ũP n → ũ(1u) = (ũ1)u =
∑
i

(ũi · 1)u = 1u = u.
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3.6 Examples for stationary distributions

As already mentioned, the stationary vector for example C is given by u =
1
N

(1, . . . , 1).

Exercise 19. Show for the Ehrenfest model (example E) the stationary dis-
tribution is given by uj =

(
N
j

)
1

2N
. Hint: We only have to check that

uj = uj−1pj−1,j + uj+1pj+1,j.

Exercise 20. In A and D, show that all stationary vectors are given by
(α, 0, . . . , 0, 1− α).

Exercise 21. Find u for B.

Exercise 22. Prove that for F the stationary distribution is given by uk =(
N
k

)2 · constant.

3.7 Birth-death chains

Now assume the transition probabilities are given by pij = 0 if |i − j| > 1
and the state space is S = {0, . . . , N}. If we want to find u with uP = u, we
solve a simple system of equations,

u0 = u0p00 + u1p10

u1 = u0p01 + u1p11 + u2p21

...

uN−1 = uN−2pN−2,N−1 + uN−1pN−1,N−1 + uNpN,N−1

uN = uN−1pN−1,N + uNpNN .

We assume pi−1,i > 0 and pi,i−1 > 0. Remembering the notation of random
walks, we define pk := pk,k+1 and qk := pk,k−1. Now we simplify the system
of equations by

u1 = u0
1− p00

p10

= u0
p01

p10

= u0
p0

q1

u2 = u1
1− p10 − p11

p21

= u1
p12

p21

= u1
p1

q2

= u0
p0p1

q1q2

... by induction

uk = uk−1
pk−1

qk
= u0

pk−1pk−2 · · · · · p0

qkqk−1 · · · · · q1

,
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and since∑
k

uk = 1 = u0

(
1 +

p0

q1

+
p0p1

q1q2

+ · · ·+ pN−1pN−2 · · · · · p0

qNqN−1 · · · · · q1

)
,

u0 is given as the reciprocal value of the last sum. The concept of birth-death
chains covers the examples B (for which p0 = 0 and qN = 0),E and F.

3.8 Reversible Markov chains

A Markov chain with transition matrix P is called reversible, if there exists
a vector π such that πi > 0 for all i and

πipij = πjpji

for every i and j. Then we automatically get∑
i

πi P (Xn+1 = j|Xn = i)︸ ︷︷ ︸
pij

=
∑
i

πjpji = πj
∑
i

pji = πj

and therefore πP = π. Hence π is in 4(S) if we normalize it and it is a
stationary distribution for P . C with p = q is a special case for a reversible
Markov chain since P = P T in this example (and therefore pij = pji).

Exercise 23. Show that birth-death chains with all pi, qi > 0 are reversible.

But why are those Markov chains called reversible? Suppose we start
from a stationary distribution π with P (X0 = i) = πi, then we have P (Xn =
i) = πi for all n. Therefore

P (Xn = i ∧Xn+1 = j) = P (Xn = j ∧Xn+1 = i),

, so it does not change the probability of a certain chain if we see it the
other way round. The concept of reversible Markov chains was introduced
by the Russian mathematician Andrei Nikolajewitsch Kolmogorow in 1935,
who also gives the following criterion.

Theorem 3.2. A primitive matrix P describes a reversible Markov chain if
and only if

pi1i2pi2i3 · · · pin−1inpini1 = pi1inpinin−1 · · · pi3i2pi2i1

for all sequences (i1, i2, . . . , in) in S and for every length n.
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Exercise 24. Show the first (⇒) direction of the proof.

Proof. ⇐) Fix i = i1 and j = in. Then

pii2pi2i3 · · · pin−1jpji = pijpjin−1 · · · pi3i2pi2i

holds. Summing over all states i2, i3, . . . , in−1, we get

p
(n−1)
ij pji = pijp

(n−1)
ji ,

where the left side tends to ujpji and the right side to pijui for n→∞ and
therefore

ujpji = pijui.

As an example, we look at a connected graph with N vertices. Each link
from i to j gets a weight and since we want an undirected graph, we assume
wij = wji. Loops are allowed, i.e., wii ≥ 0. We define a Markov chain via
pij :=

wij∑
k wik

. Now we can show that this chain is reversible. If we choose

πi =

∑
k wik∑
l,k wlk

we get

πipij =
wij∑
l,k wlk

=
wji∑
l,k wlk

= πjpji.

3.9 The Markov chain tree formula

A Markov chain P = (pij) is called irreducible if for every i and j there is
some sequence i = i1, i2, . . . , in = j such that all pikik+1

are positive. This is

equivalent to the existence of some n such that p
(n)
ij > 0. Now we interpret

the chain as a weighted directed graph. Then every state of the chain accords
to a node and the probability pij assigns a weight to the (directed) edge from
i to j. We will call the set of all directed edges E := {(i, j) : pij > 0}. A
subset t ⊆ E is called directed spanning tree, if

• there is at most one arrow out of every node,

• there are no cycles and
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Figure 5: A directed spanning tree with root in 7

• t has maximal cardinality.

Now it is clear that since P is irreducible, the cardinality of t is n − 1 and
there exists one node with out-degree 0 called the root of t. We define

• the weight of t as w(t) :=
∏

(i,j)∈t pij,

• the set of all directed spanning trees as T,

• the set of all directed spanning trees with root j as Tj,

• the weight of all trees with root in j as wj :=
∑

t∈Tj
w(t) and

• the total weight of T as w(T) :=
∑

t∈Tw(t).

The following result has been traced back to Gustav Robert Kirchhoff around
1850.

Theorem 3.3. For finite irreducible Markov chains the stationary distribu-
tion is given by

uj =
wj
w(T)

.
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Proof. The idea of the proof is to take a directed spanning tree with root in
k and add one more arrow from k to somewhere else. For fixed k consider
Gk as the set of all directed graphs on S such that

• each state i has a unique arrow out of it to some j and

• there is a unique closed loop which contains k.

Now if g is in Gk, the weight is defined as w(g) :=
∏

(i,j)∈g pij and now there

are two ways to compute w(Gk),

w(Gk) :=
∑
g∈Gk

w(g) =


∑

i 6=k

(∑
t∈Ti w(t)

)
pik =

∑
i 6=k wipik∑

j 6=k

(∑
t∈Tk w(t)

)
pkj =

∑
j 6=k wkpkj.

Adding wkpkk to both outcomes, we get∑
i

wipik =
∑
j

wkpkj = wk
∑
j

pkj = wk

and therefore wP = w. If we normalize the vector we get the statement.

Remark that in the case of birth-death chains there are only edges from
the state k to its neighbours.

Figure 6: The graph of a birth-death chain

Therefore for every k the set of all spanning trees with root in k contains
only one element, it is given by

So the weight of Tk is

wk = p0p1 · · · pk−1qk+1 · · · qN
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and hence

uk =
wk
w(T)

=
p0p1 · · · pk−1qk+1 · · · qN

p0p1 · · · pN−1 + · · ·+ q1q2 · · · qn
=

p0p1···pk−1

q1q2···qk
p0···pN−1

q1···qN
+ · · ·+ 1

which is the formula we already found in section 3.7.

Exercise 25. Using the spanning trees, find the stationary distribution for
|S| = 3 and P > 0.

3.10 Mean recurrence time

Consider a finite irreducible Markov chain and define the mean time to go
from i to j as mij and thus the mean recurrence time as mii. Then we get
the relation

mij = pij +
∑
k 6=j

pik(1 +mkj) =
∑
k

pik +
∑
k 6=j

pikmkj = 1 +
∑
k 6=j

pikmkj.

So we get N ·N linear equations for N ·N unknown mij.

Exercise 26. Show that there is a unique solution for this system.

Now let uP = u be a stationary distribution, then∑
i

uimij =
∑
i

ui︸ ︷︷ ︸
=1

+
∑
i

∑
k 6=j

uipikmkj = 1+
∑
k 6=j

mkj

∑
i

uipik︸ ︷︷ ︸
uk

= 1+
∑
k 6=j

ukmkj

and adding ujmjj to both sides gives ujmjj = 1 and hence the mean recur-
rence time is given by mjj = 1

uj
.

In example E, the stationary distribution is given via uj =
(
N
j

)
1

2N
. For j =

0 (which means all molecules are in the first container) the mean recurrence
time is given as m00 = 2N , which is a hell of a big number if we consider one
mole to have 6 · 1023 molecules. For the most likely state N/2 we get

uN/2 =

(
N
N
2

)
1

2N
∼
√

2

πN

and thus for one mole

mN/2,N/2 =

√
πN

2
∼ 1012,

which is a long time but nothing compared to the other one.
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3.11 Recurrence vs. transience

In this section our state space S shall be finite or countable and we fix j ∈ S
and assume P (X0 = j) = 1. This has the advantage that we can disregard
exactly this condition in the probabilities and simply denote P (Xn = j) =

p
(n)
jj . The following lemma of Borel and Cantelli will help us in the next

proof.

Lemma 3.4. Let (An)∞n=1 denote a sequence of events. Then the following
statements hold

1.
∑∞

k=1 P (Ak) <∞⇒ P (Infinitely many Ak occur) = 0

2. If
∑∞

k=1 P (Ak) =∞ and the Ak are independent, then P (Infinitely many Ak occur) =
1.

Exercise 27. Prove the first part of the Lemma of Borel-Cantelli.

Theorem 3.5. 1. The following chain of equivalences holds

P (∃n ≥ 1 : Xn = j) = 1

⇔ P (Xn = j for infinitely many n) = 1

⇔
∞∑
n=1

p
(n)
jj =∞.

2. Further we have

P (∃n ≥ 1 : Xn = j) < 1

⇔ P (Xn = j for infinitely many n) = 0

⇔
∞∑
n=1

p
(n)
jj <∞.

Definition 3.2.
A state which fulfills one of the equivalences of 1. in the previous theorem is
called recurrent, if it fulfills one of the equivalences of 2., it is called transient.

Proof. Recall X0 = j, then we define

• F0 := {Xn 6= j for n = 1, 2, . . . }, the set of all sequences where there is
no return to j,
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• R := {∃n ≥ 1 : Xn = j}, the set of all sequences where there is some
return (remark F0∪̇R = Ω = SN, the space of all sequences) and

• Fn := {Xn = j, Xk 6= j ∀j > n}, the set of all sequences with last visit
to j at time n.

Then we get

P (Fn) = P (Xn = j) · P (Xn+1 6= j ∧Xn+2 6= j ∧ . . . |Xn = j)

= P (Xn = j) · P (X1 6= j ∧X2 6= j ∧ . . . |X0 = j)

= p
(n)
jj P (F0).

Since
∞⋃
n=0

· Fn = Ω \ {Xn = j for infinitely many n }

holds, we get the equation

1− P (Xn = j for infinitely many n ) =
∞∑
n=0

P (Fn).

Remark that p
(0)
jj = 1. Now since P (F0) = 1−P (R), we can conclude for the

actual proof

1. If P (R) = 1 then P (F0) = 0 and hence P (Xn = j for infinitely many n) =
1. Then the Lemma of Borel and Cantelli states that

∑∞
n=0 P (Xn =

j) =∞ and therefore
∑∞

n=1 p
(n)
jj =∞.

2. If P (R) < 1 then P (F0) > 0 and hence
∑∞

n=1 p
(n)
jj < ∞. Then the

Lemma of Borel and Cantelli states that P (Xn = j for infinitely many n) =
0.

Remark that from the ergodic theorem for finite primitive Markov chains
we already know pnjj → uj > 0. Therefore the sum

∑∞
n=1 p

(n)
jj cannot be

finite, so every state is recurrent. Some simple examples for the application
of the theorem: above are
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• The asymmetric random walk on Z gives p
(2n+1)
00 = 0 and

p
(2n)
00 =

(
2n

n

)
pnqn =

(
2n

n

)
1

2n
(4pq)n ∼ (4pq)n√

πn
.

We can rewrite the numerator as

4pq = (p+ q)2 − (p− q)2 = 1− (p− q)2

{
= 1 if p = q = 1

2

< 1 := α else.

So we get for the asymmetric case

4pq < 1⇒
∞∑
n=1

p
(2n)
00 ∼ 1

π

infty∑
n=1

αn√
n
<

1

π

∞∑
n=1

αn <∞

which means, as we already know, 0 is transient. For the symmetric
case applies

p = q =
1

2
⇒

∞∑
n=1

p
(2n)
00 ∼

∞∑
n=1

1√
πn

=∞,

therefore 0 is recurrent.

• In example A, 0 and N are absorbing states. Therefore p00 = 1 and
p

(n)
00 = 1 for all n. Hence

∑
n p

(n)
00 =∞ and thus 0 is recurrent.

Exercise 28. Show for the second example that all other states 1, 2, . . . , N−1
are transient.

3.12 The renewal equation

We denote the probability of starting in the state i and reaching j for the
first time after n steps with f

(n)
ij . Then

mij :=
∞∑
n=0

nf
(n)
ij

gives the mean arrival time (and as in the previous section, mjj is the mean
recurrence time).
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Theorem 3.6. The renewal equation is given by

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
ij .

Proof. Being at the state j after n steps with starting point i is the same as
if we are in j after k steps for the first time and then again after n− k steps.
Summing over all possible k gives the equation.

If we identify the probability of ever returning to some state i with∑∞
n=1 f

(n)
ii , then we get

• i is recurrent if and only if
∑∞

n=1 f
(n)
ii = 1 and

• i is transient if and only if
∑∞

n=1 f
(n)
ii < 1.

The following theorem is called the renewal theorem.

Theorem 3.7. Let (rn) and (fn) be any sequences. Suppose

1. fn ≥ 0 and
∑∞

n=1 fn = 1,

2. rn = r0fn + r1fn−1 + · · ·+ rn−1f1 and

3. the set Q = {n ≥ 1 : fn > 0} has greatest common divisor 1,

then

rn →
1∑∞

k=1 kfk
for n→∞,

where rn is 0 if the sum is infinite.

A possible application is for a fixed j, choose rn = p
(n)
jj and fn = f

(n)
jj ,

then

p
(n)
jj →

1∑∞
k=1 kf

(k)
jj

=
1

mjj

→ uj.

This looks like the statement of the ergodic theorem but we are not longer
constricted to finite state spaces. The proof of the renewal theorem can be
found in [1] or [3].
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3.13 Positive vs. null-recurrence

We start this chapter with a refinement of the concept of recurrence.

Definition 3.3.
A state i is called

1. positive recurrent if and only if the mean recurrence timemii =
∑∞

k=1 kf
(k)
ii

is finite. Then p
(n)
ii → 1

mii
> 0.

2. null-recurrent if and only if the mean recurrence time is infinity and i
is recurrent. Then p

(n)
ii → 1

mii
= 0.

Remark that if i is transient, we have

∞∑
k=1

f
(k)
ii < 1⇔

∞∑
k=1

p
(k)
ii <∞⇒ p

(n)
ii → 0 (n→∞).

An example for a null-recurrent state can be found in the random walk on
Z. If we look at the state 0 (which can only be reached in an even number
of steps), we get

m00 =
∞∑
k=1

2kf
(k)
00 =∞,

as we already showed in 1.10. Since we also showed that 0 is recurrent, we
know that it is null-recurrent.

Exercise 29. Compute the sum
∑∞

k=1 2kf
(k)
00 using the explicit formula given

in 1.5.

Another example is given by

H.
Consider a Markov chain where S = N. In every step we either reach the next
greater number (with probability pi) or we fall back to 1 (with probability
qi. Therefore the matrix is given by

P =


q1 p1 0 0 0 · · ·
q2 0 p2 0 0 · · ·
q3 0 0 p3 0 · · ·
...

...
...

. . . . . . . . .
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where of course pi + qi = 1. We can compute the probability of first return
at time n via

f
(n)
11 = p1p2 · · · pn−1qn.

Furthermore if we choose any sequence (fn)∞n=1 with fn ∈ [0, 1] for all n and∑∞
n=1 fn ≤ 1, we can construct pi and qi such that f

(n)
11 = fn. We choose

f1 = q1 ⇒ p1 = 1− f1

f2 = p1q2 ⇒ q2 =
f2

1− f1

⇒ p2 =
1− f1 − f2

1− f1

f3 = p1p2q3 ⇒ q3 =
f3

1− f1 − f2

⇒ p2 =
1− f1 − f2 − f3

1− f1 − f2

...

fn = p1 · · · pn−1qn ⇒ qn =
fn

1− f1 − · · · − fn−1

⇒ pn =
1− f1 − · · · − fn

1− f1 − · · · − fn−1

.

If i is recurrent we get the condition

1 =
∞∑
n=1

f
(n)
11

= q1 + p1q2 + p1p2q3 + . . .

= 1− p1 + p1(1− p2) + p1p2(1− p3) + . . .

= 1−
∞∏
n=1

pn.

If we use the logarithm on the last product, we see that it becomes 0 if and
only if

∞∑
n=1

qn =∞.

If i is positive recurrent we get the condition

∞ >
∞∑
n=1

nf
(n)
11

= 1− p1 + 2p1(1− p2) + 3p1p2(1− p3) + . . .

= 1 +
∞∑
n=1

n∏
k=1

pn

which is certainly stronger.
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3.14 Structure of Markov chains

Let the state space S be finite or countable. Then we define

Definition 3.4.
Two states i and j fulfill the relation y if there is a n ≥ 0 such that p

(n)
ij > 0,

i.e. the state j can be reached from i. Note that since p
(0)
ii = 1 we always

have i y i. If i and j communicate, i.e. i y j and j y i we simply write
iyx j.

Exercise 30. Show that yx is a equivalence relation.

Theorem 3.8. Let i and j be states with iyx j. Then

1. i recurrent ⇔ j recurrent,

2. i transient ⇔ j transient and

3. i null-recurrent ⇔ j null-recurrent.

Proof. If i yx j then there is some r ≥ 0 such that α := p
(r)
ij > 0 and some

s ≥ 0 such that β := p
(s)
ji > 0. Then

pr+n+s
jj ≥ p

(r)
ij p

(n)
ii p

(s)
ji = αβp

(n)
ii .

From this inequality we get :

• i is recurrent ⇒
∑

n p
(n)
ii =∞ ⇒

∑
n p

(n)
jj =∞ ⇒ j is recurrent.

• j is transient ⇒
∑

n p
(n)
ii <∞ ⇒

∑
n p

(n)
jj <∞ ⇒ i is transient.

• j is null-recurrent ⇒ p
(n)
jj → 0 ⇒ pr+n+s

jj → 0 ⇒ p
(n)
ii → 0 ⇒ i is

null-recurrent.

Definition 3.5.
The state j is periodic with period d if the greatest common divisor of {n :

p
(n)
jj > 0} is given by d.

Exercise 31. Show that if iyx j and i has period d, than j has period d.
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As a example consider the random walk on Z, where every state has period
2. In A, only the non-absorbing states have period 2 (for S = |N | ≥ 3, for
N = 3 the period of the state in the middle is not defined).

Definition 3.6.
A non-empty set C ⊆ S is closed if there is no transition from C to S \ C,
i.e. for every i in C and j in S \ C we have pij = 0.

Remark that in a closed subset C one has
∑

j∈C pij = 1 and therefore we
can restrict the Markov chain to C and get a stochastic matrix again.

Definition 3.7.
A Markov chain with state space S is reducible if there exists some C ( S
which is closed.

Theorem 3.9. A Markov chain is not reducible if and only if it is irreducible.

Exercise 32. Proof the previous theorem.

Theorem 3.10. Suppose i ∈ S is recurrent. Define C(i) := {j ∈ S : iy j}.
Then C(i) is closed, contains i and is irreducible, i.e. for all j and k in C(i)
we have j yx k.

Proof. The state i is in C(i) since the relation is reflexive and closed since
it is transitive. Therefore it remains to show that for each j in C(i) we have
j y i. We define α as the probability to reach j from i before returning to
i. Then

α = pij +
∑
k 6=j

pikpkj + · · · > 0.

If we define fji as the probability of ever reaching i from j, then since i is
recurrent, we get

0 = 1− fii = P (Xn 6= i∀n > 0|X0 = i)

≥ α · P (Xn 6= i∀n|X0 = j)

= α · (1− fji)

and therefore fij = 1, which means j y i.

Remark that from a recurrent state we never reach a transient state since
every state in C(i) is recurrent. Each recurrent state belongs to a unique
closed irreducible subset. From transient states we can reach recurrent states
(for example in A). The following structure theorem refines this statements.
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Theorem 3.11. The state space at a Markov chain can be divided in a unique
way into disjoint sets

S = T ∪̇C1∪̇C2∪̇ . . . ,
where T is the set of all transient states and each Ci is closed, irreducible
and recurrent.

I.
Assume the same stochastic matrix as in H but now all the qi’s are 0. There-
fore we go surely from k to k + 1. Hence every state is transient and there
are infinitely many closed subsets {k, k + 1, k + 2, . . . }, but none of them is
irreducible.

3.15 Limits

Theorem 3.12. If j is transient or null-recurrent then for all i in S the
probability p

(n)
ij tends to 0 as n tends to infinity.

Proof. For the first case we look at i = j. If j is transient, then p
(n)
jj → 0

since the sum
∑
p

(n)
jj does converge. If j is null-recurrent, it is given by the

definition and the renewal theorem. If i 6= j, we look at the renewal equation

p
(n)
ij =

(n)∑
k=1

f
(k)
ij p

(n−k)
jj︸ ︷︷ ︸
≤1

.

Since
∑
f

(k)
ij = fij ≤ 1, we can split the equation in two parts

p
(n)
ij =

m∑
k=1

f
(k)
ij p

(n−k)
jj︸ ︷︷ ︸

I

+
n∑

k=m+1

f
(k)
ij p

(n−k)
jj︸ ︷︷ ︸

II

and estimate. For the second part, we find for every ε > 0 some m such that
for the remaining terms of the sum we get

∑∞
k=m+1 f

(k)
ij < ε, and therefore

II < ε. Now with fixed m we choose n large enough such that p
(n−k)
jj < ε for

k = 1, 2, . . . ,m. Then

I <
m∑
k=1

f
(k)
ij · ε ≤ ε.

Therefore p
(n)
ij < 2ε and since we can choose ε arbitrary, we have proven the

statement.
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The strategy of our estimation above will be needed again later. There-
fore, we formulate it as a

Lemma 3.13. Let x
(n)
i be a sequence with n ∈ N and i ∈ S where S is

countable. If we have

1. ∀i ∈ S : x
(n)
i → xi as n→∞,

2. ∀i ∈ S∃Ci such that |x(n)
i | ≤ Ci and

3.
∑

i∈S Ci <∞.

Then we can interchange the limit and the summation, i.e.

lim
n→∞

∑
i∈S

x
(n)
i =

∑
i∈S

xi.

Exercise 33. Prove the lemma above.

This is a special case of Lebesque’s dominated convergence theorem where
we choose some countable measure space S and µ as the counting measure.
The theorem states that if we have a sequence of functions fn(x) that con-
verges to some f(x) for almost all x ∈ S, where S is some measurable space
and

|fn(x)| ≤ g(x) and

∫
S

g(x)dµ(x) <∞

then

lim
n→∞

∫
S

fn(x)dµ(x) =

∫
S

f(x)dµ.

Theorem 3.14. If j is positive recurrent and nonperiodic then p
(n)
ij tends to

fij
mjj

(if iyx j then fij = 1).

The finite case is already given by the ergodic theorem. If i = j then we
showed the statement with the renewal theorem.

Proof. Using the lemma, we calculate

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj︸ ︷︷ ︸
→ 1
mjj

→ 1

mjj

∞∑
k=1

f
(k)
ij =

fij
mjj

.
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Corollary 3.15. In a finite Markov chain there is at least one recurrent
state. All recurrent states are positive recurrent.

Proof. Since P n1 = 1 we get by 3.12 limn→∞ p
(n)
ij = 0 for all i and j if all

states are transient. But
∑

j p
(n)
ij = 1 for any n which is a contradiction.

Therefore there exists a recurrent state. Now consider a class C of recurrent
states which is irreducible and closed. Now applying theorem 3.12 to C, we
get that there exists a positive recurrent state. From theorem 3.8 we now
know that all states are positive recurrent.

3.16 Stationary probability distributions

Lemma 3.16. Let u = (uk) ∈ 4(s) be an invariant probability distribution
and j a transient or null-recurrent state. Than uj = 0.

Proof. At first, note that u = uP = uP n and therefore with 3.12 and the
dominated convergence theorem

uj =
∑
i∈S

uipij =
∑
i∈S

ui p
(n)
ij︸︷︷︸
→0

n→∞−−−→ 0.

In example I there may be no invariant probability distribution as long
as S is infinite.

Theorem 3.17. An irreducible positive recurrent and aperiodic Markov chain
has an unique invariant probability distribution u ∈ 4(s) such that uP = u.
The entries are given by ui = 1/mii where mii is the mean recurrence time
to state i.

Proof. Since iyx j for all i and j, fij = 1 and hence by 3.14 we know that p
(n)
ij

tends to 1
mjj

=: uj. Without loss of generality we assume S is some subset

of {0, 1, 2, . . . }.Then we get for all i and j

1 =
∞∑
j=0

p
(n)
ij ≥

M∑
j=0

p
(n)
ij

n→∞−−−→
M∑
j=0

uj ∀M.
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Now since for all M the sum
∑M

j=0 uj ≤ 1, this also holds for M → ∞, but
we have to show equality. Now if we look at the inequality

uj ← p
(n+1)
jj =

∞∑
i=1

p
(n)
ji pij ≤

M∑
i=1

p
(n)
ji pij →

M∑
i=1

ujpij

and taking the limit M →∞, we get

uj ≥
∞∑
i=0

uipij, (2)

but again we need to show equality. Therefore suppose there is some j such
that uj >

∑∞
i=0 uipij. But then we see

1 ≥
∞∑
j=0

uj >
∞∑
j=0

∞∑
i=0

uipij
(∗)
=

∞∑
i=0

ui

∞∑
j=0

pij︸ ︷︷ ︸
=1

=
∞∑
i=0

ui,

and that is clearly a contradiction. Remark that the sum can be reordered in
(∗) because all terms are positive. Now we know that for all j equality holds
in (2) and so u = uP and hence u = uP n. Now because of the dominated
convergence theorem we get for some uj > 0

uj =
∞∑
i=0

uip
(n)
ij

n→∞−−−→
∞∑
i=0

uiuj = uj

∞∑
i=0

ui

and therefore
∑
ui = 1. The proof for uniqueness is exactly the same as in

the finite case and can be found after theorem 3.1.

It is also possible to show the converse theorem.

Theorem 3.18. Consider an irreducible aperiodic Markov chain with sta-
tionary probability distribution u ∈ 4(s) such that u = uP . Then all states
i ∈ S are positive recurrent and ui = 1

mii
.

Exercise 34. Proof the theorem above.

Now let us denote with C1, C2, . . . the different positive recurrent classes.
If P be the set of all positive recurrent classes and αi > 0 for all i ∈ P and
u(i) the unique invariant probability distribution in Ci, then

u =
∑
i∈P

αiu
(i)
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is an invariant probability distribution for the whole Markov chain. It can
be shown that all invariant probability distributions are of this form. As an
example we look at a birth-death chain on N, given by the matrix

P =


r0 p0 0 0 0 . . .
q1 r1 p1 0 0 . . .
0 q2 r2 p2 0 . . .
...

. . . . . . . . . . . .


where qi + ri + pi = 1 for all i. Furthermore we want pi and qi be positive
such that P is irreducible. We want to find an invariant distribution (we
already did this for the finite case in 3.7). As in the finite case we get for
k = 0, 1, 2, . . .

uk+1qk+1 = ukpk

and therefore
uk =

pk−1

qk
uk−1 = · · · = u0

p0p1 · · · pk−1

q1q2 · · · qk
.

This defines a probability distribution (
∑
ui = 1) if and only if

1

u0

=
∞∑
k=1

p0p1 · · · pk−1

q1q2 · · · qk
=∞ ⇔ all states are transient or null-recurrent.

The sum is infinite if and only if all states are transient or null-recurrent.
As a special case we look at the random walk with one reflecting boundary
where pi = p and qi = q for all i. Then we get for the sum

∞∑
k=1

(p
q

)k
<∞ ⇔ p < q.

Now we have

• p < q ⇔ all states are positive recurrent, uk = u0(p
q
)k and u0 = 1− p

q
.

• p = q ⇔ all states are null-recurrent.

• p > q ⇔ all states are transient.

Exercise 35. Show the last two equivalences above.
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3.17 Periodic Markov chains

Theorem 3.19. Let C be an equivalence class of recurrent states where one
(and hence all) i ∈ C have period d > 1. Then C = C1∪̇C2∪̇ . . . ∪̇Cd such
that for all i ∈ Ck ∑

j∈Ck+1

pij = 1 (for k mod d).

Therefore transition is only possible from Ck to Ck+1 and therefore

P =



0 P1,2 0 0 . . . 0
0 0 P2,3 0 . . . 0
...

...
. . . . . . 0

. . . . . .

0 0 . . . 0 Pd−1,d

Pd,1 0 . . . 0 0


, where Pk,k+1 denotes a block matrix.

For all i and j in C we denote qij := pij(d) , and since
∑

j∈C qij = 1 for
all i in C1, Q is an aperiodic stochastic matrix. If Q is restricted to C1, it is
irreducible and if C1 is finite, Q restricted to C1 is primitive. If u is recurrent,
then q

(n)
ii = p

(nd)
ii tends to d

mii
, that is the reciprocal of the mean recurrence

time for Q. Therefore Q = P d is given by the diagonal matrix
P12P23 · · ·Pd1 0 · · · 0

0 P23P34 · · ·P12
...

...
. . .

Pd−1,dPd1 · · ·Pd−2,d−1 0
0 · · · 0 Pd1P12 · · ·Pd−1,d


The C ′is can have different sizes. As an example, if C1 = {1, 2}, C2 = {3}
and C3 = {4, 5, 6} and d = 3, then a possible matrix would be

If Q = P d then q
(n)
jj = p

(nd)
jj and this expression tends to d

mjj
ans n tends

to infinity. To be more precise, we have

p
(nd+k)
ij →

{
d
mjj

if i ∈ Cα, j ∈ Cβ and α + k = β( mod d)

0 otherwise.
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We already know for aperiodic irreducible and positive recurrent Markov
chains, then p

(n)
ij → uj. In the periodic case we get a slightly weaker result,

lim
N→∞

1

N

N∑
n=1

p
(n)
ij = lim

n→∞

1

d

d∑
k=1

pn+k
ij uj,

where the left term is the time average of p
(n)
ij and the right term is the

average over one period. As a simple example we look at

P =

(
0 1
1 0

)
,

then P 2n = Id and P 2n+1 = P, hence there is no convergence. But

lim
n→∞

1

N
(Id + P + · · ·+ PN−1) =

Id + P

2
=

(
1
2

1
2

1
2

1
2

)
.

3.18 A closer look on the Wright-Fisher Model

We recall example D, but assume S = N instead of S = 2N now. Then the
probabilities are given by

pij =

(
N

j

)( i
N

)j(
1− i

N

)N−j
,

which means that if Xn = i then Xn+1 has binomial distribution B(N, i
N

).
The expected value of Xn+1 is then given by

E[Xn+1] = N
i

N
= i = Xn.

Such a process is called a martingale. For Xn arbitrary we get

E[Xn+1] =
N∑
j=0

jP (Xn+1 = j) =
N∑
j=0

j
N∑
i=0

P (Xn = i)pij

=
N∑
i=0

P (Xn = i) ·
N∑
j=0

jpij︸ ︷︷ ︸
=i

=
N∑
i=0

iP (Xn = i)

= E[Xn],
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and hence E[Xn] = E[X0]. We already showed with example 20 and lemma
3.16, that all states besides 0 and N are transient. For those states we have
p

(n)
ij → 0 and thus

i = E[X0] = E[Xn] =
N∑
j=0

p
(n)
ij · j

n→∞−−−→ 0 · lim
→∞

p
(n)
i0 +N · lim

n→∞
p

(n)
iN

and hence the probability of absorption in N is

lim
n→∞

p
(n)
iN =

i

N

and the probability of absorption in 0

lim
n→∞

p
(n)
i0 = 1− i

N
.

3.19 Absorbing Markov chains for finite state spaces

Denote S = {1, 2, . . . , N} = T ∪̇R where T is the set of all transient and R the
set of all recurrent states. If we rearrange the states such that R = {1, . . . , r}
and T = {r + 1, . . . , N} and assume all recurrent states are absorbing, then
the matrix is given by the block matrix

P =

(
Id 0
B Q

)
,

where B denotes a N − r × r matrix Q a N − r × N − r matrix. Now we
define

• aij as the probability of absorption in j with starting point in i,

• τi as the expected time until absorption if we start in i and

• vij as the expected number of visits in j if we start in i.

Then we can calculate

1. τi = 1 +
∑

k∈T pikτk for all i ∈ T , therefore we have N − r equations
for N − r variables. If τ = (τi)i∈T , then

τ = 1 +Qτ ⇔ τ = (Id−Q)−11.

The matrix Q is substochastic, i.e.
∑

j∈T qij ≤ 1 for all i ∈ T and there
is some i such that strict inequality holds if Q is irreducible.
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2. For the expected number of visits we get

vij = δij +
∑
k∈T

pikvkj

for i and j out of T . Writing this equation with matrices, we get

V = Id +QV ⇔ V = (Id−Q)−1.

3. For the absorption probabilities we get

aij = pij +
∑
k∈T

pikakj

for i ∈ T and j ∈ R, or writing A = (aij)

A = B +QA⇔ A = (Id−Q)−1B.

Exercise 36. Show that Id−Q is invertible.

Exercise 37. Compute τi for example D.

3.20 Birth-death chains with absorbing states

Assume the state space of a birth-death chain is given by S = {0, 1, . . . , N}
and let the state 0 be absorbing. Then the general matrix is given by

P =



1 0 0 0 . . . 0
q1 r1 p1 0 . . . 0
0 q2 r2 p2 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 qN−1 rN−1 pN−1

0 · · · 0 0 qN rN


.

We assume all qi and pi positive, then all states besides 0 are transient and
the unique stationary probability distribution is given by u = (1, 0, . . . , 0)t,

i.e. p
(n)
i0 → 1 and p

(n)
ij → 0 for j ≥ 1. Now τk describes the time until

absorption in 0 when we start in k. We get the equations

τk = 1 + qkτk−1 + rkτk + pkτk+1 for k = 1, . . . , N − 1 and

τN = 1 + qNτN−1 + rNτN = 1 + qNτN−1 + (1− qN)τN .
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From the second equation we get qN(τN − τN−1) = 1 and the first can be
written as

0 = 1 + qk(τk−1 − τl) + pk(τk+1 − τk)

and therefore we get a system of equations for the differences of two entries
of τ

τ2 − τ1 = − 1

p1

+
q1

p1

τ1

τ3 − τ2 =
1

p2

(−1 + q2(τ2 − τ1)) = − 1

p2

− q2

p1p2

+
q1q2

p1p2

τ1

τ4 − τ3 =
1

p3

(−1 + q3(τ3 − τ2)) = − 1

p3

− q3

p2p3

− q2q3

p1p2p3

+
q1q2q3

p1p2p3

τ1

...

τN − τN−1 = − 1

pN−1

− qN−1

pN−2pN−1

− · · · − q2q3 · · · qN−1

p1p2 · · · pN−1

+
q1q2 · · · qN−1

p1p2 · · · pN−1

τ1

and since we already know τN − τN−1 = 1
qn

we can compute

τ1 =
1

q1

+
p1

q1q2

+
p1p2

q1q2q3

+ · · ·+ p1p2 · · · pN−1

q1q2 · · · qN

and therefore all other τk.

3.21 (Infinite) transient Markov chains

Consider our state space S as finite or countable and remember the division
into the set of transient states T and the set of recurrent states R. Then
we already know that Q, the restriction of P to T is a substochastic matrix
again. Define Qn = (q

(n)
ij ), then we have

q
(n+1)
ij =

∑
k∈T

qikq
(n)
kj

again. The row sum of Qn we denote by σ
(n)
i and therefore

σ
(n)
i =

∑
j∈T

q
(n)
ij = P (Xn ∈ T |X0 = i).
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Since Q is substochastic we have σ
(1)
i ≤ 1 and now we can calculate

σ
(2)
i =

∑
j∈T

q
(2)
ij =

∑
j∈T

∑
k∈T

qikq
(1)
kj =

∑
k∈T

∑
j∈T

qikq
(1)
kj =

∑
k∈T

qikσ
(1)
k ≤

∑
k∈T

qik = σ
(1)
i .

By induction we get σ
(n+1)
i ≤ σ

(n)
i . The probability to stay in T forever

provided that we start in i is given by limn→∞ σ
(n)
i := σi. For n→∞ we get

σi =
∑
k∈T

qikσk,

i.e. the vector σ is a eigenvector of Q. If x = (xi)i∈T is a solution for σ = Qσ

with 0 ≤ xi ≤ 1 then 0 ≤ xi ≤ σ
(n)
i and by induction we get 0 ≤ xi ≤ σi

hence σ is the maximal solution with 0 ≤ σi ≤ 1.

Theorem 3.20. The probabilities xi that starting from state i the Markov
chain stays forever in T are given by the maximal solution σ with 0 ≤ σi ≤ 1.

Exercise 38. Given S = {1, . . . , N} and x = Px, show

• if 0 ≤ xi ≤ 1 holds for all i then {i : xi = 1} is closed,

• if iyx j then xi = xj and

• if P is irreducible then x = λ1.

As an example we look at a birth-death with infinity state space chain
given by

P =


1 0 0 0 · · ·
q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·

. . . . . . . . .


then R = {0} and T = {1, 2, . . . }. If we restrict P to the transient state, i.e.
we cancel the first row and column. Then we try to solve x = Qx, we get
the equations

x1 = r1x1 + p1x2

x2 = q2x1 + r2x2 + p2x3

...
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By replacing ri with 1 − pi − qi the first line gives x2 > x1 and we get a
system for the differences

q2(x2 − x1) = p2(x3 − x2)

q3(x3 − x2) = p3(x4 − x3)

...

qk(xk − xk−1) = pk(xk+1 − xk).

This gives the equations

xk+1 − xk =
qk
pk

(xk − xk−1)
q2 . . . qk
p2 . . . pk

(x2 − x1)

and

xk+1 − x1 = (x2 − x1)
k∑
i=2

q2 · · · qi
p2 · · · pi

.

Then we get (xn) is bounded if and only if
∑k

i=2
q2···qi
p2···pi <∞. In this case the

process remains in T forever with positive probability.

3.22 A criterion for recurrence

Theorem 3.21. In an irreducible Markov chain on S = {0, 1, 2, . . . } the
state 0 is recurrent if and only if the only solution of x = Px with 0 ≤ xi ≤ 1
is given by xi = 0 for i = 1, 2, . . . .

Proof. ⇒) Define Q := (Pij)
∞
i,j=1 and consider σ = Qσ as in the last chapter

with 0 ≤ σi ≤ 1. Then σi is the probability that Xn is non-zero for all
positive n if we start in i. If 0 is recurrent then the probability of reaching
0 from i given by fi0 =

∑
f

(n)
i0 = 1 for all i and therefore σi = 0. ⇐) Since

xi = 0 is the only solution, σi = 0 for i = 1, 2, . . . and therefore fi0 = 1 and
therefore i is recurrent.

Remember the example from the last chapter with pi and qi positive, then
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we get with the previous theorem

x = Qx has a bounded solution with 0 ≤ xi ≤ 1

⇔
∞∑
i=2

q2 · · · qi
p2 · · · pi

<∞

⇔
∞∑
k=1

q1 · · · qk
p1 · · · pk

<∞

⇔ P is transient.

We also get that P is recurrent if and only if the sum above is infinite. In
the special case pi = p and qi = q we get

P is recurrent⇔
∞∑
k=1

(q
p

)k
=∞⇔ q ≥ p⇔ p ≤ 1

2

which we already stated in 3.16. If we denote

πk =
p0 · · · pk−1

q1 · · · qk

and π0 = 1 we get as a summary of 3.16 and 3.21 for birth-death chains

•
∑∞

k=1 πk <∞ ⇔ positive recurrent

•
∑∞

k=1 πk =∞ and
∑∞

k=1
1

pkπk
=∞ ⇔ null recurrent

•
∑∞

k=1
1

pkπk
<∞ ⇔ transience

3.23 Mean absorption times in the Wright-Fisher model

We will not give an explicit formula for τi in the model but discuss a heuristic
method for an approximating formula. This formula has already been found
by Wright in 1931. We assume N large and define x = i

N
and for the

transition from i from j we denote j
N

= x+ δx. Then we have

E[δx] = E
[j − i
N

]
=
E[j]− E[i]

N
= 0
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because of the Martingale property stated in 3.18 and since for every fixed
state we have a Binomial distribution, we get

E[(δx)
2] = Var[δx] = Var[x+ δx] = Var

[ j
N

]
=

1

N2
Var[j]

=
1

N2
N
i

N

(
1− i

N

)
=
x(1− x)

N
.

We write τ(x) for τi for 0 ≤ x ≤ 1 and assume that τ is twice differentiable,
then the recurrence relation for τi translates to

τ(x) = 1 + E[τ(x+ δx)]
Taylor

= 1 + E[τ(x) + δxτ
′(x) +

1

2
δ2
xτ
′′(x) + . . . ]

= 1 + τ(x) + E[δx]τ
′(x) +

1

2
E[δ2

x]τ
′′(x) + . . . .

Stopping the Taylor expansion after the second term, we get the differential
equation

τ(x) = 1 + τ(x) +
1

2N
x(1− x)τ ′′(x)

which we solve be simple integration. Hence

τ ′′(x) =
−2N

x(1− x)
⇒ τ ′(x) = −2N(log x− log(1− x) + C)

⇒ τ(x) = −2N [x log x− x+ (1− x) log(1− x)− (1− x) + Cx+D],

and with the boundary conditions τ(0) = τ(1) = 0 we get the entropy
function

τ(x) = −2N(x log x+ (1− x) log(1− x).

In our model we get for i = 1, i.e. one single newly arising allele,

τ1 ≈ τ
( 1

N

)
= −2 log

1

N
− 2N

(
1− 1

N

)
log
(

1− 1

N

)
∼ 2 logN + 2

and for x = 1
2

we get

τ
(1

2

)
= −2N

1

2
2 log

1

2
= 2N log 2 ≈ 2.8N
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3.24 The Moran model

The following model is related to the Wright-Fisher model and was described
by Patrick Moran in 1958. We look at a population with N individuals of
two types A and B and denote with i the number of individuals of type A.
In each step we choose one individual for reproduction and one for death.
Therefore the states 0 and N are absorbing and the probabilities are clearly
given by

pi,i−1 =
N − i
N

i

N

pi,i+1 =
i

N

N − i
N

,

so they are symmetric but state dependent. Thus the model is essentially a
birth-death chain with pi = qi and with the same calculations as in 3.18 we
get the martingale property. There we also have already shown that in that
case

lim
n→∞

p
(n)
iN =

i

N
and lim

n→∞
p

(n)
i0 = 1− i

N

holds.

Exercise 39. Prove that the mean time for absorption is given by

τi = N
( i∑
j=1

N − i
N − j

+
N−i∑
j=i+1

i

j

)
if we start in state i. Hint: The proof is similar to that one in 3.20.

Exercise 40. If we try the same approximation as in the previous chapter,
show that

τ(x) = −N2
(

(1− x) log(1− x) + x log x
)
.

Hint: Use the formula for the harmonic series Hn ≈ log n+ γ where γ is the
Euler-Mascheroni constant.

One can improve the model by a selection process, so the A individuals
get the fitness fi and the B individuals the fitness gi. The number of gametes
are hence given by

ifi + (N − i)gi
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and therefore the new probabilities are given by

pi,i+1 =
ifi

ifi + (N − i)gi
N − i
N

and

pi,i−1 =
(N − i)gi

ifi + (N − i)gi
i

N
.

In that case one can get τi to grow like N , N2 or even ecN .

3.25 Birth-death chains with two absorbing states

Consider a birth-death chain where 0 and N are absorbing and denote

γi =
q1q2 · · · qi
p1p2 · · · pi

and declare γ0 = 1. We state for the absorption probabilities

akN =

∑k−1
i=0 γi∑N−1
i=0 γi

and

ak0 =

∑N−1
i=k γi∑N−1
i=0 γi

.

Exercise 41. Show the formulas for akN and ak0. Hint: The proof is similar
to the one in 3.20. One have to solve for xk = ak0, x0 = 1 and xN = 0

xi = qixi−1 + rixi + pixi+1.

If we want to calculate the expected time to absorption τk, we have to
solve

τk = 1 + qkτk−1 + rkτk + pkτk+1

with τ0 = τN = 0.

Exercise 42. Show that the solution for τi is given by

τ1 =
1

1 + γ1 + · · ·+ γN−1

N−1∑
k=1

k∑
l=1

γk
plγl

τj = −τ1

N−1∑
k=j

γk +
N−1∑
k=j

k∑
l=1

γk
plγl

.

Hint: This implies the solution of exercise 39.
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3.26 Perron-Frobenius theorem

The Perron-Frobenius is a general result about matrices, we will state differ-
ent versions, but will not proof them.

Theorem 3.22 (Perron-Frobenius A). Let A = (aij) denote a strictly posi-
tive or primitive n× n square matrix, i.e.

∃n : ∀i, j : a
(n)
ij > 0,

then

1. there is an eigenvalue r > 0 with some eigenvector w > 0 such that
Aw = rw and r is an algebraically simple eigenvalue.

2. Furthermore we have for all eigenvalues λ 6= r that |λ| < r.

One consequence of the theorem is, that if we apply it to AT , we get the
existence of v > 0 with vTA = rvT . Furthermore we have for the limit case

An

rn
n→∞−−−→ wvT

vTw
.

Exercise 43. Given all statements from the theorem above, proof that

An

rn
n→∞−−−→ wvT

vTw

assuming A is diagonalizable. Hint: Use a basis of eigenvalues and use |λ| <
r.

If A is a stochastic matrix and primitive, then we already know A1 = 1,
so r = 1 and w = 1. Therefore there is some positive vector u with uTA = uT

with
∑
ui = 1. Furthermore An tends to 1uT , which is the ergodic theorem

for primitive Markov chains. A second version of the theorem is

Theorem 3.23 (Perron-Frobenius B). Let A = (aij) denote a non-negative
irreducible n× n square matrix, i.e.

∀i, j∃n : a
(n)
ij > 0,

then
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1. there is an eigenvalue r > 0 with some eigenvector w > 0 such that
Aw = rw and r is an algebraically simple eigenvalue.

2. Furthermore we have for all eigenvalues λ 6= r that |λ| ≤ r.

In this case we still get for r > 0 and w ≥ 0 such that Aw = rw that
none of the entries of w is 0. If we weaken the conditions for the theorem
even more, we get

Theorem 3.24 (Perron-Frobenius C). Let A = (aij) denote a non-negative
irreducible n× n square matrix, then

1. there is some eigenvalue r ≥ 0 and some w > 0 such that Aw = rw.

2. For all eigenvalues λ we have |λ| ≤ r.

Finally the last statement is given by

Theorem 3.25 (Perron-Frobenius D). For two matrices B and A with 0 ≤
B ≤ A for every entry, we have for the spectral radius r

r(B) ≤ r(A).

If A or B is irreducible, then r(B) = r(A) if and only if A = B.

3.27 Quasi stationary distributions

We look at some finite Markov chain with transient states T and recurrent
states R where all recurrent states are absorbing. If we reorder the states,
the chain is given by the block matrix

P =

(
Id 0
A Q

)
.

The study of this question has already been started by Wright in 1931 and
Yaglom in 1947 for the Galton-Watson process and Ewens and Seneta con-
tinued it in 1965 for general cases. For simplicity we combine all recurrent
states into the first such that R = {0} and we assume Q is irreducible. With

π(n) = (π0(n), π1(n), . . . , πN(n))
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we denote the probability distribution at time n. Then

π(n+ 1) = π(n)P

holds. With q(n) we denote the conditional distribution on T = {1, . . . , N}
in time n if we are not yet absorbed. This distribution is given by

q(n) =
(π1(n), . . . , πN(n))∑N

i=1 πi(n)
=

(π1(n), . . . , πN(n))

1− π0(n)
.

We are looking for a stationary conditional distribution such that q(n+ 1) =
q(n) = q. Using the block structure of P we get with(

π0(n+ 1), π̃(n+ 1)
)

=
(
π0(n), π̃(n)

)
P

the system of equations{
π0(n+ 1) = π0(n) + π̃(n)A

π̃(n+ 1) = π̃(n)Q.

Since π̃(n) = (1 − π0(n))q(n) holds, the second equation gives for the sta-
tionary distribution

cnq :=
1− π0(n+ 1)

1− π0(n)
q = qQ

with q ≥ 0 and q ∈ 4(T ). For some irreducible Q the cn are independent of
n since q is a left eigenvector (which we denoted with v in previous sections).
The cn is simply the range of Q, denoted by r. Therefore we know there are
v and w such that

vTQ = rvT

Qw = rw

with both vectors greater 0. Therefore exists a stationary conditional distri-
bution q ∈ 4(T ). Now we normalize v and w such that∑

i

vi = 1 =
∑
i

viwi,
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choose Q to be primitive and write p
(n)
i0 = P (Xn = 0|X0 = i). Therefore we

get for i, j ∈ T

P (Xn = j|X0 = i,Xn 6= 0) =
p

(n)
ij

1− p(n)
i0

=
q

(n)
ij∑

k∈T q
(n)
ik

n→∞−−−→ rnwivj∑
k∈T r

nwivk
= vj.

For the limit we used
An

rn
→ wvT

vTw
,

and thus approximated Qn with rnwvT and q
(n)
ij with rnwivj. We see that

the vj are independent from our starting point i, hence v is the limiting
conditional distribution on T .

3.28 How to compute quasi-invariant distributions

We are now interested in explicit formulas for the vj. Again our state space
is finite and given by S = {0, 1, . . . , N}, where 0 is the only absorbing state.
From the qj we get

qj(n+ 1) =
pj(n+ 1)

1− p0(n+ 1)
=

∑
i pi(n)pij

1− p0(n)
· 1− p0(n)

1− p0(n+ 1)

=
∑
i∈T

qi(n)pij
1− p0(n)

1− p0(n+ 1)

=
∑
i∈T

qi(n)pij
1− p0(n)

1− p0(n)−
∑

k∈T pk(n)pk0

=
∑
i∈T

qi(n)pij
1

1−
∑

k∈T qk(n)pk0

,

where we used qi(n) = pi(n)/1− p0(n) twice. Since qi(n) tends to vi, we get
the system of equations

vj =

∑
i∈T vipij

1−
∑

k∈T vkpk0

⇔ vj

(
1−

∑
k∈T

vkpk0

)
=
∑
i∈T

vipij,
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consisting of N equations, which are not linear. In the simpler case of birth-
death chains with only one absorbing state in 0 the system simplifies quite a
lot. The matrix is given by

P =



1 0 0 0 . . . 0
q1 r1 p1 0 . . . 0
0 q2 r2 p2 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 qN−1 rN−1 pN−1

0 · · · 0 0 qN rN


which gives the equations

vj(1− q1v1) = vj−1pj−1 + vj(1− pj − qj) + vj+1qj+1

and for the case j = 1

v1(1− q1v1) = v1(1− p1 − q1) + v2q2.

This can be solved for v2 and continuing this patters we can express the vj
in terms of v1 as a polynomial of degree j. The fact that all vj sum up to 1
gives the last equation.

If we let q1 tend to 0, then Q1 = 1 implies that v is a stationary distribu-
tion for Q. The equation vT = vTQ gives nice approximate formulas for v.
The assumption of choosing q1 quite small is reasonable, because in this case
the time to absorption is long and therefore the quasi-stationary distribution
becomes relevant at all.

Exercise 44. Modify the setting from above for S = {0, 1, . . . , N} with ab-
sorbing states 0 and N . Apply it to the Moran model and show that v is
approximately uniformly distributed (i.e. vi = 1/(N − 1)) for large N .

Exercise 45. Find a procedure to compute w and viwi.

With the Banach fixed-point theorem it is fairly easy to compute a nu-
merical approximation of v. The function

x 7→ xQ

||xQ||1
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maps 4(T ) to 4(T ) and has the unique fixed point v. If we assume the
probability of being absorbed (which is in our example equal to the proba-
bility of leaving the transient states) is given by ε, we can reduce the Markov
chain to (

1 0
ε 1− ε

)
.

This matrix only distinguishes between absorption and remain in the tran-
sient states. For birth-death chains, we have the simple relation

ε =
∑
k∈T

vkpk0 = v1q1.

The random variable Tv, defined as the time to absorption if P (X0 = j) = vj
is geometrically distributed,

P (Tv = j) = (1− ε)j−1ε

and therefore the mean time to absorption τv is given by 1
ε
.

Exercise 46. Show that the expected value of a geometrical distribution with
parameter ε is given by 1/ε.

As mentioned above for birth-death chains we get

τv =
1∑

k∈T vkpk0

=
1

v1q1

,

so using this in the Moran model together with exercise 45 and our previous
results, the mean time to absorption is given by

τv =
1

v1q1

≈ 1
1

N−1
(N−1)
N2

= N2.

4 Poisson process

Our next big topic is about a stochastic process with countable state space
S, but the time will be continuous now. The simplest example for such a
process is the so called Poisson process.
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4.1 Definition

To get a better feeling about this kind of process, we start with an example.
If we go fishing and let N(t) count the number of fish we already got, then
N(t) is a step function. We can now state some legitimate postulates.

(P0) The function t 7→ N(t) is a random variable from R → N. It fulfills
N(0) = 0, is increasing and continuous from the right.

(P1) If [t, s) and [u, v) are disjoint, then N(s) − N(t) is independent from
N(u)−N(v), therefore the events in one time interval do not affect the
events in another disjoint time interval.

(P2) The stationary increments distribution of N(s)−N(t) depends on s− t
but not on t, i.e. N(t + s) − N(s) and N(t) − N(0) are identically
distributed.

(P3) We have the two limits

1

h
P (N(t+ h)−N(t) ≥ 1)

h↓0−−→ λ > 0

1

h
P (N(t+ h)−N(t) ≥ 2)

h↓0−−→ 0.

Definition 4.1.
A stochastic process N(t) with t > 0 satisfying the four postulates above is
called a Poisson process with rate λ.

The last postulate is often written as

P (N(t+ h)−N(t) ≥ 1) = λh+ o(h)

P (N(t+ h)−N(t) ≥ 2) = o(h).

4.2 Characterization

Theorem 4.1. The four postulates (P0)− (P3) imply that N(t) is Poisson
distributed with parameter λ

P (N(t) = k) = e−λt
(λt)k

k!

and hence has the expected value E[N(t)] = λt.
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Exercise 47. Proof a kind of converse result. If (P0) and (P1) is given and
we know

∀s, t > 0 : P (N(t+ s)−N(s) = k) = e−λt
(λt)k

k!
,

then we already get (P2) and (P3).

Proof. We define Pm(t) := P (N(t) = m). Then we get from (P1) and (P2)

P0(t+ k) = P0(t) · P0(k)

and therefore we know

P0(t+ h)− P0(t)

h
=

1

h
P0(t) [P0(h)− 1]︸ ︷︷ ︸

−(1−P0(h))

= −P0(t)
P [N(h)−N(0) ≥ 1]

h
.

Pushing h to zero in this equation gives

P ′0(t) = −λP0(t)

and therefore
P0(t) = e−λtP0(0) = e−λt.

Furthermore we have

Pm(t+ h) =
m∑
k=0

Pk(t)Pm−k(h) = Pm(t)P0(h) + Pm−1(t)P1(h) + . . . ,

which we can divide by h to get

Pm(t+ h)− Pm(t)

h
= Pm(t)

P0(h)− 1

h︸ ︷︷ ︸
→λ

+Pm−1(t)
P1(h)

h
+ . . . .

In this equation we can estimate some expressions with (P3)

Pi(h)

h
=
P (N(h) ≥ i)− P (N(h) ≥ 2)

h

h↓0−−→

{
λ− 0 = λ for i = 1

0− 0 = 0 for i = 2, 3, . . . ,

and therefore it simplifies in the limit to

P ′m(t) = −λPm(t) + λPm−1(t).

To solve this, we define Qm(t) := eλtPm(t). Then we get

Q′m(t) = λeλtPm(t) + eλtP ′m(t) = λQm−1(t).

For the case m = 1 we get Q′1(t) = λQ0(t) = λ and therefore Q1(t) =
Q1(0) + λt = λt. Hence P1(t) = λte−λt, the remaining cases can be shown
by induction.
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4.3 Waiting times

Let N(t) be a Poisson process and define T1 as the time until the first jump.
Then we have

P (T1 > 0) = P (N(t) = 0) = P0(t) = e−λt =

∫ ∞
t

λe−λτdτ.

Using the Taylor expansion as an approximation, we get for small t

P (T1 ≤ t) = 1− P0(t) = 1− eλt = 1− (1− λt+
λ2t2

2
+ . . . ) = λt+ o(t).

The waiting time is therefore exponentially distributed with parameter λ.

Exercise 48. Show that the expected value of T1 is given by 1
λ

.

If we in addition define Tn as the time between the nth and the foregoing
jump of N(t), we conclude for the conditional probability

P (T2 > t|T1 = s) = P (no jumps in (s, s+ t]|T1 = s)

= P (N(t+ s)−N(s) = 0|T1 = s)

(P2)
= P (N(t)−N(0) = 0) = e−λt.

Thus T2 is also exponentially distributed.

Theorem 4.2. The random variables Tn are i.i.d. (independent, identically
distributed) with exponential distribution with expectation 1/λ.

This result can be interpreted as the memorylessness of the Poisson pro-
cess, which is also a way to characterize it. Let Tn be a sequence of indepen-
dent identically exponentially distributed random variables with expectation
1/λ given and define

Sn :=
n∑
k=1

Tk.

Furthermore define

N(t) =


0 for 0 ≤ t < S1

1 for S1 ≤ t < S2

...

n for Sn ≤ t < Sn+1

= max{n : Sn ≤ t},
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then N(t) is a Poisson process with parameter λ. We show this in two steps.
For the beginning

Exercise 49. Show that Sn is Γ−distributed with density function

fn(t) = λe−λt
(λt)n−1

(n− 1)!
.

With the result of the foregoing exercise we know

P (Sn ≤ t) = 1−
n−1∑
m=0

e−λt
(λt)m

m!

and hence

P (N(t) = n) = P (N(t) ≥ n)− P (N(t) ≥ n+ 1)

= P (Sn ≤ t)− P (Sn+1 ≤ t)

= e−λt
(λt)n

n!
.

4.4 Memorylessness of the exponential distribution

As mentioned at the end of the previous chapter, the exponential distribution
can be characterized by its memorylessness. If we look at the conditional
probability that the waiting time T is larger than some s + t if we already
waited for t, we see

P (T > s+ t|T > t) =
P (T > s+ t)

P (T > t)
=
e−λ(t+s)

e−λt
= e−λs = P (T > s),

so the distribution does not recognize what happened in the past. If we
rewrite the computation from above to the well-known functional equation

f(t+ s) = f(s)f(t).

One can show that the exponential distributions are the only functions which
satisfy this equation and are bounded at once.

Exercise 50. Show that the exponential distributions are besides the zero
function the only functions which satisfy{

f(t+ s) = f(t)f(s) ∀s, t > 0

0 ≤ f(t) ≤ 1 ∀t > 0.
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4.5 Waiting time paradox

The waiting time paradox describes a counter-intuitive day-to-day situation.
We try to get our bus to the university. Suppose buses arrive on average
every τ minutes. We arrive at a random time at the bus stop. We expect a
waiting time of τ/2 on the average. But if the buses arrive according to let
us say an exponential distribution, then our expected waiting time is in fact
even τ . Actually no matter what the distribution is, if it has mean τ and
standard deviation σ, then our average waiting time is given by

τ

2
+
σ2

2τ
,

which is clearly larger than what we would expect intuitively. A simple
explanation for this situation is, the longer the interval between two buses,
the more probable is it for us to arrive in this particular interval. Therefore
it is more probable to wait for some bus that is already late than to catch
one which is too early. To be more precise, if f(t) is the density function of
the length of the intervals between two consecutive buses, then the density
function of the random time interval till arrival of the next bus is not f(t) but
proportional to tf(t), since the probability that we arrive during a certain
interval is proportional to the length of this interval. Parts missing!!!

4.6 Conditional waiting time

Suppose we are at time t and N(t) = 1. Our next question is, when did this
jump occur? We calculate

P (T1 < s|N(t) = 1) =
P (T1 < s ∧N(t) = 1)

P (N(t) = 1)

=
P ( one jump in [0, s) ∧ no jump in [s, t))

λte−λt

(P1)
=

P ( one jump in [0, s)) · P ( no jump in [s, t))

λte−λt

=
λse−λs · e−λ(t−s)

λte−λt
=
s

t
.

Hence the appearance of the jump is uniformly distributed in the interval
[0, t]. If N(t) = n, we write as in the previous chapter Sn =

∑
k Tk and

choose
0 < t1 < t2 < · · · < tn < tn+1 = t
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and hi such that ti + hi < ti+1. Then an similar calculation as above gives

P (ti ≤ Si ≤ ti + hi for i = 1, 2, . . . , n|N(t) = n)

=
P ( one jump in [ti, ti + hi] for i = 1, . . . , n and no other jump )

P (N(t) = n)

(P1)
=

λh1e
−λh1 · · ·λhne−λhne−λ(t−h1−h2−···−hn)

e−λt (λt)n

n!

=
n!

tn
h1 · · ·hn.

This result is again independent of ti and therefore we have again a uniform
distribution.

4.7 Non-stationary Poisson process

We now look at some stochastic process with t ∈ [0,∞], N(t) ∈ N0 and some
intensity function (at least integrable) λ(t) ≥ 0. For this process, we keep
the postulates (P0) and (P1), but we omit (P2) and modify (P3) to

(P3)’

P (N(t+ h)−N(t) ≥ 1)
h↓0
= λ(t)h+ o(h)

P (N(t+ h)−N(t) ≥ 2)
h↓0
= o(h).

Then analogous to theorem 4.1 we get

P (N(t+ s)−N(t) = k) = e−m(t+s)+m(t) (m(t+ s)−m(t))k

k!

where m(t) is given by

m(t) =

∫ t

0

λ(s)ds.

Suppose we have a Poisson process with rate λ. We count events (e.g.
radioactive emissions), but we miss some of them. We count with probability
λ(t)
λ

with 0 ≤ λ(t) ≤ 1 at time t. In this case the number of counted events
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follows a non-stationary Poisson process with intensity function λ(t). We
only have to check (P3’) and consider

P ( Count an event in [t, t+ h])

= P ( there is an event in [t, t+ h]) · P ( the event is counted )

= (λh+ o(h))
λ(t)

λ
= λ(t)h+ o(h).

5 Markov processes

5.1 Continuous-time Markov process

As the title adumbrates, we will now look at processes with the Markov
property but will use continuous time. The state space in contrary remains
discrete. This type of process is also called Markov-jump-process. We start
with a family of random variables X(t) : Ω→ S with t ≥ 0 which fulfills for
every 0 ≤ t1 < t2 < · · · < tn and for every i1, i2, . . . , in−1, j ∈ S

P
(
X(tn) = j|

n−1∧
k=1

X(tk) = ik

)
= P

(
X(tn) = j|X(tn−1) = in−1

)
.

If we interpret tn as future and tn−1 as present, then the process is indepen-
dent from the past. Similar to the third section we write

pij(t1, t2) = P (X(t2) = j|X(t1) = i)

for i, j ∈ S and t1 < t2. But this definition is too much, since we want the
Markov process to be homogeneous, i.e.

pij(t1, t2) = pij(t2 − t1).

Hence the process does not recognize when two events take place but only
in which interval. Since pij(t) should still describe probabilities, we further
demand ∑

j∈S

pij(t) = 1

for all i ∈ S and for every time t ≥ 0. Our third demand on the process is
the so-called Chapman-Kolmogorov equation

pij(s+ t) =
∑
k∈S

pik(s)pkj(t) ∀s, t ≥ 0
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or in Matrix notation

P (s+ t) = P (s) · P (t) ∀s, t ≥ 0.

Therefore the Markov processes are represented by a semi group of stochastic
matrices with P (0) = Id. Our last assumption, justified by the practical
appearances of Markov processes, is that the map t 7→ P (t) is continuous.

One example for Markov processes is the Poisson process. We get

pij(t) = P (X(t+ s) = j|X(s) = i) =
P (X(s) = i,X(t+ s)−X(s) = j − i)

P (X(s) = i)

= P (X(t+ s)−X(s) = j − i) =

{
(λt)j−i

(j−i)! e
−λt for j ≥ i

0 for j < i.

5.2 Transition rates

We define the transition rates qij assuming the limit exists as

qij := lim
t↓0

pij(t) − pij(0)

t
.

The transition rates describe the rate at which the process moves between
two states. For finite state spaces we conclude∑

j

pij(t) = 1⇒ d

dt

∑
j

pij(t)|t=0 = 0,

where in the countable case we need suitable assumptions to interchange
derivation and summation. Therefore the row sums of the transition rate
matrix Q = (pij) are 0. Using qij as the linearization of pij, we get for h ↓ 0

pij(h) = δij + qijh+ o(h).

In the Poisson process, this gives

qij =


λ for j = i+ 1

0 for j > i+ 1 or j < i

−λ for j = i.
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5.3 Pure birth process

A pure birth process is a growth process where we assume no death (this
is in fact a generalization of Poisson process). We start with the transition
rates

qij =


λi for j = i+ 1

−λi for j = i

0 otherwise.

We write Pn(t) = P (X(t) = n) and get

Pn(t+ h) = Pn(t)[1− λnh] + λn−1hPn−1(t) + o(h).

Dividing this by h and going over to the limit gives the differential equation

P ′n(t) = lim
h↓0

Pn(t+ h) + Pn(t)

h
= −λnPn(t) + λn−1Pn−1(t)

and for the special case n = 0

P ′0(t) = −λ0P0(t).

Now this can be solved recursively starting with P0(t) = P0(0)e−λ0t. This
solution is unique for every initial condition Pn(0). A first example is the
so-called Yule process, found by George Udny Yule in 1924. The random
variable X(t) counts the number of individuals in a population at time t,
where each individual can split into two with rate λ. Hence the growth in a
short time interval of length h is given by λh + o(h). The individuals split
independently from each other, therefore λn = nλ. If we solve the system of
differential equations in the case Pn(0) = δni, we get the solution

Pn(t) =

(
n− 1

n− i

)
e−iλt(1− e−λt)n−i,

which is a negative binomial distribution.

Exercise 51. Proof that the given solution of the Yule process example is
correct (for example by induction).

78



5.4 Divergent birth process

Again we grow with rate λn from n to n + 1. Then the following statement
holds.

Theorem 5.1. The map Pn(t) remains a probability distribution for every
positive time t if and only if the sum of the reciprocal growth rates is infinite,
i.e.

∞∑
n=0

Pn(t) = 1 ∀t ≥ 0 ⇔
∞∑
n=0

1

λn
=∞.

Remark that otherwise there would be some t such that the sum of prob-
abilities is less than 1. Therefore with probability 1−

∑∞
n=0 Pn(t) the popu-

lation would have reached infinity.

Proof. We define

Sh(t) := P0(t) + P1(t) + · · ·+ Ph(t).

Since the map h 7→ Sh(t) is increasing and bounded we can define

µ(t) := lim
h→∞

(1− Sh(t)) = 1−
∞∑
n=0

Pn(t).

Now we remember the differential equations from the previous chapter with
initial condition Pn(0) = δni{

P ′n(t) = −λnPn(t) + λn−1Pn−1(t)

P ′0(t) = −λ0P0

and sum them up from n = 0 to k. Then we have

S ′k(t) = −λkPk

which we integrate from 0 to t to get

Sk(t)− Sk(0) = −λk
∫ t

0

P (τ)dτ.

Now we have for k ≥ i

µ(t) ≤ 1− Sk(t) = λk

∫ t

0

Pk(τ)dτ ≤ 1,
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which we divide by λk to get

µ(t)

λk
≤
∫ t

0

Pk(τ)dτ ≤ 1

λk
.

Summing those inequalities up from k = i to n we get

µ(t)
[ 1

λi
+ · · ·+ 1

λn

]
≤
∫ t

0

Sn(τ)dτ ≤ 1

λi
+ · · ·+ 1

λn
.

Remark that we added a few terms in the middle part of the inequality, but
they are 0 because of the initial condition anyway. Now suppose Sn(t) tends
to 1 for N to infinity for all t. Then the integral∫ t

0

Sn(τ)dτ

would tend to t by monotone convergence theorem and therefore we get

t ≤ 1

λi
+ · · ·+ 1

λn
∀n

for an arbitrary t, hence the right side is infinite. On the other hand, if the
sum of the reciprocal growth rates is infinite we get

µ(t)
[ 1

λi
+ · · ·+ 1

λn

]
≤ t ∀n

and therefore µ(t) has to be 0 for every fixed t. But this means

∞∑
k=0

Pk(t) = 1

for every t.

What is the intuitive interpretation of this theorem? If we are in some
state n, then we move to the next state with probability λn. Since the
expected time to stay in some fixed state n is exponentially distributed, it
is given by 1

λn
, and therefore the sum

∑n
k=0

1
λk

can be interpreted as the
expected time spent at states 0 to n. An example for an explosive process
is given by the growth rate λn = n2λ, which is similar to the deterministic
growth process given by the differential equation x′(t) = λx(t)2.
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5.5 The Kolmogorov differential equations

If we use the Markov property P (s+ t) = P (s)P (t) to find the derivative of
P , we get

P ′(t) = lim
h↓0

P (t+ h)− P (t)

h
= lim

h↓0

P (h)− Id

h
P (t) = QP (t).

Here we used P (t+ h) = P (h+ t) = P (h)P (t). The equation P ′(t) = QP (t)
is called Kolmogorov backward equation. Without the matrix form, it
is given entry-wise by

p′ij(t) =
∑
k∈S

qikpkj(t).

If we use the Markov property the other way round, we get

P ′(t) = lim
h↓0

P (t+ h)− P (t)

h
= P (t) lim

h↓0

P (h)− Id

h
= P (t)Q

or again entry-wise

p′ij(t) =
∑
k∈S

pik(t)qkj.

As one can expect, this equation is called Kolmogorov forward equation.
The derivation of P can be done without problems for finite state spaces,
remember that for infinite state spaces, we need more suitable conditions.
For the finite case, the unique solution is given by P (t) = eQt.

5.6 Stationary distributions

In this section we will show a very useful condition for stationary distribu-
tions. But first we have to define the concept of stationary distributions for
continuous time.

Definition 5.1.
We call u ∈ 4(S) a stationary or invariant probability distribution of P (t)
if uP (t) = u holds for all t ≥ 0.

Theorem 5.2. A vector u is a stationary distribution of P (t) if and only if
uQ = 0 holds, where Q is the transition rate matrix of P (t).
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Proof. Assume u is a stationary probability distribution. If we differentiate
u = uP (t), we get with Kolmogorov’s forward equation

0 =
d

dt
(uP (t)) = u

d

dt
P (t) = uP (t)Q = uQ.

For the other direction, we use a similar trick. Since u d
dt
P (t) = uQP (t) = 0,

we see that P (t) has to be constant, and therefore we get

uP (t) = uP (0) = u.

5.7 Birth-death process

In this section we generalize the concept of birth-death chains for continuous
time, the state space is again S = {0, 1, 2, . . . } and the associated matrix is
given by

Q =


−λ0 λ0 0 0 0 . . .
µ1 −µ1 − λ1 λ1 0 0 . . .
0 µ2 −µ2 − λ2 λ2 0 . . .
...

. . . . . . . . . . . .

 .

Therefore the transition probabilities are given by

pi,i+1(h) = λih+ o(h) for i ≥ 0

pi,i−1(h) = µih+ o(h) for i ≥ 1

pi,i(h) = 1− (λi + µi)h+ o(h) for i ≥ 0.

Now we look at the Kolmogorov backward equation assuming the initial
condition pij(0) = δij and all λi and µi positive. For i = 0 we get

p′0,j(t) = −λ0p0,j(t) + λ0p1,j(t)

and for any i > 0

p′i,j(t) = µipi−1,j(t)− (µi + λi)pi,j(t) + λipi+1,j(t).
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For now there is no clear way to solve this system. For the forward equation
we have

p′i,0(t) = −λ0pi,0(t) + µ1pi,1(t) for j = 0 and

p′i,j(t) = λj−1pi,j−1(t)− (µj + λj)pi,j(t) + µj+1pi,j+1(t) for j ≥ 1.

This could be solvable of µi = 0 for all i, i.e. there is no death. Forgetting
about the first index (it does not matter in the system above), we get for
pk(t) = P (X(t) = k) the recursively solvable system

p′0 = −λ0p0 + µ1p1

p′j = λj−1pj−1 − (λj + µj)pj + µj+1pj+1

pk(0) = δki

which we already considered in section 5.3.

Exercise 52. Solve the pure death process (λi = 0) with initial value pN(0) =
1, given by the equations{

p′j = −µjpj + µj+1pj+1

p′N = µNpN .

It is not hard to find the stationary distribution for the birth-death pro-
cess. Using the theorem from the last chapter, we try to find the solution
for the forward equations with p′j = 0 for all j. We get for the first equation

p1 = λ0
µ1
p2 and similar as for the chain in section 3.7, we get by induction

pn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
p0 := πnp0.

If
∑∞

k0
πk <∞ holds, then there exists a stationary distribution p ∈ 4(S).

5.8 Linear growth with immigration

In this section we consider an example for a birth-death process with birth
rate λn = nλ+ a, where a is an immigration rate so that 0 is not absorbing
in the model. The death rate is given by µn = nµ. With the notation from
the previous chapter we get

πn =
a(λ+ a)(2λ+ a) · · · ((n− 1)λ+ a)

µnn!
.
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The quotient criterion gives

πn+1

πn
=

nλ+ a

(n− 1)µ

n→∞−−−→ λ

µ
,

so the sum over all πi converges if and only if λ is strictly smaller than µ. In
this case there exists a stationary distribution.

Exercise 53. Compute the expected value of individuals by looking at the
derivative

M ′(t) =
∞∑
k=0

kp′k(t)

and deduce the differential equation

M ′(t) = a+ (λ− µ)M(t).

Solve this equation and look at the limit cases for µ > λ and µ ≤ λ if t tends
to infinity.

5.9 The Moran process

As in the Moran chain, we look at a population with N individuals, each
of type a or A. The random variable X(t) counts the number of type a
individuals. The state changes in the time interval (t, t+h) for each individual
with rate λ. For some t with X(t) = j we choose an a individual with
probability j

N
and an A individual with probability 1 − j

N
. Furthermore

we add a mutation rate, i.e. a chosen a individual mutates to type A with
probability γ1 and a chosen A individual mutates to type a with probability
γ2. Now we get for the probability that some a replaces an A individual

(1− j

N︸ ︷︷ ︸)A selected

( j
N

(1− γ1) + (1− j

N
)γ2

)
︸ ︷︷ ︸

replaced by a

.

The Moran process can be considered as a birth-death process, where the
rates are given by

λj = λ(1− j

N
)
( j
N

(1− γ1) + (1− j

N
)γ2

)
µj = λ

j

N

(
(1− j

N
)(1− γ2) +

j

N
γ1

)
.
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If we want to find a stationary distribution we have to look at the πk as in
the foregoing section. Since these terms are pretty hard to compute, we only
try to solve the limit case as N → ∞ with the additional condition that
Nγi tends to some small εi > 0. We look at the random variable 1

N
X(t)

with state space S = {0, 1/n, 2/n, . . . , 1}. As we evaluate πk as N → ∞,
the fraction k/N should go to some x ∈ [0, 1]. Taking the logarithm if the
product, we get

log πk =
k−1∑
i=0

log λi −
k∑
i=1

log µi.

Rewriting the terms of λj and µj we get

λj = λ
j

N
(1− j

N
)
(

1− γ1 + (
N

j
− 1)γ2

)
= λ

j

N
(1− j

N
)(1− γ1 − γ2)

(
1 +

Nγ2

(1− γ1 − γ2)j

)
:= λ

j

N
(1− j

N
)(1− γ1 − γ2)

(
1 +

a

j

)
and similar

µj = λ
j

N
(1− j

N
)(1− γ1 − γ2)

(
1 +

Nγ1

(1− γ1 − γ2)(N − j)

)
= λ

j

N
(1− j

N
)(1− γ1 − γ2)

(
1 +

b

N − j

)
.

Therefore the representation for πk simplifies to

log πk = log λγ2︸ ︷︷ ︸
I

+
k−1∑
j=1

log(1 +
a

j︸ ︷︷ ︸
II

−
k∑
j=1

log
b

N − j︸ ︷︷ ︸
III

− log λ
k(N − k)

N2
(1− γ1 − γ2)︸ ︷︷ ︸

IV

.

Now calculating the difference I − IV we get log aN
k(N−k)

and for the parts

II and III we use the Taylor expansion of log(1 + x)

II =
k−1∑
j=1

log(1 +
a

j
) = a

k−1∑
j=1

1

j
+ c′k ≈ a logk +ck,
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where c′k and ck are converging sequences. Similar we get

III =
k∑
j=1

log(1 +
b

N − j
)

= b

k∑
j=1

1

N − j
+ d′k = b

( 1

N − 1
+

1

N − 2
+ · · ·+ 1

N − k

)
+ d′k

= b(logN − log(N − k)) + dk

and therefore

log πk = a log k − b log
N

N − k
+ log

aN

k(N − k)
+ ck − dk.

Now for the limit N → ∞ we have a → ε2 and b → ε1 and hence with
Ck = eck−dk we conclude

πk = Ckak
a−1(1− k

N
)b−1 = CkaN

a−1
( k
N

)a−1(
1− k

N

)b−1

.

Therefore we have

πk
Na−1

N→∞−−−→ ε2Ckx
ε2−1(1− x)ε1−1

and for the sum over all entries of π we get

1

Na

N−1∑
k=1

πk =
a

N

N−1∑
k=1

Ck

( k
N

)a−1(
1− k

N

)b−1

︸ ︷︷ ︸
Riemann sum

N→∞−−−→ aC

∫ 1

0

xε2−1(1−x)ε1−1dx,

which is also known as Euler’s beta integral.

5.10 Queuing (waiting lines)

We look at the random arrival of custommers at some type of counter (a
taxi stand, a post office,. . . ) and are interested in the waiting time for being
served. The random variable X(t) counts the length of the queue. We
assume λi = λ and µi = µ, so neither the arrival nor the departure depends
on the length of the queue. The handling time for one customer shall be
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exponentially distributed with mean 1/µ. If λ is smaller than µ, there exists
a stationary distribution. We have

πn =
(λ
µ

)n
,

so the number of customers waiting, given by

pn =
πn∑
i πi

=
(

1− λ

µ

)(λ
µ

)n
is geometrically distributed.

Exercise 54. As in exercise 54 find a differential equation for the mean
M(t) and solve it.

Exercise 55. Assume λ = µ and compute Pn(t) = P (X(t) = n).

In our next example we consider an infinite server queue where each
customer is served immediately. The rates are given by λn = λ and µn = nµ.
Looking for the stationary distribution we get πn = λn

n!µn
and if we normalize

it we have

pn =

λn

n!µn∑∞
k=0

λk

k!µk

=
1

n!

(λ
µ

)n
e−

λ
µ ,

which is a Poisson distribution.

Exercise 56. Show that the mean for the infinite server queue fulfills the
differential equation M ′(t) = λ− µM(t) and solve it.

If we assume we have a fixed number of N servers, our rate is given by
λn = λ and

µn =

{
nµ if n ≤ N

Nµ if n ≥ N.

Therefore we get

πn =

{
λn

n!µn
if n ≤ N
λn

N !Nn−Nµn
if n ≤ N.

Now the quotient criterion tells us that the sum over all πk is finite if and
only if the quotient λ

Nµ
is smaller than 1, i.e.

N >
λ

µ
.
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Only in this case there exists an stationary distribution.
In our last example we look at N machines working independently. With

rate λ one of them brakes down. The repair time is exponentially distributed
with parameter µ. For the number of broken machines we have λn = (N−n)λ
since N − n working machines remain. Furthermore we have

µn =

{
0 if n = 0

µ else.

The stationary distribution is now given by

πn =
λ0 · · ·λn−1

µ1 · · ·µn
=

λ0 · · ·λN−1

λn · · ·λN−1µ1 · · ·µn
=

N !λN

(N − n)!λN−nµn
=

N !λn

(N − n)!µn
.

The sum over the πn is given by

N∑
n=0

πn = N !
N∑
k=0

1

(N − n)!

(λ
µ

)n
= N !

(λ
µ

)N N∑
n=0

1

(N − n)!

(λ
µ

)n−N
= N !

(λ
µ

)N N∑
k=0

1

k!

(µ
λ

)k
.

At least the probability that all machines break down gives a nice result
known as Erlang’s loss formula

pN =
1

1 + µ
λ

+ 1
2!

(µ
λ
)2 + . . .

.

5.11 Irreducible Markov process with finite state space

In this section we want to show a analogue statement to the ergodic theorem
3.1 for finite Markov chains but now with continuous time. Let Q = (qij) be
an N ×N matrix of transition rates with

(a) all qij non-negative if i 6= j and

(b) all rows sum up to 0.

Definition 5.2.
The matrix Q is called irreducible if for all i and j there exists some k and
i1, i2, . . . , ik−1 all different such that

qi,i1qi1,i2 · · · qik−1,j > 0.
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Theorem 5.3. Let Q be an irreducible N ×N matrix fulfilling (a) and (b).
Then

1. P (t) = eQt > 0 for t > 0 is a positive semigroup of stochastic matrices.

2. There is a unique invariant probability distribution u ∈ 4N with ui > 0
for all i and

∑
ui = 1 such that uTQ = 0.

3. The probability pij(t) tends to uj for t→∞ for all i and j.

Remark that in contrast to the discrete time case we have no problems
with periodic behavior in continuous time.

Proof. 1.) Because of Q1 = 0 we have

P (t)1 = eQt1 = (Id +Qt+
1

2!
Q2t2 + . . . )1 = Id1 +Q1t+

1

2!
Q21t2 + · · · = 1,

therefore the row sums of P (t) are 1. Furthermore we have

P (t+ s) = eQ(t+s) = eQteQs = P (t)P (s).

To show that the entries are positive let c be a lower bound such that qi,i > −c
for all i . Hence Q+ cId is positive. Now

P (t) = eQt = e−cte(Q+cId)t = e−ct
∞∑
n=0

(Q+ cId)ntn

n!
≥ 0.

In addition we know that since Q is irreducible, Q+cId is just as well (because
the diagonal entries are not used in the definition). Therefore we know for
every i and j there is some n such that (Q+ cId)nij is positive.
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