
VO Special Topics in Stochastics: Symbolic
Dynamic (2019W.25050.1)

Henk Bruin

November 18, 2019



2



Contents

0.1 Notation and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.1.1 Symbol sequences . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.1.2 Subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.1.3 Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 General properties of subshifts 11
1.1 Word-complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Word-frequencies and shift-invariant measures . . . . . . . . . . . . . 13
1.3 Basic notions from dynamical systems . . . . . . . . . . . . . . . . . 15
1.4 Symbolic itineraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Minimal subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Topological entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.1 Entropy of subshifts . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 Sliding block codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Subshifts of positive entropy 29
2.1 Subshifts of finite type . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Definition of SFTs and transition matrices and graphs . . . . 29
2.1.2 Topological entropy for SFTs . . . . . . . . . . . . . . . . . . 33
2.1.3 Vertex-splitting and conjugacies between SFTs: . . . . . . . . 35

2.2 Sofic subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 β-shifts and β-expansions . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Subshifts of zero entropy 49
3.1 Linear recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Substitution shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Recognizability . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 S-adic transformations . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Sturmian subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Rotational sequences . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Balanced words . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Sturmian sequences . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Toeplitz shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3



4 CONTENTS

3.4.1 Regular Toeplitz sequences . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Adding machines . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Methods from Ergodic Theory 77
4.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Birkhoff’s Ergodic Theorem . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Unique ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Automata and Coding 83
5.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Finite automata . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 The Chomsky hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Regular grammars . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Context-free grammars . . . . . . . . . . . . . . . . . . . . . . 88
5.2.3 Context-sensitive grammars . . . . . . . . . . . . . . . . . . . 91
5.2.4 Recursively enumerable grammars . . . . . . . . . . . . . . . . 92



0.1. NOTATION AND MOTIVATION 5

0.1 Notation and motivation

0.1.1 Symbol sequences

Let A be a finite or countable alphabet of letters. Usually A = {0, . . . , N − 1} or
{0, 1, 2, . . . } but we could use other letters and symbols too. We are interested in the
space of infinite or bi-infinite sequences of letters:

Σ = AN or Z = {x = (xi)i∈N or Z : xi ∈ A}.

Such symbol strings find applications in data-transmission and storage, linguistics,
theoretical computer science and also dynamical systems (symbolic dynamics). A
finite string of letters, say x1 . . . xninAn is called a word or block.

Sets of the form

[ek . . . el] = {x ∈ Σ : xi = ei for k ≤ i ≤ l}

are called cylinder sets1 . Intersections of cylinder sets are again cylinder sets. In
the product topology on Σ, open sets are those sets that can be written as arbitrary
unions of cylinder sets, i.e., the cylinder sets are a basis of the topology.

Note that a cylinder set is both open and closed (because it is the complement of
the union of complementary cylinders). Sets that are both open and closed are called
clopen.

Exercise 0.1.1. Are there open sets in product topology on Σ that are not closed?

Shift spaces with product topology are metrizable. One of the usual2 metrics that
generates product topology is

d(x, y) = 2−m for m = sup{n ≥ 0 : xi = yi for all |i| < n},

so in particular d(x, y) = 1 if x0 6= y0, and diam(Σ) = 1.

Exercise 0.1.2. Show that Σ with product topology is compact if and only if #A <∞.

Exercise 0.1.3. Let xk be a sequence of sequences. Show that xk → x in product
topology if and only if xk stabilizes on every finite window, i.e., for all m < n,
xkmx

k
m+1 . . . x

k
n is eventually constant.

1In greater generality, if X is a topological space and n ∈ N∪{∞}, every set of the form A×Xn−k

for A ⊂ Xk is called a cylinder set. If X = R, n = 3 and A is a circle in R2, then A×R is indeed a
geometrical cylinder, stretching infinitely far in the third direction.

2Other metrics are d′(x, y) = 1
m or d′(x, y) =

∑
i |xi− yi|2−|i|, but they are equivalent to d(x, y),

not in the sense that there is some C such that 1
C d(x, y) ≤ d′(x, y) ≤ Cd(x, y) for all x, y ∈ Sigma,

but in the sense that the embedding i : (Σ, d′) → (Σ, d) as well as its inverse i−1 are uniformly
continuous. This means that they generate the same topology.
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Lemma 0.1.4. If 2 ≤ #A < ∞, then Σ is a Cantor set (i.e., compact, without
isolated points and its connected components are points).

Proof. Set A = {0, 1, . . . , N − 1} with discrete topology. Clearly A is compact,
because finite. Compactness of Σ then follows from Tychonov’s Theorem. No isolated
point x is isolated, because, for arbitrary x ∈ Σ, the sequence xn defined as xni = xi if
i 6= n and xnn = N −1−xn, converges to x. Finally, if x 6= y, say n = min{|i| : xi 6= y,
then Z := {x′ ∈ X : xi = x′i for all |i| ≤ n and X \ Z are two clopen disjoint
nonempty sets whose union is X. Thus x and y cannot belong to the same connected
component.

0.1.2 Subshifts

The shift map or left-shift σ : Σ→ Σ, defined as

σ(x)i = xi+1, i ∈ N or Z.

is invertible on AZ (with inverse σ−1(x)i = xi−1) but non-invertible on AN.

Exercise 0.1.5. Show that the shift is continuous, and in fact uniformly continuous
even if #A =∞.

Exercise 0.1.6. Let A = {1, 2, . . . , a} for some a ∈ N. Show that the number of
periodic sequences x ∈ AZ of minimal period n equals

Per(n) =
∑

1≤d≤n,d|n

µ(
n

d
)ad,

where µ denote the Möbius function, see (??). In particular, Per(n) = an − a if n is
a prime.

Definition 0.1.7. The orbit of x ∈ X is the set

orb(x) =

{
{σn(x) : n ∈ Z} if σ is invertible;

{σn(x) : n ≥ 0} if σ is non-invertible.

The set orb+(x) = {σn(x) : n ≥ 0} is the forward orbit of x. This is of use if σ
is invertible; if σ is non-invertible, then orb+(x) = orb(x). We call x recurrent if

x ∈ orb+(σ(x)). The ω-limit set of x is the set of accumulation points of its forward
orbit, or in formula

ω(x) =
⋂
n∈N

⋃
m≥n

σm(x) = {y ∈ X : ∃ ni →∞, lim
i→∞

σni(x) = y}.

Analogously for invertible shifts, the α-limit set of x is the set of accumulation points
of its backward orbit of x:

α(x) =
⋂
n∈N

⋃
m≤−n

σm(x) = {y ∈ X : ∃ ni →∞, lim
i→∞

σ−ni(x) = y}.
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Exercise 0.1.8. Let σ : Σ → Σ be invertible. Is there a difference between x ∈
orb(x) \ {x} and x ∈ orb+(x) \ {x}?

Definition 0.1.9. A subset X ⊂ Σ is a subshift if it is closed (in product topology)
and strongly shift-invariant, i.e., σ(X) = X. If σ is invertible, then we also stipulate
that σ−1(X) = X.

In the following examples, we use A = {0, 1} unless stated otherwise.

Example 0.1.10. The set X = {x ∈ Σ : xi = 1⇒ xi+1 = 0} is called the Fibonacci
shift3. It disallows sequences with two consecutive 1s. This Fibonacci shift is an
example of a subshift of finite type (SFT) , see Section 2.1.

Example 0.1.11. X is a collection of labels of infinite paths through the graph in
Figure 1 (left). Labels are given to the vertices of the graph, and no label is repeated.

Example 0.1.12. X is a collection of labels of infinite paths through the graph in
Figure 1 (right). Labels are given to the arrows of the graph, and labels can be repeated
(different arrows with the same label can occur).

10

1

0

0

Figure 1: Fibonacci transition graphs: vertex-labeled and edge-labeled.

Example 0.1.13. Xeven ⊂ {0, 1}N is the collection of infinite sequences in which the
1s appear only in blocks of even length, and also 1111 · · · ∈ X. We call Xeven the
even shift. Similarly, the odd shift Xodd is the collection of infinite sequences in
which the 0s appear only in blocks of odd length, and also 0000 · · · ∈ X, see Figure 2.

Example 0.1.14. Let S be a non-empty subset of N. Let X ⊂ {0, 1}Z be the collection
of sequences in which the appearance of two consecutive 1s occur always s positions
apart for some s ∈ S. Hence, sequences in X have the form

x = . . . 10s−1−110s0−110s1−110s2−11 . . .

where si ∈ S for each i ∈ Z. This space is called the S-gap shift, see Section ??.

3Warning: there is also a Fibonacci substitution shift = Fibonacci Sturmian shift (see Exam-
ple 3.1.4), which is different from this one
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Xodd ∩Xeven

Figure 2: Edge-labeled graphs for Xodd, Xeven and Xodd ∩Xeven.

Example 0.1.15. X is the closure of the collection of symbolic itineraries of a circle
rotation R : S1 → S1, see Figure 3. That is, if y ∈ S1 and Rn(y) ∈ [0, α) then we
write xn = 0. Otherwise xn = 1. The resulting shift is called a Sturmian shift, see
Definition 3.3.14.

Example 0.1.16. X is the closure of the collection of symbolic trajectories of β-
transformation Tβ : [0, 1] → [0, 1], Tβ(x) = βx (mod 1), see Figure 3. These are the
β-shifts, see Section 2.3.

0 1 0 1

α

α 1/β

Figure 3: Symbolic dynamics for a circle rotation Rα and a β-transformation Tβ

Example 0.1.17. The alphabet A consists of brackets (, ), [, ] and L(X) (see Defini-
tion 1.1.1 below) consists of all words of pairs of brackets that are properly paired and
unlinked. So [ ( [ ] ) ] and ( ( ) [ ] ) belong to L(X), but [ ( ] and ( [ ) ] do not. This
example is called the Dyck shift, see Section ??.

0.1.3 Turing machines

A Turing machine is a formal description of a simple type of computer, named after
the British mathematician Alan Turing (1912-1954). He used this in theoretic papers
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to explore the limits what is computable by computers and what is not. For us, the
size of a Turing machine that can recognize words in a language L(X), or reject words
that don’t belong to L(X), is a measure for how complicated a subshift is. In fact,
a subshift is called regularly enumerable in the Chomsky hierarchy if its language
can be recognized by a Turing machine.

Figure 4: Alan Turing (1912-1954) and his machine.

A Turing machine has the following components:

• A tape on which the input is written as a word in the alphabet {0, 1}.

• A reading device, that can read a symbol at one position on the tape at the
time. It can also erase the symbol and write a new one, and it can move to the
next or previous position on the tape.

• A finite collection of states S1, . . . , SN , so N is the size of the Turing machine.
Each state comes with a short list of instructions:

– read the symbol;

– replace the symbol or not;

– move to the left or right position;

– move to another (or the same) state.

One state, say S1, is the initial state. One (or several) states are halting
states. When one of these is reached, the machine stops.

Example 0.1.18. The following Turing machine rejects tape inputs that do not belong
to the language of the Fibonacci shift. Let s be the symbol read at the current position
of the tape, starting at the first position. We describe the states:

S1: If s = 0, move to the right and go to State S1. If s = 1, move to the right and
go to State S2.

S2: If s = 0, move to the right and go to State S1. If s = 1, go to State S3.
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S1 S2 S3

s = 1
move right

s = 0
move right

s = 0
move right

s = 1
move right

Figure 5: A Turing machine accepting words from the Fibonacci shift.

S3: Halt. The word is rejected, see Figure 5.

Exercise 0.1.19. Design a Turing machine that accepts the word in the even shift
(Example 0.1.13).

Exercise 0.1.20. Suppose two positive integers m and n are coded on a tape by first
putting m ones, then a zero, then n ones, and then infinitely many zeros. Design
Turing machines that compute m+ n, |m− n| and mn so that the outcome is a tape
with a single block of ones of that particular length, and zeros otherwise.



Chapter 1

General properties of subshifts

1.1 Word-complexity

Any finite contiguous block of letters is called a word; an n-word is a word of n letters
and ε is the empty word (of length 0). We use the notation An = {n-words in Σ}
and

A∗ = {words of any finite length in Σ including the empty word}.

Given a subshift X, a finite word u appearing in some x ∈ X is sometimes called a
factor1 of x. If u is concatenated as u = vw, then v is a prefix and w a suffix of u.

Definition 1.1.1. The collection

L(X) = {words of any finite length in X}

is called the language of X. We use the notation Ln(X) for all the length n words
in the language.

Definition 1.1.2. The function p : N→ N defined by

p(n) = #{n-words in L(X)}

is called the word-complexity of X.

Exercise 1.1.3. Show that for the Fibonacci shift of Example 0.1.10, p(n) = Fn+1,
where F1, F2, F3, F4, F5, · · · = 1, 2, 3, 5, 8, . . . are the Fibonacci numbers.

If p(n) increases exponentially fast, we call the exponential growth rate htop(σ) =
limn

1
n

log p(n) the entropy of the subshift. For subshifts with zero entropy, the poly-

nomial growth rate limn→∞
log p(n)

logn
can take any value in [1,∞], and also be zero

1We will rather not use this word, because of possible confusion with the factor of a subshift (=
image under a sliding block code)

11
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(if (X, σ) is periodic). We say that (X, σ) is of sublinear complexity if there is
a constant C such that p(n) ≤ Cn, i.e., the polynomial growth rate is 1. Sturmian
sequence (see Section 3.3) have p(n) = n + 1. For one-dimensional shifts, the mini-
mal complexity of interest is p(n) = n + 1, because if p(n) ≤ n for some n, then X
consists of a single periodic orbit. This was proved by Morse & Hedlund [185], see
Proposition 3.3.2.

Example 1.1.4. The sequences

x = . . . 000.10000 . . . and y = 00001111.00000 . . .

both have p(n) = n+ 1. They are not recurrent, but asymptotically fixed for n→ ±∞
Ormes & Pavlov [188] showed that for non-recurrent shifts that are not asymptotically
periodic, lim infn p(n)/n ≥ 3

2
, and that this bound is sharp, as is demonstrated by

z = 0000.10n010n110n210n31 . . .

for the increasing sequence of gaps (ni)i→∞ is carefully chosen. See [113] for further
results along this line.

Definition 1.1.5. A map T : [0, 1)→ [0, 1) is called an interval exchange trans-
formation (IET) if there is a finite partition into half-open intervals Iki=1 such that
T |Ii is a translation, and T is invertible. That is, the collection {Ii}ki=1 is put into
[0, 1) after a permutation.

Instead of [0, 1), we can define IETs on the circle S1. Every IETs on the intervals
thus becomes a rotation. Every IET preserves Lebesgue measure.

Symbolic spaces associated with interval exchanges transformations on k intervals
have p(n) = (k− 1)n+ 1. The Chacon substitution shift (see Example ??) has word-
complexity p(n) = 2n + 1, see [119]. For many subshift, the polynomial complexity
can be bounded, but are hard to compute exactly; often limn p(n)/n doesn’t exists
(and if limn p(n)/n, the the limit cannot be strictly between 1 and 2, as was shown
in [144]), but lim inf p(n)/n and lim sup p(n)/n can be computed. For instance, the
word-complexity of the Thue-Morse shift is

p(n) =

{
3 · 2m + 4r if 0 ≤ r < 2m−1,

4 · 2m + 2r if 2m−1 ≤ r < 2m,

where n = 2m+r+1. In [67], the word-complexity of certain (Fibonacci-like) unimodal
restrictions to the critical ω-limit set are computed.

All substitution shifts, in fact all linearly recurrent have sublinear complexity, see
Theorem 3.1.6.

Subshift with polynomial growth rate d > 1 are less studied. They emerge for
example as symbolic spaces for polygonal billiards on d-dimensional billiard tables.
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There is an analogous conjecture2 for shifts on Z2: If px(m,n) is the number
of different m × n-blocks in the two-dimensional infinite word X ⊂ {0, 1}Z2

, and
p(m,n) ≤ mn for some mn, then x is periodic, i.e., there is an integer vector ~v such
that x~ı = x~ı+~v for all~ı ∈ Z2. Epifanio et al. [116] showed

px(m,n) ≤ cmn⇒ x is periodic (1.1)

for c = 1/144. This was later improved to c = 1/16 in [200]. Sander & Tijdeman
[212] proved (1.1) for m = 2. A similar conjecture on Zd for d ≥ 3 is false, as shown
in [226] and [210].

1.2 Word-frequencies and shift-invariant measures

In addition to the number of words, we can also study the frequency of words w
appearing inside infinite sequences:

fw(x) = lim
n→∞

1

n
#{0 ≤ i < n : xi . . . xi+|w|−1 = w}. (1.2)

The question whether the limit exists and to what extent it depends on x is answer
by the Birkhoff’s Ergodic Theorem 4.2.3. For this we need a measure µ that assigns
a number to every cylinder set, according to the rules

(i) 0 ≤ µ(Z) ≤ 1 for every cylinder Z

(ii) µ(∅) = 0, µ(X) = 1;

(iii) µ(
⋃
i

Zi) =
∑
i

(Zi) for all disjoint cylinders Z1, Z2, . . .

The Kolmogorov Extension Theorem (see Remark 1.2.1) implies that µ can be defined
uniquely to every set in the σ-algebra B generated by the cylinder sets. In particular,
{x ∈ X : fw(x) = α} ∈ B for every word w and α ∈ [0, 1].

Remark 1.2.1. The Kolmogorov Extension Theorem (see e.g. [20, Section 21.10]) is
about extending probability measures µn on finite Cartesian products Xn to a measure
on the infinite product X∞. That is, if µn+1(A × X) = µn(A) for every n ∈ N and
µn-measurable set A ⊂ Xn, then there is a unique probability measure µ on Xn such
that µ(A×X∞) = µn(A) for every n ∈ N and µn-measurable set A ⊂ Xn.

This carries over to indicator sets: Linear combinations of sets 1A with A ⊂ Xn,
n ∈ N, lie dense in L1(µ), i.e., for every f ∈ L1(µ) and ε > 0 there is N and are
finitely many sets Ak ⊂ XN and ak ∈ R such that

∫
X∞
|f −

∑
k ak1Ak | dµ < ε.

2due to Maurice Nivat, invited talk at the International Colloquium on Automata, Languages,
and Programming, Bologna 1987
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Definition 1.2.2. A measure µ on subshift (X, σ) is called invariant if µ(B) =
µ(σ−1B) for all B ∈ B.

A measure is called ergodic if σ−1(A) = A (mod µ) for some A ∈ B implies that
µ(A) = 0 or µ(Ac) = 0. That is, the only shift-invariant sets are nullsets or the whole
space up to a nullset.

Example 1.2.3. The full shift {0, 1}N encodes the outcomes of a sequence of coin-
flips, say xi = 0 if the i-th gives a “head”, and xi = 0 if the i-th gives a “tail”.
If the coin has a bias, say “head” come up with probability p > 1

2
and “tail” with

probability q = 1−p < 1
2
, then the probability of a word can be computed by multiplying

probabilities, e.g.
P(x1x2x3x4 = 0010) = p3q

The corresponding measure µp is called the (p, q)-Bernoulli measure.

Definition 1.2.4. Let A = {1, 2, . . . , d} and X = AN or Z be the full shift space. Let
p = (p1, . . . , pd) be a probability vector, i.e., pi ≥ 0 and p1 + · · · + pd = 1. The
product measure that assigns to every cylinder set

µp([xk . . . xl]) = pxkpxk+1
· · · pxl and p(X) = 1

is called the p-Bernoulli measure. The measure can be extended to the Borel σ-
algebra by means of the Kolmogorov Extension Theorem. Each p-Bernoulli measure
is shift-invariant.

The Birkhoff Ergodic Theorem (see Theorem 4.2.3) implies that if µ is an ergodic
shift-invariant probability measure, then

µ([w]) = fw(x) for µ-a.e. x,

for every cylinder set [w] = {x ∈ X : x0 . . . x|w|−1 = w}.

Definition 1.2.5. A subshift (X, σ) is uniquely ergodic if it admits only one in-
variant probability measure. If (X, σ) is both uniquely ergodic and minimal, it is called
strictly ergodic.

This should not be confused with intrinsically ergodic which means that there
is a unique measure of maximal entropy, see Definition ??

The full shift is obviously not uniquely ergodic; it has for instance a Bernoulli
measure for every probability vector p. Neither are SFTs, sofic shifts or β-shifts
(which are in fact, intrinsically ergodic). Sturmian shifts on the other hand are
uniquely ergodic.

Proposition 1.2.6. A recurrent subshift (X, σ) is uniquely ergodic if and only if
fw(x) exists and is the same for every x ∈ X. In this case, the convergence in the
limit (1.2) is uniform in x.
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Proof. If µ and ν were two different ergodic measures, then there is a word w ∈ L(X)
such that µ([w]) 6= ν([w]). Using the Ergodic Theorem for both measures (with their
own typical points x and y), we see that

fw(x) = µ([w]) 6= ν([w]) = fw(y),

so the limit is not independent of x.
Conversely, we know by the Ergodic Theorem that fw(x) = µ([w]) is constant

µ-a.e. But if the convergence is not uniform, then there are sequences (xi), (yi) ⊂ X
and (mi), (ni) ⊂ N, such that

lim
i

1

mi

mi−1∑
k=0

1w ◦ σk(xi) 6= lim
i

1

ni

ni−1∑
k=0

1w ◦ σk(yi).

Define functionals µi, νi : C(X) → R as µi(g) = lim infi
1
mi

∑mi−1
k=0 g ◦ σk(xk) and

νi(g) = lim infi
1
ni

∑ni−1
k=0 g ◦ σk(yk). Both sequences have weak accumulation points

µ and ν which are easily shown to be σ-invariant measures, see the proof of Theo-
rem 4.0.2.

More precisely, since (C(X), ‖ ‖∞) is a separable Banach space, we can find a
countable dense subset (gj)j∈N and (by a diagonal argument) we can take subsequences
of (mi)i∈N and (ni)i∈N along which µi(gj) and νi(gj) converge for all j ∈ N.

But µ and ν are not the same, because if we take a subsequence (jr)r∈N such that
gjr → 1w, then limr µ(gjr) = µ(1w) 6= ν(1w) = limr ν(gjr). Hence (X,T ) cannot be
uniquely ergodic.

1.3 Basic notions from dynamical systems

A dynamical system is a mathematical description of how a physical system evolves
in time. It consists of

• a phase space X, usually a metric space, or at least topological space, describ-
ing the position of the system. For example, R2n can be used to describe the
positions and velocities of n point-particles moving along a line, or R6n for the
positions and velocities of n point-particles moving in R3.

• a time space, which could be R (for continuous time) or N0 (or Z) for when
the observations are only made a discrete time steps. More complicated (multi-
dimensional or group-valued) time can be considered too, but in this text, time
is always discrete: N0 or (when the system is time-invertible) Z.

• an evolution rule, which for discrete time take the form of a mapping T :
X → X satisfying
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1. T 0(x) = x for all x ∈ X.

2. Tm+n(x) = Tm(T n(x)) for all m,n ∈ N0 (or Z) and all x ∈ X.

This is realized when we let T n be the n-fold composition:

T n(x) = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n times

and T−1 is the inverse transformation when it exists.

Examples on one-dimensional phase space are the quadratic family

Qa : [0, 1]→ [0, 1], x 7→ ax(1− x), a ∈ [0, 4],

the family of β-transformations

Tβ : [0, 1]→ [0, 1], x 7→ βx (mod 1), β ∈ R

and the family of circle rotations

Rα : S1 → S1, x 7→ x+ α (mod 1) α ∈ [0, 1).

See Figure 1.1

0

0.2

0.4
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x

α

1/β

Figure 1.1: A quadratic map, a β-transformation and a circle rotation

The orbit of x ∈ X is the set orb(x) = {T n(x) : n ∈ N0 or Z}. We distinguish
several types of orbit. Namely, orb(x) is

• periodic if T n(x) = x for some n ∈ N. The smallest such n is called the period
of x. If the period is 1, then x is called a fixed point.

• preperiodic if T n+m(x) = Tm(x) for some m,n ∈ N. The minimal such m,n
are called the preperiod and period of x.
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• asymptotically periodic if there is a periodic point y /∈ orb(x) such that
d(T n(x), T n(y) → 0 as n → ∞. In this case, y is an attracting periodic point.
More precisely, y is an (one-sided) attracting periodic point if it is periodic
and has a (one-sided) neighborhood U such that limn→∞ d(T n(x), T n(y) = 0 for
all x ∈ U . If no such neighborhood exists, then y is repelling.

For example, for the quadratic family with a = 3.83187405528332 . . . , the point
x = 1

2
has period 3, and since Q′a(

1
2
) = 0, it is easy to show that 1

2
is attracting. The

two fixed points are 0 and 1− 1
a
; they are repelling. For the circle rotation Rα, every

point is periodic if and only if α ∈ Q: x = p/q in lowest terms, then every point has
period q. If α /∈ Q, then every orbit is dense in S1.

Definition 1.3.1. Two subshifts (X, σ) and (Y, σ) are called conjugate if there is a
homeomorphism ψ : X → Y such that ψ ◦ σ = σ ◦ ψ.

If ψ : X → Y commutes with σ and is a continuous, onto, but not necessarily
one-to-one map, then Y is called a factor of X, and X is called an extension.
This extension is almost one-to-one if there is a dense set of y ∈ Y such that
#ψ−1(y) = 1.

A conjugacy (or factor map) ψ : X → Y is called pointed if it sends specified
points x ∈ X and y ∈ Y to each other.

Lemma 1.3.2. Let (X, f) and Y, g) be systems that are conjugate via g ◦ ψ = ψ ◦ f .
Then

1. If p is a (pre)periodic point for f , then ψ(p) is a (pre)periodic point of g, and
the (pre)periods are the same.

2. If f, g are continuous, then the conjugacy preserves ω-limit sets: ψ(ω(x)) =
ω(ψ(x)).

3. If the periodic point p is attracting/repelling, then ψ(p) is also attracting/repelling.

Proof. First note that

ψ ◦ fn = ψ ◦ f ◦ ψ−1 ◦ ψ ◦ f ◦ ψ−1 ◦ ψ ◦ f ◦ ψ−1 ◦ · · · ◦ f
= g ◦ ψ ◦ ψ−1 ◦ g ◦ ψ ◦ ψ−1 ◦ g ◦ ψ ◦ ψ−1 ◦ · · · ◦ g ◦ ψ = gn ◦ ψ.

1. Take p such that fn(p) = p and q = ψ(p). Then gn(q) = gn ◦ ψ(p) = ψ ◦ fn(p) =
ψ(p) = q, so q if n-periodic for g. Next, suppose that fm+n(p) = fm(p), and set
ψ(p) = q, p′ = fm(p). Then gm+n(q) = gm+n ◦ ψ(p) = ψ ◦ fm+n(p) = ψ ◦ fm(p) =
gm ◦ ψ(p) = gm(q).
2. Now assume that x ∈ ωf (a), so there is a sequence nk →∞ such that fnk(a)→ x.
Set y = ψ(x) and b = ψ(a). Then, by continuity of f , gnk(b) = gnk ◦ ψ(a) =
ψ ◦ fnk(a)→ ψ(x) = y, so y ∈ ωg(b).
3. If p = f(p) is asymptotically attracting, then for every a sufficiently close to p, we
have p = ωf (a). By part 1., q := ψ(p) is a fixed point of g, and by part 2., q = ωg(y)
for y = ψ(x).
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Exercise 1.3.3. Is the following true: if X is a factor of Y and Y a factor of X,
then X and Y are conjugate?

Example 1.3.4. The quadratic map Q(x) = 2x2−1 on [−1, 1] (the quadratic Cheby-
shev polynomial Q2) is conjugate to the tent map T (x) = min{2x, 2(π − x)} on
[0, π]. Indeed,

Q ◦ ψ = ψ ◦ T for ψ(x) = cos x, (1.3)

It is very unusual to find smooth conjugacies between maps, and even here, ψ is not
diffeomorphic at the endpoints 0, 1. But applying (1.3) n times and then differentiat-
ing, we find

(Qn)′ ◦ ψ(x) · ψ′(x) = ψ′(T n(x)) · (T n)′(x).

If x is an n-periodic point of T , and hence y = ψ(x) and n-periodic point of Q, we
see that |(Qn)′(y)| = 2n. The only periodic point where this fails is y = 0, because
ψ−1 is not differentiable at 0.

Note that the same conjugacy works for the degree n Chebyshev polynomial Qn and
the slope n tent map with n branches. The characterization of Chebyshev polynomial
Qn(x) = cos(n arccosx) is the cause of this.

Example 1.3.5. We show that two circle rotations Rα and Rβ are not conjugate if
0 ≤ α < β < 1. Let < denote the positive orientation on S1. Choose n ∈ N such that
nα ≤ k < nβ and (n− 1)β ≤ k for some integer k. Then, setting y = ψ(0),

Rn
α(0) ≤ 0 ≤ Rα(0) and y ≤ Rn

β(y) ≤ Rβ(y). (1.4)

The homeomorphism ψ : S1 → S1 must either preserve or reverse the orientation of
the circle, but neither way is comparable with (1.4). Therefore there cannot be any
conjugacy.

A more structural way to see this is using lifts and rotation numbers, see Theo-
rem ??. Indeed, the rotation number ρ(f) is preserved on conjugacy, and ρ(Rα) =
α 6= β = ρ(Rβ).

1.4 Symbolic itineraries

Symbolic dynamics emerges from a dynamical system (X,T ) by coding the T -orbits of
the points x ∈ X. To this end, we let J = {Ja}a∈A (for a finite or countable alphabet
A) be a partition of X, and to each x ∈ X we assign an itinerary i(x) ∈ AN0 :

in(x) = a if T n(x) ∈ Ja.

If T is invertible, then we can extend sequences to AZ. It is clear that i ◦ T (x) =
σ◦i(x). Therefore, if we set Σ = i(X), then σ(Σ) ⊂ Σ and if T : X → X is surjective,
then σ(Σ) = Σ. But (Σ, σ) is in general not a subshift, because Σ is not closed.
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Example 1.4.1. Let X = [0, 1] and T (x) = Q4(x) = 4x(1 − x). Let J0 = [0, 1
2
] and

J1 = (1
2
, 1]. Then i(X) is not closed, because there is no x ∈ [0, 1] such that i(x) =

1100000 . . . , while 1100000 · · · = limx↘ 1
2
i(x). Naturally, redefining the partition to

J0 = [0, 1
2
) and J1 = [1

2
, 1] doesn’t help, because then there is no x ∈ [0, 1] such that

i(x) = 0100000 . . . , while 0100000 · · · = limx↗ 1
2
i(x).

Other “solutions” that one sees in the literature are:

• Assigning a different symbol (often ∗ or C) to 1
2
. That is, using the partition

J0 = [0, 1
2
), J∗ = {1

2
} and J1 = (1

2
, 1]. This resolves the “ambiguity” about which

symbol to give to 1
2
, but it doesn’t make the shift space closed.

• Assigning the two symbols to 1
2
, so J0 = [0, 1

2
] and J1 = [1

2
, 1] are no longer a

partition, but have 1
2

in common. Therefore 1
2

will have two itineraries, and
so will every point in the backward orbit of 1

2
. With all these extra itineraries,

i(X) becomes closed. But this doesn’t work in all cases, see Exercise 1.4.2.

• Taking a quotient space i(X)/ ∼ where in this case x ∼ y if there is n ∈ N0

such that

x0 . . . xn−1 = y0 . . . yn−1 and

{
xnxn+1xn+2xn+3xn+4 · · · = 11000 . . . ,

ynyn+1yn+2yn+3yn+4 · · · = 01000 . . .

or vice versa. This quotient space adapts the quotient topology (so i(X)/ ∼ is
not a Cantor set anymore), and it turns the coding map i : [0, 1]→ {0, 1}N0/ ∼
into a genuine homeomorphism.

Exercise 1.4.2. Let a = 3.83187405528332 . . . and T (x) = Qa(x) = ax(1− x). For
this parameter, T 3(1

2
) = 1

2
. Let J ′ = {[0, 1

2
], (1

2
, 1]} and J = {[0, 1

2
], [1

2
, 1]}, so 1

2
get

two symbols. Let Σ′ = i(X) w.r.t. J ′ and Σ = i(X) w.r.t. J . Show that Σ′ 6= Σ.

From now on, assume that X is compact metric space without isolated points.
We will now discuss the properties of the coding map i itself. First of all, for i to
be continuous it is crucial that T |Ja is continuous on each element Ja ∈ J . But
this is not enough: if x is a common boundary of two element of J then (no matter
how you assign the symbol to x in Example 1.4.1), for each neighborhood U 3 x,
diam(i(U)) = 1, so continuity fails at x. It is only by using quotient spaces of i(X)
(so changing the topology of i(X)) that can make i continuous. Normally, we choose
to live with the discontinuity, because it affects only few points:

Lemma 1.4.3. Let ∂J denote the collection of common boundary points of different
elements in J . If orb(x) ∩ ∂J = ∅, then the coding map i : X → AN0 or AZ is
continuous at x.

Proof. We carry out the proof for invertible maps. Let ε > 0 be arbitrary and fix
N ∈ N such that 2−N < ε. For each n ∈ Z with |n| ≤ N , let Un 3 T n(x) be such



20 CHAPTER 1. GENERAL PROPERTIES OF SUBSHIFTS

a small neighborhood that it is contained in a single partition element Jin(x). Since
orb(x) ∩ ∂J = ∅, this is possible. Then U := ∩|n|≤NT n(Un) is an open neighborhood
of x and in(y) = in(x) for all |n| ≤ N and y ∈ U . Therefore diam(i(U)) ≤ 2−N < ε,
and continuity at x follows.

Lemma 1.4.4. Suppose that T is a continuous expansive dynamical system and in-
jective on each Ja ∈ J . If the expansivity constant is larger than supa∈A diam(Ja),
then the coding map i : X → AN0 or AZ is injective.

Proof. Suppose that there are x 6= y ∈ X such that i(x) = i(y). Since T |Ja is injective
for each a ∈ A, T n(x) ≥ T n(y) for all n ≥ 0. Let δ > 0 be an expansivity constant
of T . Thus, there is n ∈ Z such that d(T n(x), T n(y)) > δ, so, by assumption, they
cannot lie in the same element of J . Hence x and y cannot have the same itinerary
after all.

To obtain injectivity of the coding map, it often suffices that T is expanding on
each partition element Ja. Expanding (and expansion) should not be confused with
expansive (and expansivity) of Definition ??.

Definition 1.4.5. Let T : X → Y be a map between metric spaces. We call T
expanding if there is ρ > 1 such that dY (T (x), T (y)) ≥ ρdX(x, y) for all x, y ∈ X.
and locally expanding there are ε > 0 and ρ > 1 such that d(T (x), T (y)) ≥ ρd(x, y)
for all x, y ∈ Y with d(x, y) < ε.

Example 1.4.6. If X = Y is compact, then it carries no expanding map (non-
compact examples exist, e.g. T : R → R, x 7→ 2x). Local expandingness is less
restrictive:

Let T : S1 → S1, x 7→ 2x (mod 1), be the doubling map, and J0 = (1
4
, 3

4
) and

J1 = S1 \ J0. Clearly T ′(x) = 2 for all x ∈ S1, but T is not expanding on the whole
of S1, because for instance d(T (1

4
), T (3

4
)) = 0 < 1

2
= d(1

4
, 3

4
). More importantly, T is

not expanding on the either Ja; for example d(T (1
4

+ ε), T (3
4
− ε)) = 4ε < 1

2
− 2ε =

d(1
4

+ ε, 3
4
− ε) for each ε ∈ (0, 1

12
). The corresponding coding map is not injective.

The way to see this by noting that the involution S(x) = 1− x commutes with T and
also preserves each Ja. It follows that i(x) = i(S(x)) for all x ∈ S1, and only x = 0
and x = 1

2
have unique itineraries.

Proposition 1.4.7 (Gottschalk & Hedlund [134]). Let T : X → X be a homeomor-
phism on a compact metric space. If T is locally expanding, then X is finite.

Proof. Let η > 0, ρ > 1 be as in Definition 1.4.5, and take ε ∈ (0, η) arbitrary. Since
T−1 is continuous and X is compact, there is a uniform δ > 0 such that d(x, y) < δ
implies d(f−1(x), f−1(y)) < ε. Let {Ui}Ni=1 be a finite open cover of X such that
diam(Ui) < δ. Then {f−1(Ui)}Ni=1 is an open cover of X, and diamf−1(Ui) < ε, so
by local expansion, diamf−1(Ui) < diam(Ui)/ρ ≤ δ/ρ. Repeating this argument, we
find that {f−n(Ui)}Ni=1 is a finite open cover of X with diam(f−n(Ui)) < δρ−n. Since
n is arbitrary, #X ≤ N .
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1.5 Minimal subshifts

The following definition express that all parts of a subshift connect to each other:

Definition 1.5.1. A subshift X is transitive or irreducible if for every u,w ∈
L(X), there is v ∈ L(X) such that uvw ∈ L(X). It is called totally transitive if
σn is transitive for each n ∈ N.

Clearly totally transitive is stronger than transitive. Conversely, the two-point
shift ({(10)∞, (01)∞}, σ) is transitive but σ2 is not.

Proposition 1.5.2. A subshift is transitive if and only if there exists a dense orbit.

Remark 1.5.3. The notion of dense orbit may need further explanation if the subshift
is two-sided. Consider the sequence

x = . . . 101000101000000000101000101.000000000000000000000000 . . . (1.5)

which emerges from the Cantor substitution from the seed 1.0, see Example ??. This

sequence has a dense backward orbit orb−(x) within its backward orbit closure orb−(x)

as well as a dense forward orbit orb+(x) within its forward orbit closure orb+(x).
However, orb+(x) is not dense in its two-sided orbit closure.

Proof. Suppose first that orb(x) is dense. Then for every u,w ∈ L(X) there are
m < m + |u| ≤ n ∈ N such that σm(x) ∈ [u] and σn(x) ∈ [w]. (Recall that [v]
denotes the cylinder set associated to the word v.) Now let v be the word of length
n− (m+ |u|) such that σm+|u|(x) ∈ [v]. Then uvw ∈ L(X).

Conversely, let (uj)j∈N be a denumeration of L(X). We construct a sequence of
words vj recursively. Assume by induction that u1v1 . . . vj−1uj ∈ L(X). By transitiv-
ity, we can find vj such that u1v1 . . . vj−1ujvjuj+1 ∈ L(X). Now set x = u1v1u2v2 . . . .
Then orb(x) is dense in X.

A strong form of transitivity is minimality:

Definition 1.5.4. A subshift (X, σ) is minimal if every orbit is dense in X.

Remark 1.5.5. It is a straightforward application of Zorn’s Lemma that every dy-
namical systems on a compact space3 contains at least one minimal subsystem.

Proposition 1.5.6. We have the following equivalent characterizations for a subshift
(X, σ) to be minimal:

(i) There is no closed shift-invariant proper subset of X;

3Compactness is important, otherwise one could take a single non-recurrent orbit (but without
its closure) as the phase-space. An interesting example with only recurrent orbits but no minimal
subset is due to Auslander [13, page 27]
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(ii) Every orbit is dense in X (see Definition 1.5.4);

(iii) There is one dense orbit and σ is uniformly recurrent4, i.e., for every open
set U ⊂ X there is N ∈ N such that for every x ∈ U there is 1 ≤ n ≤ N such
that σn(x) ∈ U .

Definition 1.5.7. Uniform recurrence means that the sets of integers n such that
σn(x) ∈ U has is syndetic, i.e., it has bounded gaps (from the Greek συνδετικoς =
bound together). A set that is not syndetic has a complement that is thick: for every
N ∈ N contains blocks {n, n+ 1, . . . , n+N}.

Proof. We prove the three implications by the contrapositive.
(i) ⇒ (ii): Suppose that x ∈ X has an orbit that is not dense. Then orb(x) is a
shift-invariant closed proper subset, so (i) fails.

(ii) ⇒ (iii): By (i) every orbit is dense, so there is at least one dense orbit.
Now to prove uniform recurrence, let U be any open set. Due to product topology,

U contains a cylinder set U0; in particular U0 is clopen. Suppose that for every N ∈ N
there is xN ∈ U0 such that σn(xN) /∈ U0 for all 1 ≤ n ≤ N . Let x be an accumulation
point of (xN)N∈N; since U0 is closed, x ∈ U0. Suppose by contradiction that there is
n ≥ 1 such that σn(x) ∈ U0. Take an open set V 3 x such that σn(V ) ⊂ U0. Next
take N ≥ n so large that xN ∈ V . But this means that σn(xN) ⊂ U0, which is against
the definition of xN . Hence no such n exists, and therefore orb(x) is not dense, and
(ii) fails.
Now take y ∈ U arbitrary (so not necessarily in U0), and x ∈ U0 with a dense orbit.
Find a sequence ki such that σki(x) → y. For each i there is 1 ≤ ni ≤ N such
that σki+ni(x) ∈ U0. Passing to a subsequence, we may as well assume that ni ≡ n.
Then σn(y) = σn(limi σ

ki(x)) = limi σ
ki+n(x) ∈ U0 ⊂ U . This proves the uniform

recurrence of U .

(iii) ⇒ (i): Let x be a point with a dense orbit. Suppose that Y is a closed shift-
invariant proper subset of X and let U ⊂ X be open such that U ∩Y = ∅. Let n ≥ 0
be minimal such that u := σn(x) ∈ U . Let N = N(U) ≥ 1 be as in the definition of
uniform recurrence, and let y ∈ Y be arbitrary. Since orb(y) ⊂ Y , there is an open
set V 3 y such that σi(V ) ∩ U = ∅ for 0 ≤ i ≤ N .

Take n′′ > n minimal such that σn
′′
(u) ∈ V , and let n′ < n′′ be maximal such

that σn
′
(u) =: u′ ∈ U . Then σi(u′) /∈ U for all 1 ≤ i ≤ n′′ − n′ + N . Since N was

arbitrary, this contradicts the uniform recurrence and hence such Y cannot exist.

Definition 1.5.8. A subshift is called periodically recurrent if for every open set
U , there is N such that σkN(U) ⊂ U for all k ∈ N (or k ∈ Z if the shift is invertible).

Since periodic recurrence is obviously stronger than uniform recurrence, we have
the following corollary.

4The word “almost periodic” is sometimes used as well, e.g. in [134, 169, 175], but it is not the
same with all authors. For instance, in [207] it is used as “periodically recurrent” in Definition 1.5.8.
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Corollary 1.5.9. Every periodically recurrent subshift is minimal.

Definition 1.5.10. A dynamical system (X,T ) on a metric space (X, d) is uni-
formly rigid if for every ε > 0 there is an iterate n such that d(T n(x), x) < ε,

Lemma 1.5.11. A subshift (X, σ) is uniformly rigid if and only if it is periodically
recurrent.

Proof. ⇒: Take ε > 0 arbitrary with corresponding iterate n, and let k ∈ N such
that 2−k < ε. Thus the distance between every two distinct k-cylinders Z in X is
at least ε. By rigidity σn(Z) = Z, and therefore σin(Z) = Z for all i ≥ 0, proving
periodic recurrence.
⇐: Let ε > 0 be arbitrary. For each x ∈ X, we can find a neighborhood Ux of
diam(Ux) < ε and iterate nx such that σnx(U) ⊂ U . By compactness, there is a
finite collection x1, . . . , xN such that X =

⋃N
i=1 Uxi . Take n = lcm{x1, . . . xN}. Then

d(σn(x), x) < ε for each x ∈ X, as required.

The following weakening of minimality is of importance for e.g. Toeplitz shifts and
B-free shifts

Definition 1.5.12. A subshift (X, σ) is called essentially minimal if it contains a
unique minimal set Y , i.e., a unique non-empty closed shift-invariant set.

Clearly, essentially minimal shifts can have at most one periodic orbit, but as the
subshift X := {σk(. . . 000001000000 . . . )}k∈Z ∪ {0∞} shows, X \ Y 6= ∅ is possible.
However, the two-sided orbit closure of (1.5) does not give an essentially minimal
shift.

Proposition 1.5.13. Given a subshift (X, σ) and a point y ∈ X, the following are
equivalent:

(i) (X, σ) is essentially minimal and y is contained in its minimal set.

(ii) For every x ∈ X, ω(x) 3 y.

If in addition, σ is invertible, then two further equivalent statements are:

(iii) For every x ∈ X, α(x) 3 y.

(iv) For every open set U 3 y, ∪n∈Zsigman(U) = X.

Proof. (i)⇒ (ii): ω(x) is a closed non-empty shift-invariant set, so by Zorn’s Lemma,
it contains a minimal set. But Y is the unique minimal set, so y ∈ ω(x).
(ii) ⇒ (i): Assume by contradiction that y ∈ Y and Y ′ are minimal sets, and take
x ∈ Y , x′ ∈ Y ′. By assumption y ∈ ω(x) ∩ ω(x′), so y ∈ Y ∩ Y ′. Thus Y ∩ Y ′ is a
non-empty, closed and shift-invariant subset of both Y and Y ′. Since Y and Y ′ are
minimal, Y = Y ∩ Y ′ = Y ′.
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(i) ⇔ (iii): Use the above with σ−1 instead of σ.
(i) ⇒ (iv): Let U be an arbitrary neighborhood of y. Since ∪n∈Zσn(U) is an open
(two-sided!) shift-invariant set, its complement Y ′ is closed and shift-invariant. If
Y ′ 6= ∅, then it contains a minimal set that is disjoint from y, contradicting essential
minimality. Hence ∪n∈Zσn(U) = X.
(iv) ⇒ (iii): Let x ∈ X be arbitrary; we can assume without loss of generality
that x 6= σk(y) for some k ≥ 0, because if y is periodic then α(x) = orb(y) 3 y,
and otherwise we replace x by σ−(k+1)(x) to get it outside the forward orbit of y.
Let (Ur)r∈N be a nested sequence of neighborhoods of y such that ∩rUr{y}. Since
∪n∈Zσn(Ur) = X and X is compact, there is a finite Nr such that ∪Nrn=−Nrσ

n(U) = X.

Applying σNr to both sides, we obtain ∪2Nr
n=0σ

n(U) = X. Thus there is nr ≤ 2Nr such
that σ−nr(x) ∈ Ur. As we can do this for every r, we have found a sequence (nr) (and
nr →∞ because x 6= σk(y) for any k ≥ 0) such that σ−nr(x)→ y. Thus y ∈ α(x), as
required.

1.6 Topological entropy

The notion of topological entropy by Adler, Konheim & McAndrew [2] dates back
to 1969, but nowadays, the definition due to the American mathematician Rufus
Bowen [48] and, independently, his Russian colleague Efim Dinaburg [100] is most
often used. It is a measure of disorder of the system, and one common definition of
chaos is that the topological entropy is positive.

Let T be map of a compact metric space (X, d). If my eyesight is not so good, I
cannot distinguish two points x, y ∈ X if they are at a distance d(x, y) < ε from one
another. I may still be able to distinguish their orbits, if d(T kx, T ky) > ε for some
k ≥ 0. Hence, if I’m willing to wait n− 1 iterations, I can distinguish x and y if

dn(x, y) := max{d(T kx, T ky) : 0 ≤ k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated. Among all the subsets of
X of which all points are mutually (n, ε)-separated, choose one, say En(ε), of maximal
cardinality. Then sn,ε := #En(ε) is the maximal number of n-orbits I can distinguish
with ε-poor eyesight.

The topological entropy is defined as the limit (as ε → 0) of the exponential
growth-rate of sn,ε:

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn,ε. (1.6)

Note that sn(ε1) ≥ sn(ε2) if ε1 ≤ ε2, so lim supn
1
n

log sn,ε is a decreasing function in
ε, and the limit as ε→ 0 indeed exists.

Instead of (n, ε)-separated sets, we can also work with (n, ε)-spanning sets, that
is, sets that contain, for every x ∈ X, a point y such that dn(x, y) ≤ ε. Note that, due
to its maximality, En(ε) is always (n, ε)-spanning, and no proper subset of En(ε) is
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(n, ε)-spanning. Each y ∈ En(ε) must have a point of an (n, ε/2)-spanning set within
an ε/2-ball (in dn-metric) around it, and by the triangle inequality, this ε/2-ball is
disjoint from ε/2-ball centered around all other points in En(ε). Therefore, if rn(ε)
denotes the minimal cardinality among all (n, ε)-spanning sets, then

rn(ε) ≤ sn,ε ≤ rn(ε/2). (1.7)

Thus we can equally well define

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε). (1.8)

Example 1.6.1. Consider the β-transformation Tβ : [0, 1)→ [0, 1), x 7→ βx (mod 1)
for some β > 1. Take ε < 1/(2β2), and Gn = { k

βn
: 0 ≤ k < βn}. Then Gn is

(n, ε)-separating, so sn,ε ≥ βn. On the other hand, G′n = {2kε
βn

: 0 ≤ k < βn/(2ε)} is

(n, ε)-spanning, so rn(ε) ≤ βn/(2ε). Therefore

log β = lim sup
n→∞

1

n
log βn ≤ htop(Tβ) ≤ lim sup

n→∞

1

n
log(βn/(2ε)) = log β.

Circle rotations, or in general isometries, have zero topological entropy. Indeed,
if E(ε) is an ε-separated set (or ε-spanning set), it will also be (n, ε)-separated (or
(n, ε)-spanning) for every n ≥ 1. Hence sn,ε and rn(ε) are bounded in n, and their
exponential growth rates are equal to zero. In more generality:

Proposition 1.6.2. Every equicontinuous transformation (X,T ) has zero entropy.

Proof. Let δ > 0 be arbitrary and choose ε > 0 as in the definition of equicontinuous.
Then diam(T n(Bε(x)) ≤ 2δ for all x ∈ X and n ≥ 0 (or n ∈ Z if T is invertible).
Take M = ddiam(X)/εe. Hence, a single cover of X by M ε-balls constitutes a cover
of (δ, n)-balls for all n. Therefore htop(T ) ≤ limε→0 limn→∞

1
n

logM = 0.

Finally, let (X, σ) be the full shift on N symbols. Let ε > 0 be arbitrary, and
take m such that 2−m < ε. If we select a point from each n + m-cylinder, this
gives an (n, ε)-spanning set, whereas selecting a point from each n-cylinder gives an
(n, ε)-separated set. Therefore

logN = lim sup
n

1

n
logNn ≤ lim sup

n

1

n
log sn,ε ≤ htop(σ)

≤ lim sup
n→∞

1

n
log rn(ε) ≤ lim sup

n→∞

1

n
logNn+m = logN.

Corollary 1.6.3. Given a continuous map T : X → X, htop(T
k) = khtop(T ) for all

k ≥ 0, and if T is invertible, then htop(T
nk) = |k|htop(T ) for all k ∈ Z.
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Proof. For any k ∈ N, a (kn, ε)-separated set for T is also an (n, ε)-separated set for
T k. Therefore

htop(T
k) = lim

n→∞

1

n
log sn,ε(T

k) = k lim
n→∞

1

kn
log sn,ε(T ) = khtop(T ).

Clearly the identity T 0 has zero entropy. If T is invertible, and En(ε) is an (n, ε)-
separated set, then T n−1(En(ε)) s an (nε)-separated set for T−1. Therefore htop(T

−1) =
htop(T ). Combined with the first part, we get htop(T

k) = |k|htop(T ) for all k ∈ Z.

Corollary 1.6.4. If (Y, S) is a continuous factor of (X,T ) (where X is a compact
metric space), then htop(S) ≤ htop(T ). In particular, conjugate systems on compact
metric space have the same topological entropy.

Proof. Let π : X → Y be a continuous factor map. Since X is compact, π is
uniformly continuous, so for ε > 0, we can find δ > 0 such that d(x, y) < δ implies
d(π(x), π(y)) < ε. Therefore, if En(δ) is an (n, δ)-spanning set for T , then π(En(δ))
is an (n, ε)-spanning set for S (but possibly not a minimal (n, ε)-spanning set, even
if En(δ) is minimal). It follows that rn(δ, T ) ≥ rn(ε, S), and hence htop(T ) ≥ htop(S).

For subshifts, topological entropy is the exponential growth-rate of the word-
complexity, see Proposition 1.6.8 below.

Definition 1.6.5. Given a dynamical system (X,T ), a point x ∈ X is called non-
wandering if for every neighborhood U 3 x there is n such that T n(U)∩U 6= ∅. The
nonwandering set, denoted Ω, is the set of all nonwandering points.

Note that recurrent points are always nonwandering, but Ω can contain nonrecur-
rent points. In the one-sided full shift, for instance, x = 0111111 . . . is not recurrent
but nonwandering. If (X,T ) is topologically transitive, then Ω = X.

Proposition 1.6.6. The entropy of a dynamical system (X,T ), htop(T ) = htop(T |Ω).

Example 1.6.7. Let X ⊂ {01}N be the collection of all sequences x that you can
write as x = 0n11n20n31n4 . . . , with 0 ≤ n1 ≤ max{n1, 1} ≤ n2 ≤ n3 ≤ n4 ≤ . . .
Then Ω consists of periodic orbits 0k1k0k1k . . . or 1k0k1k0k . . . , i.e., with period 2k.
Therefore the number of 2n-periodic point (not necessarily prime period 2n) equals
twice the number of divisors of n, and hence is ≤ 2n. In view of Proposition 1.6.6,
htop(σ) = 0.

1.6.1 Entropy of subshifts

For subshifts, the topological entropy is simply the exponential growth rate of the
the word-complexity.
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Proposition 1.6.8. For a subshift (X, σ), the limit limn→∞
1
n

log p(n) exists and is
equal to htop(σ).

Proof. First note that p(m + n) ≤ p(m)p(n), so log p(n) is subadditive. Thus by
Fekete’s LemmaindexLemma!Fekete’s, limn

1
n

log p(n) = infn
1
n

log p(n) exists. Next
take ε > 0 arbitrary and N ∈ N such that 2−N < ε. Then every n + N -cylinder is
an (n, ε)-ball, and we need exactly p(n + N) of them to cover the space. Therefore,
writing m = n+N , htop(σ) = limε→0 limn→∞

1
n

log p(n+N) = limm→∞
1
m

log p(m).

We devote separate chapters to subshifts of positive and subshifts of zero entropy,
because they tend to be quite different in regard to their other topological properties
(topological mixing, existence and number of periodic orbits, shadowing and synchro-
nization properties. Proposition 1.6.8 shows that the maximal entropy of a subshift
on d letters is log d, and this is achieved by the full shift ({1, . . . , d}N, σ). One can
ask whether all intermediate values can be achieved as entropy for some subshift. As
we shall see later, this is not true for the class of subshift of finite type or the sofic
shifts, because the entropy is then equal to the logarithm of the leading eigenvalue of
some matrix, so logarithms of algebraic numbers.

Proposition 1.6.9.

On the other hand, the entropy of β-shifts and unimodal subshifts of {0, 1}N can
take any value in (0, log 2], as they equal log η and log s (for the slope of a tent-map)
respectively. Also withing the class of gap shift you can achieve every value of the
entropy, as can be derived from Theorem ??. Some specific constructions of subshifts
of a chosen entropy can be found among spacing shifts, see [?, 168] and Section ??.

1.7 Sliding block codes

Definition 1.7.1 (Sliding Block Code). A map π : AZ → ÃZ is called a sliding
block code (also called local rule of window size 2N + 1 if there is a function
f : A2N+1 → Ã such that π(x)i = f(xi−N . . . xi+N).

In other words, we have a window5 of width 2N + 1 put on the sequence x. If it
is centered at position i, then the recoded word y = π(x) will have at position i the
f -image of what is visible in the window. After that we slide the window to the next
position and repeat.

Theorem 1.7.2 (Curtis–Hedlund–Lyndon6). Let X and Y be subshifts over finite
alphabets A and A′ respectively. A continuous map π : X → Y commutes with the
shift (i.e., σ ◦ π = π ◦ σ) if and only if π is a sliding block code.

5Sometime the window can have memory and anticipation of different lengths, so the window
would be [−m, a], but calling their maximum N covers all cases

6Curtis and Lyndon were working for the military at the time, so their work was “classified”,
and the paper was published under Hedlund’s name only, [140]
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Proof. First assume that π is continuous and commutes with the shift. For each
a ∈ A′, the cylinder [a] = {y ∈ Y : y0 = a} is clopen, so Va := π−1([a]) is clopen too.
Since Va is open, it can be written as the union of cylinders, and since Va is closed (and
hence compact) it can be written as the finite union of cylinders: Va = ∪rai=1Ua,i. Let
N be so large that every Ua,i is determined by the symbols x−N . . . xN . This makes
2N + 1 a sufficient window size and there is a function f : A2N+1 → A′ such that
π(x)0 = f(x−N . . . xN). By shift-invariance, π(x)i = f(xi−N . . . xi+N) for all i ∈ Z.

Conversely, assume that π is a sliding block code of window size 2N + 1. Take
ε = 2−M > 0 arbitrary, and δ = ε2−N . If d(x, y) < δ, then xi = yi for |i| ≤ M + N .
By the construction of the sliding block code, π(x)i = π(y)i for all |i| ≤M . Therefore
d(π(x), π(y)) < ε, so π is continuous (in fact uniformly continuous).

Exercise 1.7.3. Give the sliding block code between the Fibonacci SFT and the even
subshift (see Examples 0.1.10 and 0.1.13.

Each subshift (X, σ) over an alphabet A can be described as an n-block shift,
where the alphabet A′ ⊂ An are the words in Ln(X), and a, b ∈ A′ can only follow
each other if the n− 1-suffix of a coincides with the n− 1-prefix of b. For instance, if
(Xeven, σ) is the even shift, then A′ = {00, 01, 10, 11} and the edge-labeled transition
graph is given in Figure 1.2

00

00

01

10

11 11

Figure 1.2: The edge-labeled transition graph of the 2-block even shift.

Taking a block shift generally doesn’t change the nature of the shift (SFTs remain
SFTs, sofic shifts remain sofic, substitution shifts remain substitution shifts, see Sec-
tion ??). Block shifts can be used the shrink the window size of sliding block codes,
see [175, Proposition 1.5.12].

Proposition 1.7.4. If π is a sliding block code between X and Y of window size
2N + 1, then there is a sliding block code between the 2N + 1 block shift X̃ of X and
Y .

Proof. We do the proof for invertible shifts; the one-sided shifts works as well, but
then we cannot allow a memory in the sliding block code, only anticipation. The
letters of the 2N +1-block shift X̃ correspond exactly with the possible 2N +1-words
on which π is defined. Now define π̃ = σN ◦π, where the power of the shift is required
to move to exactly to the middle of the window.



Chapter 2

Subshifts of positive entropy

2.1 Subshifts of finite type

2.1.1 Definition of SFTs and transition matrices and graphs

Definition 2.1.1. A subshift of finite type (SFT) is a subshift consisting of all
string avoiding a finite list of forbidden words as factors. For example, the Fibonacci
shift has 11 as forbidden word.

If M + 1 is the length of the longest forbidden word, then this SFT is an M-step
SFT, or an SFT with memory M . Indeed, an M -step SFT has the property that if
uv ∈ L(X) and vw ∈ L(X), and |v| ≥M , then uvw ∈ L(X) as well.

Definition 2.1.2. A synchronizing word v of a subshift X is a word such that
whenever uv ∈ L(X) and vw ∈ L(X), then also uvw ∈ L(X). A subshift X is
synchronizing if it is transitive, and contains a synchronizing word.

Lemma 2.1.3. Every irreducible SFT is synchronizing; in fact, every word of length
M (the memory of the SFT) is synchronizing.

Proof. Let v be any word of length M . If uv ∈ L(X) then u has no influence of what
happens after v. Hence if vw ∈ L(X), then uvw ∈ L(X).

Lemma 2.1.4. Every SFT X on a finite alphabet can be recoded such that the list of
forbidden words consists of 2-words only.

Proof. Assume that the longest forbidden word of X has length M + 1 ≥ 2. Take a
new alphabet B = AM , say b1, . . . , bn are its letters. Now recode every x ∈ X using
a sliding block code π, where for each index i, π(x)i = bj if bj is the symbol used for
xixi+1 . . . xi+M−1. Effectively, this is replacing X by its M -block code. Then every
M + 1-word is uniquely coded by a 2-word in the new alphabet B, and vice versa,
every b1b2 such that the M − 1-suffix of π−1(b1) equals the M − 1-prefix of π−1(b2)
codes a unique M -word in A∗. Now we forbid a 2-word b1b2 in B2 if π−1(b1b2) contains

29
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a forbidden word of X. Since A is finite, and therefore B is finite, this leads to a
finite list of forbidden 2-words in the recoded subshift.

Example 2.1.5. Let X be the SFT with forbidden words 11 and 101, so M = 2. We
recode using the alphabet a = 00, b = 01, c = 10 and d = 11. Draw the vertex-labeled
transition graph, see Figure 2.1; labels at the arrow then just indicate with word in
{0, 1}3 they stand for. For example, the edge a→ b labeled 001 has prefix a = 00 and
suffix b = 01. Each arrow containing a forbidden word is dashed, and then removed
in the right panel of Figure 2.1.

d
110

111c

100

101

b

011

010

a
001

000

c

101

ba

Figure 2.1: Illustrating the recoding of the SFT with forbidden words 11 and 101.

Corollary 2.1.6. Every SFT X on a finite alphabet can be represented by a finite
graph G with vertices labeled by the letters of B and arrows b1 → b2 only if π−1(b1b2)
contains no forbidden word of X.

Definition 2.1.7. The directed graph G constructed in the previous corollary is called
the transition graph of the SFT. The matrix A = (aij)i,j∈B is the transition ma-
trix if aij = 1 if the arrow i → j exists in G and aij = 0 otherwise. The graph is
vertex-label, which means that each vertex is assigned unique symbol in the alphabet

Example 2.1.8. Let T : [0, 1]→ [0, 1] be the piecewise monotone map, i.e., there
is a finite partition {Jk}Nk=1 of [0, 1] into intervals such that T |Ji is continuous and

monotone for each i. Assume also that for each i, T (Ji) is the closure of the union
of Jks. In this case we call {Jk}Nk=1 a Markov partition. Write

aij =

{
1 if T (Ji) ⊃ Ji,

0 if T (Ji) ∩ J◦i = ∅.

Then the resulting matrix A = (ai,j)
N
i,j=1 is the transition matrix for the symbolic shift

obtained by taking the closure of the collection of itineraries {i(x) : x ∈ [0, 1]}. This
yields a one-sided shift.

The example in Figure 2.2 produces the transition matrix A =

(
0 1
1 1

)
, so the

corresponding shift is the Fibonacci SFT. It should not come as a surprise that the
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J1 J2

T (x) =

γ(x+ 2−γ
γ

) if x ∈ J1 := [0, γ−1
γ

],

γ(1− x) if x ∈ J2 := [γ−1
γ
, 1],

γ =
√

5+1
2
.

Figure 2.2: The tent map with slope equal to the golden ration

leading eigenvalue of A is exactly the slope of T : both equal ehtop(T ) = ehtop(σ), see
Section 2.1.2.

For the bi-infinite Fibonacci shift, we can look at a toral automorphism.

Definition 2.1.9. A toral automorphism T : Td → Td is an invertible linear map
on the (d-dimensional) torus Td. Each such T is of the form TA(x) = Ax (mod 1),
where

• A is an integer matrix with det(A) = ±1;

• the eigenvalues of A are not on the unit circle; this property is called hyper-
bolicity; for toral automorphisms, this is equivalent to Td being a hyperbolic
set in terms of Definition ??.

The map TA has a Markov partition, that is a partition {Ji}Ni=1 for sets such
that

1. The Ji have disjoint interiors and ∪iJi = Td;

2. If TA(Ji)∩Jj 6= ∅, then TA(Ji) stretches across Jj in the unstable direction (i.e.,
the direction spanned by the unstable eigenspaces of A).

3. If T−1
A (Ji)∩Jj 6= ∅, then T−1

A (Ji) stretches across Jj in the stable direction (i.e.,
the direction spanned by the stable eigenspaces of A).

Every hyperbolic toral automorphism has a Markov partition, see [45] but in gen-
eral they are fiendishly difficult to find explicitly, especially in dimension ≥ 3 where
the boundaries of the Ji might have to be fractal [50]. Therefore we confine ourselves

to the simpler case of A =

(
1 1
1 0

)
; it has Markov partition of three rectangles Ji for

i = 1, 2, 3 can be constructed, see Figure 2.3.
The corresponding transition matrix is

B = (bi,j) =

0 1 1
1 0 1
0 1 0

 where bij =

{
1 if TA(Ji) ∩ Jj 6= ∅

0 if TA(Ji) ∩ Jj = ∅.
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Figure 2.3: The Markov partition for the toral automorphism TA.

The characteristic polynomial of B is

det(B − λI) = −λ3 + 2λ+ 1 = −(λ+ 1)(λ2 − λ− 1) = −(λ+ 1) det(A− λI).

so B has the eigenvalues of A (no coincidence!), together with λ = −1.

Figure 2.4: Vladimir I. Arnol’d (1937–2010) and his catmap.

Example 2.1.10. The most “famous” toral automorphism is Arnol’d’s catmap, and
it has the matrix A =

(
2 1
1 1

)
, see Figure 2.4. It is called this way because Arnol’d used

this example, including the drawing of a cat’s head, in his book(s) to illustrate the
nature of hyperbolic maps.

Exercise 2.1.11. Show that if x ∈ Td has all coordinates rational, then x is periodic
under a toral automorphism. Conclude that, if the pixels in Figure 2.4 have rational
coordinates (such as the dyadic coordinates that computers use), then the cat will
return intact after a finite number of iterates.

The following characterization for shadowing subshifts is due to Walters [234] (see
also [169, Theorem 3.33]).
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Theorem 2.1.12. A subshift (X, σ) of has the shadowing property if and only if it
is a subshift of finite type.

Proof. We give the proof for X ⊂ AN∪{0} only; the two-sided case follows in a similar
way.

The “if”-direction: Let (X, σ) be an SFT of memory M , so M is the length of
the longest forbidden word. Let ε > 0 be arbitrary and choose m ≥M so small that
2−m < ε. Take δ = 2−m+2. We need to show that every δ-pseudo-orbit (xn)n≥0 ⊂ X,
that is,

σ(xn)0 . . . σ(xn)m−3 = xn1 . . . x
n
m−2 = xn+1

0 . . . xn+1
m−2

for every n, there is y ∈ X that ε-shadows (xn)n≥0. To this end, set yn = xn0 for each
n ≥ 0. Then for 0 ≤ i < m, we have

yn+i = xn+i
0 = xn+i−1

1 = xn+i−2
2 = · · · = xni ,

so yn . . . yn+m−1 = xn0 . . . x
n
m−1 ∈ L(X). Since X is an SFT, y ∈ X and d(σn(y), xn) <

ε by construction.

The “only if”-direction: Let (X, σ) be a subshift with the shadowing property,
so in articular, for ε = 1, there exists δ > 0 such that every δ-pseudo-orbit in X is
ε-shadowed in X. Take N ∈ N such that 2−N+2 < δ, and let y ∈ AN∪{0} be such
that yn . . . yn+N−1 ∈ L(X) for each n. Then there exists a sequence (xn)n≥0 such that
xn0 . . . x

n
N−1 = yn . . . yn+N−1 for each n ≥ 0. Therefore

σ(xn)0 . . . σ(xn)N−2 = xn1 . . . x
n
N−1 = yn+1 . . . yn+N−1 = xn+1

0 . . . xn+1
N−2

and d(σ(xn), xn+1) ≤ 2−N+2 < δ. Hence (xn)n≥0 is a δ-pseudo-orbit, which can be
ε-shadowed by some z ∈ X. But then zn = xn0 = yn for every n ≥ 0, so z = y ∈ X.
Since y was arbitrary, up to the condition that each of its N -blocks belongs to L(X),
it follows that the only restriction of X involve forbidden blocks of length ≤ N , and
therefore X is an SFT.

2.1.2 Topological entropy for SFTs

Definition 2.1.13. A non-negative N×N matrix A = (aij)
N
i,j=1 is called irreducible

if for every i, j there is k such that Ak has (i, j)-entry a
(k)
ij > 0. For index i, set

per(i) = gcd(k > 1 : a
(k)
ii > 0). If A is irreducible, then per(i) is the same for every i,

and we call it the period of A. We call A aperiodic if its period is 1. The matrix
is called primitive if there is k such that a

(k)
ij > 0 for all i, j.

Exercise 2.1.14. Show that if A is primitive and irreducible, then A is primitive,
but irreducibility or aperiodicity alone doesn’t imply primitivity. Conversely, if A is
primitive, then it is also aperiodic and irreducible.
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Exercise 2.1.15. If A is irreducible, show that per(i) is indeed independent of i.

Theorem 2.1.16. The entropy of an irreducible SFT equals log λ where λ is the
leading eigenvalue of the transition matrix.

Proof. Let An = (a
(n)
ij )i,j∈A be the n-th power of the transition matrix A. Every

n-word in L(X) corresponds to an n-path in the transition graph, and the number of

n-paths from i to j is given by p
(n)
ij . From the Perron-Frobenius Theorem ?? we can

derive that there is C > 0 such that

C−1λn ≤ a
(n)
ij ≤ Cλn for all i, j ∈ A and n sufficiently large,

provided A is aperiodic. (If A is periodic, then the above estimate holds for ev-
ery i ∈ A, n sufficiently large, and some j ∈ A depending on i and n. This is
enough to complete the argument.) It follows that C−1λn ≤ p(n) ≤ (#A)2Cλn and
limn

1
n

log p(n) = log λ.

Proposition 2.1.17. If (Y, σ) is a factor of (X, σ), then htop(Y, σ) ≤ htop(X, σ). If
(X, σ) and (Y, σ) are conjugate, then htop(X, σ) = htop(Y, σ).

The result also holds in general, i.e., not just in the context of subshifts, see
Corollary 1.6.4, but using the word-complexity and sliding block codes, the proof is
particularly straightforward here.

Proof. Let ψ : X → Y be the factor map. Since it is continuous, it is a sliding block
code by Theorem 1.7.2, say of window length 2N+1. Therefore the word-complexities
relate as pY (n) ≤ pX(n+ 2N), and hence

lim sup
1

n
log pY (n) ≤ lim sup

1

n
log pX(n+ 2N)

= lim sup
n+ 2N

n

1

n+ 2N
log pX(n+ 2N)

= lim sup
1

n+ 2N
log pX(n+ 2N).

This proves the first statement. Using this in both directions, we find htop(X, σ) =
htop(Y, σ).

As shown by Parry [192], irreducible SFTs are intrinsically ergodic. This fol-
lows also from Theorem ?? and Proposition ??. Weiss [236] showed that factors of
irreducible SFTs are intrinsically ergodic as well.
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2.1.3 Vertex-splitting and conjugacies between SFTs:

It is natural to ask which SFTs are conjugate to each other. We have seen that having
equal topological entropy is a necessary condition for this, but it is not sufficient. The
conjugacy problem of SFTs was solved by Bob Williams (1942–) and in this section
we discuss the ingredients required for this result. The complete details can be found
in [175].

We know that an SFT (X, σ) has a graph representation (as vertex-labeled subshift
or edge-labeled subshift, and certainly not unique). The following operation on the
graph G, called vertex splitting, produces a related subshift.

v′v2

v′′v1

v′v

v′′

v′v2

v′′v1

Figure 2.5: Insplit graph Original G Outsplit graph

Let G = (V,E) where V is the vertex set and E the edge set. For each v ∈ V , let
Ev ⊂ E be the set of edges starting in v and Ev ⊂ E be the set of edges terminating
in v.

Definition 2.1.18. Let G = (V,E), and assume that #Ev ≥ 2. An elementary
insplit graph Ĝ = (V̂ , Ê) is obtained by

• doubling one vertex v ∈ V into two vertices v1, v2 ∈ V̂ ;

• replacing each e = (v → w) ∈ Ev for w 6= v by an edge ê1 = (v1 → w) and
ê2 = (v2 → w);

• replacing each e = (w → v) ∈ Ev for w 6= v by a single edge ê1 = (w → v1)
or an edge ê2 = (w → v2) (but make sure that v1 and v2 both have incoming
edges);

• replacing each loop (v → v) by two edges (v1 → vi), (v2 → vi) ∈ Ê (so one of
them is a loop) where i ∈ {1, 2}.

An insplit graph is then obtained by successive elementary outsplits.

(Elementary) outsplit graphs are defined similarly, interchanging the roles of Ev
and Ev.

Definition 2.1.19. Let G = (V,E), and assume that #Ev ≥ 2. An elementary
outsplit graph Ĝ = (V̂ , Ê) is obtained by
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• doubling one vertex v ∈ V into two vertices v1, v2 ∈ V̂ ;

• replacing each e = (v → w) ∈ Ev for w 6= v by a single edge ê = (v1 → w) or
ê = (v2 → w) (but make sure that v1 and v2 both have outgoing edges);

• replacing each e = (w → v) ∈ Ev for w 6= v by an edge ê = (w → v1) and an
edge ê = (w → v2);

• replacing each loop (v → v) by two edges (vi → v1), (vi → v2) ∈ Ê (so one of
them is a loop) where i ∈ {1, 2}.

An outsplit graph is then obtained by successive elementary outsplits.

If every e ∈ E has a unique label, then we will also give each ê ∈ Ê a unique label.

Proposition 2.1.20. Let Ĝ be an in- or outsplit graph obtained from G. Then
edge-labeled subshift X̂ of Ĝ and the edge-labeled subshift X of G are mutually semi-
conjugate to each other.

Proof. We give the proof for an elementary outsplit Ĝ; the general outsplit and (ele-
mentary) insplit graph follow similarly. By Theorem 1.7.2, it suffices to give sliding
block code representations for π : X̂ → X and π̂ : X → X̂.

• The factor map π : X̂ → X is simple. If ê ∈ Ê replaces e ∈ E, then f(ê) = e
and π(x)i = f(xi).

• Each 2-word ee′ ∈ L(X) uniquely determines the first edge ê of the 2-path in
Ĝ that replaces the 2-path in G coded by ee′. Set f̂(e, e′) = ê and π̂(x)i =
f̂(xi, xi+1).

This concludes the proof. In general, mutual semi-conjugacy is not enough to conclude
conjugacy (it is not given that π̂ = π−1), but in this situation, conjugacy holds, see
Theorem 2.1.25.

Now let Ĝ = (V̂ , Ê) be an outsplit graph of G = (V,E) with transition matrices Â
and A respectively. Assume that N = #V and N̂ = #V̂ . Then there is N×N̂ -matrix
D = (dv,v̂)v∈V,v̂∈V̂ where dv,v̂ = 1 if v̂ replaces v. (Thus D is a sort of rectangular
diagonal matrix.)

There also is an N̂×N -matrix C = (cv̂,v)v̂∈V̂ ,v∈V where cv̂,v is the number of edges

e ∈ Ev that replace an edge ê ∈ Êv̂.

Proposition 2.1.21. With the above notation,

DC = A and CD = Â.
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Sketch of proof. Work it out for an elementary outsplit, and then compose elementary
outsplits to a general outsplit. For the first step, we compute the elementary outsplit
for the example of Figure 2.5.

A =

1 1 1
0 1 1
1 0 0

 and Â =


0 0 0 1
1 1 1 0
0 0 1 1
1 1 0 0

 .

Also

D =

1 1 0 0
0 0 1 0
0 0 0 1

 and C =


0 0 1
1 1 0
0 1 1
1 0 0

 .

Now do the matrix multiplications to check that DC = A and CD = Â.

Exercise 2.1.22. Do the same for the elementary insplit graph in the example of
Figure 2.5.

Definition 2.1.23. Two matrices A and Â are strongly shift equivalent (of lag
`) (denoted as A ≈ Â) if there are (rectangular) matrices Di, Ci and Ai, 1 ≤ i ≤ `
such that

A = A0, Ai−1 = DiCi, CiDi = Ai, i = 1, . . . , `, A` = Â. (2.1)

Exercise 2.1.24. Show that strong shift equivalence ≈ is indeed an equivalence re-
lation between nonnegative square matrices. Show that A ≈ Â implies that A and Â
have the same leading eigenvalue λ = λ̂.

Matrices A and Â being strongly shift equivalent means, in effect, that their
associated graphs G and Ĝ can be transformed into each other by a sequence of
elementary vertex-splittings and their inverses (vertex-mergers). This turns out the
only mechanism that keeps SFTs conjugate, as shown in Williams’ theorem from
1973. The full proof is in [175, Chapter 7].

Theorem 2.1.25 (Williams). Two SFTs are conjugate if and only if their transition
matrices are strongly shift equivalent.

Strong shift equivalence A ≈ Â may be a complete invariant for the edge-labeled
SFTs XA and XÂ to be conjugate, it is in practice difficult to check if A ≈ Â. Even if

A and Â have, say, the same characteristic polynomial, they need not be strongly shift
equivalent. An easier to check, but not complete invariant, is a weaker notion called
shift equivalent (with lag `) (without the “strong”) and is denoted as A ∼ Â.
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This means that the `-th powers of the matrices are strong shift equivalent (with lag
1): there are matrices D,C such that

A` = DC, A` = CD and AD = DB CÂ = AC (2.2)

If ` = 1, then the first half of (2.2) implies (2.1), whereas the second half is an
immediate consequence of the first. Strong shift equivalence implies shift equivalence,
see [175, Theorem 7.3.3]. If A 6∼ Â, then XA and XÂ are not conjugate, but if A 6 Â, it

is still undecided if they are. In turn, A ∼ Â if and only if their dimension groups are
isomorphic, see [175, Section 7.4]. We say more about dimension groups in Section ??.

2.2 Sofic subshifts

Definition 2.2.1. A subshift (X, σ) is called sofic if it is the space of paths in an
edge-labeled graph. Other than with the vertex-labeling, multiple edge are allowed to
be assigned the same symbol in the alphabet.

Lemma 2.2.2. Every SFT is sofic.

Proof. Assume that the SFT has memory M . Let G be the vertex-labeled M -block
transition graph of the SFT i.e., each a1 . . . aM ∈ LM(X) is the label of a unique ver-
tex. We have an edge a1 . . . aM → b1 . . . bM if and only if a1 . . . aMbM = a1b1 . . . bM ∈
LM+1(X), and then this M + 1-word is also the label of the edge. Since each infinite
vertex-labeled path is in one-to-one correspondence with a an infinite edge-labeled
path is in one-to-one correspondence with an infinite word in X, we have represented
X as a sofic shift.

Remark 2.2.3. Not every sofic shift is an SFT. For example the even shift (Exam-
ple 0.1.13) has an infinite collection of forbidden words, but it cannot be described by
a finite collection of forbidden words. Sofic shifts that are not of finite type are called
strictly sofic.

Figure 2.6: Don Ornstein (1934- ) and Benji Weiss (1941-)

The word sofic was coined by Benji Weiss; it comes from the Hebrew word for
“finite”. The following theorem shows that we can equally define the sofic subshifts
as those that are a factor of a subshift of finite type.
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Theorem 2.2.4. A subshift X is generated by an edge-labeled graph if and only if it
is the factor of an SFT.

Proof. ⇒: Let G be the edge-labeled graph of X, with edges labeled in alphabet A.
Relabel G in a new alphabet A′ such that every edge has a distinct label. Call the
new edge-labeled graph G ′. Due to the injective edge-labeling, the edge-subshift X ′

generated by G ′ is isomorphic to an SFT. In fact, we just have to take the dual graph
in which the edges of G ′ are the vertices, and a→ b if an only if a labels the incoming
edge and b the outgoing edge of the same vertex in G ′. Now π : X ′ → X is given
by π(x)i = a if a is the label in G of the same edge that is labeled xi in G ′. This π
is clearly a sliding block code, so by Theorem 1.7.2, π is continuous and commutes
with the shift.

⇐: If X is a factor of an SFT , the factor map is a sliding block code by Theo-
rem 1.7.2, say of window size 2N + 1: π(x)i = f(xi−N , . . . , xi+N). Represent the SFT
by an edge-labeled graph G ′ where the labels are the 2N + 1-words w ∈ L2N+1(X).
These are all distinct. The factor map turns G ′ into an edge-labeled graph G with
labels f(w). Therefore X is sofic.

Corollary 2.2.5. Every factor of a sofic shift is again a sofic shift. Every shift
conjugate to a sofic shift is again sofic.

Before we discuss further charaterizations of sofic systems, let us mention that
sofic systems with an irreducible transition matrix are always transitive, have a dense
set of periodic points, and is mixing if and only if it is totally transitive. , see [16,
Theorem 3.3].

Definition 2.2.6. Given a subshift X and a word v ∈ L(X), the follower set F(v)
is the collection of words w ∈ L(X) such that vw ∈ L(X).

Example 2.2.7. Let Xeven be the even shift from Example 0.1.13. Then F(0) =
L(Xeven) because a 0 casts no restrictions on the follower set. Also F(011) = L(Xeven),
but F(01) = 1L(X) = {1w : w ∈ L(X)}. Although each follower set is infinite, there
are only these two distinct follower sets. Indeed, F(v0) = F(0) for every v ∈ L(X),
and F(0111) = F(01), F(01111) = F(011), etc. The follower set F(1) is not properly
defined, but we can ignore this.

Theorem 2.2.8. A subshift (X, σ) is sofic if and only if the collection of its follower
sets is finite.

Proof. First assume that the collection V = {F(v) : v ∈ L(X)} is finite. We will
build an edge-labeled graph representation G of X as follows:

1. Let V be the vertices of G.
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2. If a ∈ A and w ∈ L(X), then F(wa) ∈ V ; draw an edge F(w) → F(wa), and
label t with the symbol a. (Although there are infinitely many w ∈ L(X), there
are only finitely many follower sets, and we need not repeat arrows between the
same vertices with the same label.)

The resulting edge-labeled graph G represents X.
Conversely, assume that X is sofic, with edge-labeled graph representation G. For

every w ∈ L(X), consider the collection of paths in G representing w, and let T (w)
be the collection of terminal vertices of these paths. Then F(w) is the collection of
infinite paths starting at a vertex in T (w). Since G is finite, and there are only finitely
many subsets of its vertex set, the collection of follower sets is finite.

Definition 2.2.9. An edge-labeled transition graph G is right-resolving if for each
vertex v ∈ G, the outgoing arrows all have different labels. It is called follower-
separated if the follower set of each vertex v (i.e., the set of labeled words associated
to paths starting in v) is different from the follower set of every other vertex.

Every sofic shift has a right-resolving follower-separated graph representation and
if we minimize the number of vertices in such graph, there is only one such graph
with these properties. In fact, the follower set representation G constructed in the
first half of the proof is both right-resolving, follower-separated and minimal. The
latter two properties by the choice of V . To see the former, assume that v ∈ V and
v → w and v → w′ have the same label a. That implies that

F(w) = {x : ax ∈ F(v)} = F(w′),

so w = w′.

Corollary 2.2.10. Every transitive sofic shift X is synchronizing, and (unless it is a
single periodic orbit) has positive entropy. In fact, the entropy htop(X) = log λA,
where λA is the leading eigenvalue of the transition graph of the minimal right-
resolving representation of X.

Proof. Let edge-labeled graph G be the right-resolving follower-separated representa-
tion of X. Pick any word u ∈ L(X) and let T (u) be the collection of terminal vertices
of paths in G representing u. If T (u) consists of one vertex v ∈ V , then every paths
containing u goes through v, and there is a unique follower set F(u), namely the col-
lection of words representing paths starting in v. In particular, u is a synchronizing
word.

If #T (u) > 1, then we show that we can extend u on the right so that it becomes
a synchronizing word. Suppose that v 6= v′ ∈ T (u). Since G is follower-separated,
there is u1 ∈ L(X) such that u1 ∈ F(v) but u1 /∈ F(v′) (or vice versa, the argument
is the same). Extend u to uu1. Because G is right-resolving, u1 can only represent
a single path starting at any single vertex. Therefore #T (uu1) ≤ #T (u). But since
u1 /∈ F(v′), we have in fact #T (uu1) < #T (u). Continue this way, extending uu1
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until eventually #T (uu1 . . . uN) = 1. Then uu1 . . . uN is synchronizing. (In fact, what
we proved here is that every u ∈ L(X) can be extended on the right to a synchronizing
word.)

The positive entropy follows from Theorem ?? or Proposition ??. In fact, since G is
right-resolving, there is an at most #V -to-one correspondence between n-paths start-
ing in G and words in Ln(X). Therefore #{n-paths} ≤ pX(n) ≤ #V · #{n-paths},
and we can use Theorem ??.

Remark 2.2.11. This extends the diagram of Remark ?? into:

SFTs ⊂ sofic shifts ⊂ synchronizing subshifts ⊂ coded subshifts .

and irreducible sofic shifts are intrinsically ergodic see [236] and Theorem ??.

2.3 β-shifts and β-expansions

Throughout this section, we fix β > 1. A number x ∈ [0, 1] can be expressed as
(infinite) sum of powers of β:

x =
∞∑
k=1

bkβ
−k where

{
bk ∈ {0, 1, . . . , bβc} if β /∈ N;

bk ∈ {0, 1, . . . , β − 1} if β ∈ {2, 3, 4, . . . }.

For the case β ∈ {2, 3, 4, . . . }, this is the usual β-ary expansion; it is unique except
for the β-adic rationals. For example, if β = 10, then 0.3 = 0.29999 . . . If β /∈ N,
then x need not have a unique β-expansion either, but there is a canonical way to do
it, called greedy expansion:

• Take b1 = bβxc, that is, we take b1 as large as we possibly can.

• Let x1 = βx− b1 and b2 = bβx1c, again b2 is as large as possible.

• Let x2 = βx1 − b2 and b3 = bβx2c, etc.

In other words, xk = T kβ (x) for the map Tβ : x 7→ βx (mod 1), and bk+1 is the integer
part of βxk.

Definition 2.3.1. The closure of the greedy β-expansions of all x ∈ [0, 1] is a subshift
of {0, . . . , bβc}N; it is called the β-shift and we will denote it as (Xβ, σ).

Note that if b = (bk)
∞
k=1 is the β-expansion of some x ∈ [0, 1], then σ(b) is the

β-expansion of Tβ(x). The following lemma ([192]) characterizes the β-shift in terms
of �lex:

Lemma 2.3.2. Let c = c1c2c3 . . . be the β-expansion of 1. Then b ∈ Xβ if and only
if

σn(b) �lex c for all n ≥ 0,

where �lex stands for the lexicographic order.
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Example 2.3.3. Let β = 1.8393 . . . be the largest root of the equation β3 = β2+β+1.
One can check that c = 111000000 . . . Therefore b ∈ Xβ if and only if one of

σn(b) = 0 . . . , σn(b) = 10 . . . , σn(b) = 110 . . . or σn(b) = c,

holds for every n ≥ 0. The subshift Xβ is itself not of finite type, because there are
infinitely many forbidden words 1110k1, k ≥ 0, but by some recoding it is easily seen
to be conjugate to an SFT (see the middle panel of Figure 2.7), and it has a simple
edge-labeled transition graph.

T2
β1 Tβ1 10

100

111

110 0

0

1

1

0

0

1

Figure 2.7: Left: The map Tβ for β3 = β2 + β + 1. Then T 3
β (1) = 0. Middle: A

corresponding vertex-labeled graph. Right: A corresponding edge-labeled graph.

Proof of Lemma 2.3.2. Let b = (bk(x))k≥1 be the β-expansion of some x ∈ [0, 1). (If
x = 1 there is nothing to prove because b = c.) Since x < 1 we have b1 = bβxc ≤
c1 = bβ · 1c. If the inequality is strict, then b ≺lex c. Otherwise, 0 ≤ x1 = Tβ(x) =
βx− b1 < β · 1− c1 = Tβ(1), and we find that b2 = bβx1c ≤ c2 = bβTβ(1)c. Continue
by induction.

Conversely, define half-open subintervals of [0, 1]:

Aj = [
j

β
,
j + 1

β
) 0 ≤ j < c1,

Ac1j = [
c1

β
+

j

β2
,
c1

β
+
j + 1

β2
) 0 ≤ j < c1, (2.3)

Ac1c2j = [
c1

β
+
c2

β2
+

j

β2
,
c1

β
+
c2

β2
+
j + 1

β2
) 0 ≤ j < c3,

...
...

...
... (2.4)

They are adjacent and clearly Tβ(Aj) = [0, 1) for 0 ≤ j < c1. Also Tβ(Ac1j) =
[j/β, (j + 1)/β) for 0 ≤ j < c2, and since σn((ck)k≥1 �lex (ck)k≥1 by the first part of
the proof, we have c2 ≤ c1 and in particular Tβ(Ac1j) is one of the intervals in the
first row of (2.3). Therefore T 2

β (Ac1j) = [0, 1). By induction, we obtain

T k+1
β (Ac1c2...ckj) = [0, 1) for all k ∈ N, 0 ≤ k < ck+1. (2.5)
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In fact, Ac1...ckj = {x ∈ [0, 1] : bn(x) = cn for 1 ≤ n ≤ k, bk+1(x) = j}.
Now take (bk)k≥1 ∈ AN such that (bk)k≥1 �lex (ck)k≥1, and define n0 = 0 and

recursively nr+1 = min{k > nk : bk 6= ck−nk}. Suppose first that all nr’s are finite.
Then bnr+1 . . . bnr+1 is the index of one of the intervals in the nr+1−nr’th row of (2.3).
The intersection ⋂

r≥0

T−nrβ (Abnr+1...bnr+1
)

(of intervals of length≤ β−r) is a single point x with (bk(x))k≥1 = (bk)k≥1. If ns+1 =∞
for some s ≥ 0, and we set Abns+1bns+2... = {1}, then {x} =

⋂s
r=0 T

−nr
β (Abnr+1...bnr+1

)
gives again the unique point with (bk(x))k≥1 = (bk)k≥1.

Proposition 2.3.4. The β-shift is a coded shift.

Proof. Let c = c1c2c3 . . . be the β-expansion of 1. Then we can take as set of code
words

S ={0, 1, . . . , (c1 − 1)︸ ︷︷ ︸
1−words

, c10, c11, . . . , c1(c2 − 1)︸ ︷︷ ︸
2−words

,

c1c20, c1c21, . . . , c1c2(c3 − 1)︸ ︷︷ ︸
3−words

, . . . (2.6)

...
...

c1c2c3c4c5c6 . . .︸ ︷︷ ︸
a single infinite word

}.

Apart from the single infinite word, these are exactly the indices of the intervals
Ac1...ckj in (2.3), and we know from (2.5) that T k+1

β (Ac1...ckj) = [0, 1), so free con-
catenations of such code words all represent (bk(x))k≥1 for some x ∈ [0, 1]. Any
concatenation in S∗ also satisfies Lemma 2.3.2, so that S∗ is dense in (and in fact
equal to) Xβ.

Corollary 2.3.5. Every β-transformation is intrinsically ergodic.

Proof. This was first shown by Hofbauer [146]. Implementing Theorem ??, we have
#{s ∈ S : |s| = n} ≤ β for each n, so the exponential growth rate of these words is
0. Hence Theorem ?? even implies that every subshift of the β-shift is intrinsically
ergodic.

Example 2.3.6. In fact, for the β-transformation with slope β > 1, the measure
of maximal entropy is absolutely continuous w.r.t. Lebesgue, and there is an explicit
formula for the density:

dµ

dx
=

∑
n≥1,Tnβ (1)>x

β−n

see [192].
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The following result was probably first stated in [167, Section 6].

Corollary 2.3.7. For every β ∈ [1, 2], the β-shift (Xβ, σ) is hereditary.

Proof. This follows directly from Lemma 2.3.2 which determines the shape of the
code-words in Proposition 2.3.4. Indeed, if x ∈ Xβ and n = min{i ≥ 1 : xi 6= ci}.
Then xn < cn and x1 . . . xn is a code word. Now repeat the argument with σn(x).

Theorem 2.3.8. The Tβ-orbit of 1

1. contains 0 if and only if Xβ is conjugate to an SFT;

2. preperiodic if and only if Xβ is sofic;

3. not dense in [0, 1] if and only if Xβ is synchronizing.

Note that, since there are uncountably many choices of β > 1, all leading to non-
conjugate subshifts (see Theorem 2.3.12 below), while there are only countably many
sofic shifts, Xβ is not sofic for most β.

Proof. First note that if β ∈ N, then Xβ is the full shift on β symbols, so clearly an
SFT. Assume therefore that β is non-integer.

For statement 1. let aj = Tβ(1)j, so a0 = 1 and aN = 0 for some N ≥ 2. Let
P be the partition given by the branches of TN−1

β . Then aj ∈ ∂P and the image

TN−1
β (∂J) ⊂ {ai}Ni=0 for each J ∈ P . This means that P is a Markov partition for

TN−1
β , and hence (Xβ, σ

N−1) is a memory N−1 SFT over the alphabet {0, 1, . . . , bβc}.
See Example 2.3.3 for an illustration of this.

For statement 2., and c = c1c2 . . . cN(cN+1 . . . cN+p)
∞, we claim that Xβ only has

finitely many different follower sets, see Definition 2.2.6. Let w be a proper prefix of
some s1s2s3 · · · ∈ S∗ for the collection of word S from (2.6).. That is, there are k ≥ 1
and 0 ≤ m < |sk| such that |w| = |s1 . . . sk−1|+m. The possible follower sets are

F(w) =



S∗ if m = 0

{aS∗ : 0 ≤ a < c2} ∪ {c2aS
∗ : 0 ≤ a < c3} ∪ . . . if m = 1

{aS∗ : 0 ≤ a < c3} ∪ {c3aS
∗ : 0 ≤ a < c4} ∪ . . . if m = 2

{aS∗ : 0 ≤ a < c4} ∪ {c4aS
∗ : 0 ≤ a < c5} ∪ . . . if m = 3

...
...

...

Since c is eventually periodic, this list of follower sets becomes periodic as well: for
each i ≥ 0, they are the same for m = N + i and m = N + p + i. This proves the
claim, so by Theorem 2.2.8, Xβ is sofic. If on the other hand, the expansion of 1 is
not preperiodic, so the Tβ-orbit of 1 is infinite, then there are infinitely many different
follower sets by Theorem 2.3.11 below, so Xβ cannot be sofic. In fact, it is easy to
construct an edge-labeled transtion graph for Xβ, see Example 2.3.9.
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Finally, for statement 3., assume that orb(1) is not dense in [0, 1] and let U be an
interval that is disjoint from orb(1). Take N so large that the domain Z of an entire
branch of TNβ is contained in U . The set Z is a cylinder set, associated to a unique
N -word v ∈ L(Xβ). If u ∈ L(Xβ) is an M -word such that uv ∈ L(Xβ), then the
domain Y of the corresponding branch of TMβ is such that TMβ (Y )∩Z 6= ∅. But since
orb(1) ∩ Z = ∅, we have TMβ (Y ) ⊃ Z so that, for every z ∈ TNβ (Z), there is y ∈ Y
such that TM+N

β (y) = z. Symbolically, this means that for every word w ∈ L(X)
such that vw ∈ L(Xβ), also uvw ∈ L(Xβ). In other words, v is synchronizing.

Conversely, suppose that v is some N -word. Then v corresponds to the domain
Z of some branch of TNβ . If orb(1) is dense, then there is n ∈ N such that T nβ (1) ∈ Z.
Therefore there is a one-sided neighborhood Y of 1 such that T nβ (Y ) = [0, T nβ (1)], and
there is x ∈ Z \ T nβ (Y ). Let w be the itinerary of TNβ (x); since x ∈ Y , vw ∈ L(Xβ).
Similarly, taking u = c1c2 . . . cn, since T nβ (1) ∈ Z, also uv ∈ L(Xβ). However, uvw /∈
L(Xβ), because there is no y ∈ Y such that T nβ (y) = x. This shows that v is not
synchronizing, and since v was arbitrary, Xβ is not synchronizing.

Example 2.3.9. Let β = 1.801937735 . . . be the largest root of the equation β3 =
β2 + 2β − 1. One can check that c = 11010101010 . . . is preperiodic, and the Tβ-orbit
of 1 is {1, β − 1, β(β − 1), β − 1, β(β − 1), . . . . The points {0, β(β − 1), 1/β, β − 1, 1}
define a Markov partition, see Figure 2.8. Therefore the system ([0, 1], Tβ) can be
described as an SFT, but not in the alphabet {0, 1}. However, by edge-labeling the
transition graph in Figure 2.8, we get Xβ. Therefore b ∈ Xβ if and only if one of

σn(b) = 0 . . . , σn(b) = 10 . . . , σn(b) = 110 . . . or σn(b) = c,

holds for every n ≥ 0. The subshift Xβ is itself not of finite type, because there are
infinitely many forbidden words 1110k1, k ≥ 0, but by some recoding it is easily seen
to be conjugate to an SFT (see the middle panel of Figure 2.7), and it has a simple
edge-labeled transition graph.

T2
β1 Tβ1 10

a b c d
db

ca
0

0

1

0

1

10 1

a = [0, β(β − 1)] = [0∞, (01)∞]

b = [β(β − 1), 1/β] = [0∞, (01)∞, 01(10)∞]

c = [1/β, β − 1] = [10∞, (10)∞]

d = [β(β − 1), 1] = [(10)∞, 0(10)∞]

Figure 2.8: The transition graph for a sofic β-shift

The first two types of β-shifts in Theorem 2.3.8 correspond to certain algebraic
properties of β, which we will mention, but not prove. For the definitions of Pisot
and Perron number, see Section ??.
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Theorem 2.3.10. If β is a Pisot number then Xβ is sofic. If the subshift Xβ is sofic
then β is a Perron number.

See [213] and [30, Chapter 7] for more results in this spirit.

Continuing on the theme of follower sets, let

F(n) := #{F : F is the follower set of some v ∈ L(Xβ), |v| = n} (2.7)

be the number of distinct follower sets of n-words in L(Xβ). Clearly, F(n) ≤ p(n),
but in general F(n) is much smaller. Recall from Theorem 2.2.8 that F(n) is a
bounded sequence if and only if the subshift is sofic. For β-shifts, we see in general
linear growth of F(n).

Theorem 2.3.11. For every β-shift (Xβ, σ) with β > 1, we have F(n) = n + 1,
except when orb(1) is finite; in this case, (Xβ, σ) is sofic.

Proof. This result comes from [188, Theorem 2.25], but we give a different dynamical
proof. Set β > 1, and assume that c = c1c2c3 . . . is the β-expansion of 1. Let
D0 = [0, 1] and in general1 Dn = [0, T nβ (1)]. First assume that all points T nβ (1) are
distinct. The proof will be by induction.

For n = 0, there is only one follower set F0 of the empty word ε: F0 = L(Xβ).
Therefore F(0) = 1.

For n = 1 and a1 6= c1, Tβ([a1/β, (a1)/β]) = [0, 1] = D0 and the follower set of a1

is F0. If a1 = c1, then Tβ([a1/β, 1]) = [0, Tβ(1)] = D1 and the follower set F1 of a1 is
equal to the collection of itineraries of points x ∈ D1. Therefore F(1) = 2.

For general n, if v = a1a2 . . . an, and k is the smallest index such that ak+1 . . . an =
c1 . . . cn−k, then the corresponding follower set equals Fn−k. In particular, if k = 0,
then the follower set of a1 . . . an is the collection of itineraries of x ∈ Dn. Hence
F(n) = n+ 1, proving the statement.

If Dn = Dk for some k < n (say n is minimal with this property) then we get
no new follower sets anymore, and F(m) = n + 1 for all m ≥ n. As shown in
Theorem 2.2.8, Xβ is sofic in this case.

Theorem 2.3.12. The β-shift for β > 1 has topological entropy log β.

Proof. This is a special case of a theorem of interval dynamics saying that every
piecewise affine map with slope ±β has entropy htop(Tβ) = log β, but we will give a
purely symbolic proof.

1This notation is derived the Hofbauer tower construction from Section ?? applied to β-
transformations. If the orbit of 1 is infinite, then there are n + 1 levels in the tower of height
≤ n, The image of each n-cylinder under Tnβ is one of these, and therefore #F(n) = n + 1. The
same result holds for unimodal maps, and more general, for interval maps with d + 1 branches,
#F(n) ≤ dn+ 1.
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Recall the β-expansion c = c1c2 . . . of 1 and the set of code words S from (2.6).
By Proposition 2.3.4, every word in L(Xβ) has the form2

s1s2 . . . smc1c2 . . . ck for some (maximal) s1, . . . , sm ∈ S, k ≥ 0. (2.8)

Let pβ(n) and pS∗(n) be the number of n-words in Xβ and S∗ respectively. Since
every word in S∗ is a word in L(Xβ), we have pS∗(n) ≤ pβ(n). Conversely, by (2.8),

pβ(n) ≤
∑

0≤m≤n

pS∗(m) ≤ (n+ 1) max
1≤m≤n

pS∗(m).

Therefore the exponential growth rates are the same:

htop(Xβ) = lim sup
n→∞

1

n
log pβ(n) = lim sup

n→∞

1

n
log pS∗(n).

Now to compute the latter, we use generating functions:

fS∗(t) =
∑
n≥0

pS∗(n)tn and fS(t) =
∑
n≥1

#{s ∈ S : |s| = n}tn.

Note that pS∗(0) = 1 (the single empty word ε) and #{s ∈ S : |s| = n} = cn. We
have pS∗(n) =

∑n
k=1 #{s ∈ S : |s| = k}pS∗(n− k), and this gives for the power series

1 + fS∗(t)fS(t) = 1 +
∑
n≥0

pS∗(n)tn
∑
m≥1

#{s ∈ S : |s| = m}tm

= 1 +
∑
N≥1

N∑
k=1

pS∗(N − k)tN−k#{s ∈ S : |s| = k}tk

= 1 +
∑
N≥1

pS∗(N)tN = fS∗(t).

Therefore fS∗(t) = 1
1−fS(t)

. Since 1 =
∑

n≥1 cnβ
−n = fS(β−1), β−1 is a (simple) pole of

fS∗ whereas fS∗(t) is well-defined for |t| < β−1. Hence β−1 is the radius of convergence
of fS∗ , and this means that the coefficients of fS∗ satisfy

lim sup
n→∞

1

n
log pS∗(n) = log β.

This concludes the proof.

2The fact that {Ac1...ckj : k ∈ N, 0 ≤ j < ck+1} for a partition of [0, 1) show that (bk)k≥1 starts
with a code word rather than the sufix of a code word for every x ∈ [0, 1).
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Chapter 3

Subshifts of zero entropy

3.1 Linear recurrence

Definition 3.1.1. A subshift (X, σ) is linearly recurrent if there is L ∈ N such
that for every k-cylinder Z and every x ∈ Z∩X, there is n ≤ Lk such that σn(x) ∈ Z.

This notion is stronger than uniformly recurrent, in that it relates the N = N(U)
in the definition of uniform recurrence (in the case that U is a cylinder set) in a
“uniform” way to the length of U .

Exercise 3.1.2. Find minimal subshifts that are not periodically recurrent. Find
minimal subshifts that are not linearly recurrent.

Definition 3.1.3. Given u ∈ L(X), we call w a return word if

• u is a prefix and suffix of wu but u does not occur elsewhere in w;

• wu ∈ L(X).

We denote the collection of return words as Ru.

In other words, we can write every x ∈ [u] as

x = w1w2w3w4w5w6 · · · = uw′1uw
′
2uw

′
3uw

′
4w
′
2uw

′
5uw

′
6 . . . , (3.1)

where uw′j = wj ∈ Ru for each j ∈ N., and there no other appearances of u in
the rightmost expression. Note that if (X, σ) is minimal (and hence u appears with
bounded gaps), then Ru is finite.

Example 3.1.4. Construct ρ ∈ {0, 1}N by setting ρ1 = 0, ρ2 = 1 and recursively

ρSk+1 . . . ρSk+1
= ρ1 . . . ρSk−1

, k ≥ 1

for the Fibonacci numbers S0, S1, S2, S3, · · · = 1, 2, 3, 5, . . . This gives

ρ = 01 0 01 010 01001 01001010 010010100100 . . .

49
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(This sequence is in fact the fixed point of the Fibonacci substitution of Example 3.2.2.)
If u = 010010, then w = 010 ∈ Ru because wu = 010|010010 starts and ends with u
(and these occurrences of u overlap). Note that it is therefore possible that w ∈ Ru

is shorter than u.

Definition 3.1.5. A subshift X is called square-free if uu /∈ L(X) for every ε 6=
u ∈ L(X). Similarly, X is n-power free if un /∈ L(X) for every ε 6= u ∈ L(X).

Theorem 3.1.6 (Durand, Host & Skau [112]). Let (X, σ) is a linearly recurrent
subshift with constant L, and which is not periodic under the shift σ. Then

(i) The word-complexity is sublinear: p(n) ≤ Ln for all n ∈ N.

(ii) X is L+ 1-power free.

(iii) For all w ∈ Ru, |u| < L|w|.

(iv) #Ru ≤ L(L+ 1)2.

(v) Every factor (Y, σ) of (X, σ) is linearly recurrent.

Proof. (i) Linear recurrence implies that for every n ∈ N and every n-word u ∈ L(X),
the occurrence frequency

lim inf
k→∞

1

k
#{1 ≤ i ≤ k : xi . . . xi+n−1 = u} ≥ 1

Ln

for every x ∈ X. Therefore there is no space for more than Ln n-words.
(ii) If an n-word v ∈ L(X), then the gap between two occurrences of v ≤ L|v|, so
every word u of length (L+ 1)|v| − 1 contains v at least once. If vL+1 ∈ L(X), then
all n-words are cyclic permutations of v, cf. Proposition 3.3.2. But then L(X) is
shift-periodic.
(iii) Take u ∈ L(X) and w ∈ Ru. If |u| ≥ L|w|, then the word wu (which starts and
ends with u) must in fact have wL+1 as prefix. This contradicts (2).
(iv) Take u ∈ L(X) and v ∈ L(X) of length (L + 1)2|u|. By the proof of (2), every
word of length ≤ (L+ 1)|u| occurs in v and in particular, every return word w ∈ Ru

occurs in v. Now return words in v don’t overlap (cf. (3.1)), so using the minimal
length |w| ≥ |u|/L of return words (from item (iii)), we find #Ru ≤ |v|/(|u|/L) =
L(L+ 1)2.
(v) Finally, suppose that (Y, σ), over alphabet B, is a factor of (X, σ), and f :
A2N+1 → B is the corresponding sliding block code, so 2N + 1 is its window size.
Take u ∈ L(X) of length |u| ≥ 2N + 1 and v its image under f . Then |v| = |u| − 2N .
If w ∈ Rv, then |w| ≤ max{|s| : s ∈ Ru} ≤ L|u| ≤ L(|v| + 2N) ≤ L(2N + 1)|v|.
Therefore Y is linearly recurrent with constant L(2N + 1). In fact, the proof gives
that v will return with gap ≤ L+ ε if v is sufficiently long.
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3.2 Substitution shifts

We fix our finite-letter alphabet A = {0, . . . , N − 1}.

Definition 3.2.1. A substitution χ is a map that assigns to every a ∈ A a single
word χ(a) ∈ A∗:

χ :


0→ χ(0)

1→ χ(1)
...

N − 1→ χ(N − 1)

and extends to A∗ by concatenation:

χ(a1a2 . . . ar) = χ(a1)χ(a2) . . . χ(ar).

The substitution is of constant length if |χ(a)| is the same for every a ∈ A.

Example 3.2.2. The Fibonacci substitution χfib acts as

0→ 01→ 010→ 01001→ 01001010→ 0100101001001→ . . .

The lengths of χn(0) are exactly the Fibonacci numbers. We will see this word again
in Section 3.3 on Sturmian sequences.

Remark 3.2.3. As can be seen in Example 3.2.2, if a is the first symbol of χ(a),
then χ(a) is a prefix of χ2(a), which is a prefix of χ3(a), etc. Therefore χn(a) tends
to a fixed point of χ as n→∞.

Lemma 3.2.4. For every a ∈ A, χn(a) tends to a periodic orbit of χ as n→∞.

Proof. Since #A < ∞, there must be p < r ∈ N ∪ {0} such that χp(a) and χr(a)
start with the same symbol b. Now apply Remark 3.2.3 to χr−p and b.

Example 3.2.5. Take χ(0) = 10 and χ(1) = 1. Then

0→ 10→ 110→ 1110→ 11110→ · · · → 1∞ fixed by χ.

1→ 1 fixed by χ.

The second line of this example is profoundly uninteresting, so we will always
make the assumption

∀a ∈ A lim
n→∞

|χn(a)| =∞. (3.2)

Also we will always take an iterate, and rename symbols, such that

χ(0) starts with 0. (3.3)

Therefore there is always a fixed point of χ starting with 0.
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Example 3.2.6. The Thue-Morse substitution1 is defined by

χTM :

{
0→ 01

1→ 10
.

It has two fixed points

ρ0 = 01 10 1001 10010110 1001011001101001 . . .

ρ1 = 10 01 0110 01101001 0110100110010110 . . .

These sequences make its appearance in many settings in combinatorics and elsewhere,
cf. [4]. For instance, the n-th entry of rho0 (where we start counting at n = 0) is
the parity of the number of 1s in the binary expansion of n. Also, if you have a
sequence of objects (Pk)k≥1 of decreasing quality (e.g. rugby players) which you want
to divide over two teams T0 and T1, so that the teams are closest in strength as
possible, then you assign Pk to team Ti if i is the k-th digit of ρ0 (or equivalently,
of ρ1). This is the so-called Prouhet-Tarry-Escott problem [41, page 85-96]. The
sequences ρ0 and ρ1 have also been proved to be binary expansions of transcendental
numbers:

∑
n≥1 ρ

0
n2−n = 1−

∑
n≥1 ρ

1
n are trancendental, see e.g. [5, Theorem 13.4.2].

Applying the sliding block code f([01]) = f([10]) = 1 and f([00]) = f([11]) = 0,
the images of ρ0 and ρ1 are the same:

ρ = 10 11 1010 10111011 1011101010111010 . . . (3.4)

which is the fixed point of the period doubling or Feigenbaum substitution

χfeig :

{
0→ 11

1→ 10
.

This sequence appears as the kneading sequence (itinerary of the critical value) of
the (infinitely renormalizable) Feigenbaum interval map, see Section ??. It is also a
Toeplitz sequence, see Example 3.4.3.

Proposition 3.2.7. The smallest alphabet size for which square-free subshifts exist
is 3. The Thue-Morse sequence is “square+ε-free in the sense that uuu1 /∈ L(X) for
every u ∈ L(X) and u1 is the first letter of u.

Sketch of Proof. If you try to create a two-letter square-free word you soon get stuck:

0 01 010 stuck.

1after the Norwegian mathematician Axel Thue (1863-1922) and the American Marston Morse
(1892-1977), but the corresponding sequence was used before by the French mathematician Eugène
Prouhet (1817-1867), a student of Sturm.
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To create a three-letter square-free infinite word, start with a fixed point ρ0 of the
Thue-Morse substitution χTM and replace the symbol by a 2 if a square threatens to
appear:

0120 1021 20210120 1021012021201021 . . .

This turns out to work.
For the Thue-Morse sequence, we work by induction on n in χn. At each step,

square+εs are avoided, see [5, Theorem 1.6.1] for a complete proof.

Definition 3.2.8. A substitution subshift is any subshift (X, σ) that can be written
as Xρ = orbσ(ρ) where ρ is a fixed point (or periodic point) of a substitution satisfying
(3.2).

Lemma 3.2.9. Each one-sided substitution shift space (Xρ, σ) allows a two-sided
substitution shift extension.

Proof. First define χ on two-sided sequences as

ρ(. . . x−2x−1x0.x1x2x3 . . . ) = . . . ρ(x−2)ρ(x−1)ρ(x0).ρ(x1)ρ(x2)ρ(x3) . . . ,

where the central dot indicates where the zeroth coordinate is.
To create a two-sided substitution shift, take some i > 1 such that ρi = 0, and

let a = ρi−1. Similar to the argument of Lemma 3.2.4, there is b ∈ A and p < q ∈ N
such that ρp(a) and ρq(a) both end in b. Set N = q − p, so ρN(b) ends with b. Next
iterate ρN(b.0) repeatedly, so that limk ρ

kN(b.0) =: ρ̂ is a two-sided fixed point of ρN .
Finally, set X̂ρ = {σn(ρ̂) : n ∈ Z}.

Even though ρ̂ need not be unique (because the choice of b and N are not unique),
due to minimality (see below), the shift space X̂ρ is unique.

Definition 3.2.10. The associated matrix or incidence matrix of a substitution
χ is the matrix A = (ai,j)i,j∈A such that ai,j is the number of symbols j appearing
in χ(i). We call χ aperiodic and/or irreducible if A is aperiodic and/or irre-
ducible, in the sense of the Perron-Frobenius Theorem, see Definition 2.1.13. The
substitution is primitive if it is both irreducible and aperiodic. Equivalently, χ is
irreducible if for every i, j ∈ A there exists n ≥ 1 such that j appears in χn(i).

Theorem 3.2.11. Let χ be a substitution satisfying hypotheses (3.2) and (3.3). Let
ρ be the corresponding fixed point of χ. Then the corresponding substitution subshift
(Xρ, σ) is minimal if and only if for every a ∈ A appearing in ρ, there is k ≥ 1 such
that χk(a) contains 0.

Proof. If Xρ is minimal (i.e., uniformly recurrent according to Proposition 1.5.6), then
every word, in particular 0, appears with bounded gaps. Let a be a letter appearing
in ρ. Then χk(a) is a word in χk(ρ) = ρ, and since |χk(a)| → ∞ by (3.2), χk(a) must
contain 0 for k sufficiently large.
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Conversely, let k(a) = min{i ≥ 1 : χi(a) contains 0}, and K = max{k(a) :
a appears in ρ}. Set ∆a = χk(a)(a) and decompose ρ into blocks:

ρ = ∆ρ1∆ρ2∆ρ3 . . .

= ρ1 . . . ρk(ρ1) ρk(ρ1)+1 . . . ρk(ρ1)+k(ρ2) ρk(ρ1)+k(ρ2)+1 . . . ρk(ρ1)+k(ρ2)+k(ρ3) . . .

By the choice of k(ρj), each of these blocks contains a 0, so 0 appears with gap
K. Now take w ∈ L(Xρ) arbitrary. There exists m ∈ N such that w appears
in χm(0). By the above, w appears in each χm(∆ρj) and hence w appears with

gap maxj |χm(∆ρj)| = max{|χm+k(a)(a)| : a appears in ρ}. This proves the uniform
recurrence of ρ.

Theorem 3.2.12 below shows that if χ is primitive, then (Xρ, σ) is linearly recur-
rent and hence of linear complexity (p(n) ≤ Ln) and uniquely ergodic (see Defini-
tion 1.2.5). The above theorem doesn’t exclude that ρ is periodic. For instance,

χ :

{
0→ 010

1→ 101
(3.5)

produces two fixed points ρ0 = (01)∞ and ρ1 = (10)∞. We call a substitution such
that its fixed point ρ is not periodic under the shift aperiodic. Note that this is
different from ”the associated matrix of χ is aperiodic“, so be aware of this unfortunate
confusion of terminology.

A mild assumption dispenses with such periodic examples, and then p(n) ≥ n+1,
see Proposition 3.3.2.

Theorem 3.2.12. Every primitive substitution shift is linearly recurrent.

Proof. Let χ : A → A∗ be the substitution with fixed point ρ and (Xρ, σ) the corre-
sponding shift. Let

Sk := sup{|χk(a)| : a ∈ A } and Ik := inf{|χk(a)| : a ∈ A}.

Note that Ik ≤ S1Ik−1 and I1Sk−1 ≤ Sk for all k ∈ N. Since χ is primitive, for every
a, b ∈ A there exists Na,b such that χNa,b(a) contains b. Therefore

|χk(b)| ≤ |χk+Na,b(a)| ≤ SNa,b |χk(a)| for all k ∈ N.

Hence, taking N = sup{Na,b : a, b ∈ A}, we find

Ik ≤ Sk ≤ SNIk for all k ∈ N.

Now let u ∈ L(Xρ) and v ∈ Ru be arbitrary. Choose k ≥ 1 minimal such that
|u| ≤ Ik. Therefore there exists a 2-word ab ∈ L(Xρ) such that u appears in χk(ab).
Let R be the largest distance between two occurrences of any 2-word in L(Xρ). Then
R is finite by minimality of the shift. We have

|v| ≤ RSk ≤ RSNIk ≤ RSNS1Ik−1 ≤ RSNS1|u|.

This proves linear recurrence with L = RSNS1.
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Remark 3.2.13. It turns out (cf. Theorem 3.1.6(v)) that a factor of a substitution
subshift is again a substitution subshift. In fact, one of the main results of [112] is
that if you keep taking factors of substitution shifts, you will, within a finite number
of steps, get a subshift isomorphic to something you saw before.

A more general result on complexity of substitutions (without the assumption of
primitivity) is due to Pansiot [191].

Theorem 3.2.14 (Pansiot). If χ : A → A∗ is a non-erasing (i.e., χ(a) 6= ε, the
empty word, for all a ∈ A) substitution with χ(a) = au for some a ∈ A, ε 6= u ∈ A∗,
then the complexity of ρ = limn→∞ χ

n(a) is one of the following:

1. pρ(n) is bounded (when ρ is (pre)periodic);

2. pρ(n) ≈ n, including the primitive case;

3. pρ(n) ≈ n log log n;

4. pρ(n) = n log n’

5. pρ(n) = n2.

Here pρ(n) ≈ a(n) means that there is C > 0 such that C−1a(n) ≤ pρ(n) ≤ Ca(n) for
all n sufficiently large.

Example 3.2.15. If we remove the non-erasing condition in the above theorem, then
even more asymptotics for p(n) become possible. Let A = {a, b0, . . . , br} for some
r 6= N and let χ : A → A∗ is given by

χ :


a→ abr,

bk → bkbk−1, for k = 1, . . . , r,

b0 → b0.

Then χ has a unique fixed point, which for e.g. r = 3 looks like

ρ = ab3.b3b2b2b1.b3b2b2b1b2b1b1b0.b3b2b2b1b2b1b1b0b2b1b1b0b1b0b0 . . .

Set vi = χi(abr) for i ≥ 0. The dots separate the blocks wi, where w0 = abr and wi is
the suffix of vi of length |vi| − |vi−1|. Then symbol bk appears exactly

(
i

r−k

)
times in

wi.
Next apply an erasing substitution χ̃ : A → {0, 1}∗ given by

χ :


a→ ε,

bk → 0, for k = 0, . . . , r − 1,

br → 1.
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Then

ρ̃ := χ̃(ρ) = 10n01n101n210n31n401n5 . . . for ni =

(
i

r

)
≈ ir/r!.

It can be shown (see [21, Proposition 4.7.2]) that the complexity of ρ̃ is pρ̃ ≈ n r
√
n.

For primitive constant length substitutions, there is the following result on their
amorphic complexity [124]:

Theorem 3.2.16. Let χ : {0, 1} → {0, 1}∗ be an aperiodic primitive substitution of
constant length `, and let (X, σ) be the associated subshift. Then

ac(σ) =
log `

log `− log `∗
for `∗ = #{1 ≤ i ≤ ` : χ(0)i 6= χ(1)i}.

In this theorem, ac(σ) = ∞ is allowed when the denominator log ` − log `∗ = 0,
such as is the case with the Thue-Morse substitution, see Example 3.2.6.

3.2.1 Recognizability

We call a substitution injective if χ(a) 6= χ(b) for all a 6= b ∈ A. All the examples
above were indeed injective, but in general substitutions are not surjective and hence
not invertible, not even as map χ : Xρ → Xρ. But we can still ask:

Is an injective substitution χ : Xρ → χ(Xρ) invertible, and what does the
inverse look like?

To illustrate the difficulty here, assume that χ from (3.5) acts on a two-sided shift
space. Then what is the inverse of x = . . . 010101010 . . . . Without putting in the dot
to indicate the zeroth position, there are two ways of dividing x into three-blocks,

x = . . . |010|101|010|10 · · · = . . . 0|101|010|101|0 · · · = . . . 01|010|101|010| . . . (3.6)

and each with their own inverse. The way to cut x into blocks χ(a) is called a 1-
cutting of x. The problem is thus: can a sequence x ∈ χ(Xρ) have multiple 1-cuttings
if you don’t know a priori where the first block starts?

Remark 3.2.17. We give a brief history of this problem. In 1973, J. C. Martin
claimed that any substitution on a two-letter alphabet which is aperiodic is one-sided
recognizable (or ”rank one determined”). His proof was not convincing. In 1986,
Bernard Host proved that a primitive substitution shift Xρ is one-sided recognizable if
and only if χ(Xρ) is open in Xρ. This condition is not so easy to check, though. In
1987, Martine Quefféllec announces a short proof of the unilateral recognizability of
constant length substitutions due to Gérard Rauzy. Nobody could check this proof. In
his 1989 PhD Thesis, M. Mentzen claimed to prove this result, using a paper by T.
Kamae of 1972. In 1999, C. Apparicio found a gap in Mentzen proof (Kamae’s results
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only works for a particular case of the theorem, namely if the length is a power of a
prime number). She solved the problem using a 1978 result by Michel Dekking. In the
meantime, in 1992, Brigitte Mossé proved a more general result (also non-constant
length), but using a new notion of (two-sided) recognizable substitution. She refined
this result in 1996.

Figure 3.1: Alejandro Maass (1965- ) and Brigitte Mossé (1957- ).

This problem was tackled by several people (Mentzen, Quefféllec [208], Host,
Mossé [186, 187]), and it were the results of Mossé that are currently considered
as the final answer.

The official terminology is as follows: Fix x ∈ Xρ and define the sequences

E = {|χ(x1x2 . . . xi)|}i≥0.

By convention, the zeroth entry (for i = 0) is 0. In short, Ek tells us how to divide
x into blocks of length χk(xi) if we start at 0. Clearly if χ is of constant length M ,
then E = {iM}i≥0 ∪ {0}.

Definition 3.2.18. A substitution word x ∈ Xρ is

• one-sided recognizable if there is N such that for every i, j ∈ N such that
xi . . . xi+N = xj . . . xj+N we have i ∈ E if and only if j ∈ E.

• two-sided recognizable if there is N such that every i, j ∈ N such that
xi−N+1 . . . xi+N = xj−N+1 . . . xj+N we have i ∈ E if and only if j ∈ E.

It is (one- or two-sided) recognizable if it is (one- or two-sided) 1-recognizable.
We call N the recognizability index.

In this definition, the sequence x from (3.6) is not recognizable, but for example
the fixed point of the Fibonacci substitution χfib is recognizable with recognizability
index 2. The Thue-Morse sequence ρ0 (or ρ1) is recognizable with recognizability
index 4.
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Theorem 3.2.19 (Mentzen (1989), Apparicio (1999) [10]). Every primitive injective
constant length substitution with aperiodic fixed point is one-sided recognizable.

For non-constant length substitutions, things are more involved.

Example 3.2.20. The substitutions

χ :

{
0→ 0001

1→ 01
and χchac :


0→ 0012

1→ 12

2→ 012

are not one-sided recognizable. For example, the fixed point of the first one is

ρ = 0001 0001 0001 01 0001︸ ︷︷ ︸
u

0001 0001 01 00 01 0001︸ ︷︷ ︸
u

0001 01 0001 01 . . .

and just based on the word u = u′ = 010001, you cannot say if the cut is directly
before its occurrence or not. This problem does not disappear if you take longer
words. The latter substitution χchac is called the Chacon substitution HB: this
needs a reference.

Theorem 3.2.21 (Mossé (1992)). Let Xρ be an aperiodic primitive substitution. If
for every n ∈ N there exists v ∈ L(Xρ) with |v| ≥ n and a, b ∈ A such that

1. χ(a) is a proper suffix of χ(b), and

2. χ(a)v and χ(b)v ∈ L(X) and have the same 1-cutting of v.

Then χ is not one-sided recognizable.

Theorem 3.2.22 (Mossé (1992)). Every aperiodic primitive injective substitution is
two-sided recognizable.

Recognizability of aperiodic, but not necessarily primitive, substitution shifts was
proved in [24, Theorem 5.17].

3.2.2 S-adic transformations

Mossé [186] proved that for substitution shifts X, pX(n+1)−pX(n) is bounded. The
same result is true for S-adic shifts [109]; in fact, Bernard Host conjectured that for
a subshift pX(n + 1) − pX(n) is bounded if and only if X is S-adic. For Sturmian
shifts, i.e., with pX(n+ 1)− pX(n) ≡ 1, see Definition 3.3.14, this is certainly true as
explained in Section ??. More generally, the symbolic itinerary space coming from
an N -interval exchange transformation has pX(n+ 1)− pX(n) ≡ N − 1.

Definition 3.2.23. Given a sequence of alphabets (Ai)i≥0, symbols ai ∈ Ai and
substitutions χi : Ai → A∗i−1, assume that

ρ := lim
i→∞

χ1 ◦ χ2 ◦ · · · ◦ χi(ai)

exists. If also the χi’s are taken from a finite collection X , then we call the subshift
(orbσ(ρ), σ) an S-adic shift.
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3.3 Sturmian subshifts

Sturmian sequences mostly emerge as symbolic dynamics of circle rotations or similar
systems. There are however at least three equivalent defining properties, to which we
will devote separate sections.

Figure 3.2: Gustav Hedlund (1904-1993) and Marston Morse (1892-1977).

The name Sturmian comes from Morse & Hedlund [185], seemingly because
they appear in connection with the work of the French mathematician Jacques Sturm
(1803-1855), namely in regard to the number of zeroes that sin(αx + β)π has in the
interval [n, n + 1), but the sequences as such were certainly not studied by Sturm.
Other ways to obtain Sturmian sequences are manifold. For instance, if you take a
piece of paper with a square grid, and draw a line on it with slope α, and write a 0
whenever it crosses a horizontal grid-line and a 1 whenever it crosses a vertical grid-
line (see Figure 3.3 left), then you obtain a Sturmian sequence. Or the trajectory
of a billiard ball moving frictionless on a rectangular billiard table can be coded
symbolically by writing a 0 for each collision with a long edge and a 1 for each
collision with a short edge (see Figure 3.3 right). If the motion is not periodic, the
resulting sequence is Sturmian.

For simplicity of exposition, we use the property that p(n) = n+ 1 for n as Stur-
mian, see Section 3.3.3. We start with some terminology and a useful proposition.

Definition 3.3.1. We call an n-word u

• left-special if both 0u and 1u belong to L(X);

• right-special if both u0 and u1 belong to L(X);

• bi-special if u is both left-special and right-special.

Note, however, that there are different types of bi-special words u depending on how
many of the words 0u0, 0u1, 1u0 and 1u1 are allowed.

Proposition 3.3.2. If the word-complexity of a subshift (X, σ) satisfies p(n) ≤ n for
some n, then (X, σ) is periodic.
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1
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1

1

1

1

0

0

0

0

0

1 1

Figure 3.3: Sturmian sequences produced as intersections with horizontal and vertical
grid-lines (left) and billiards on a rectangular billiard table (right)

Proof. Let n be maximal such that p(k) ≥ k for all k ≤ n. Then p(n) = p(n+ 1) = n
and there are no right-special words of length n. Start with an n-word u; there is
only one way to extend it to the right by one letter, say to ua. Then the n-suffix of
ua can also be extended to the right by one letter in only one way. Continue this
way, until after at most p(n) = n steps, we end up with suffix u again. Therefore X
contains only (shifts of) this word periodically repeated.

3.3.1 Rotational sequences

Definition 3.3.3. Let Rα : S1 → S1, x 7→ x + α (mod 1), be the rotation over an
irrational angle α. Let β ∈ S1 and build the itinerary i(x) = u = (un)n≥0 by

un =

{
1 if Rn

α(x) ∈ [0, α),

0 if Rn
α(x) /∈ [0, α).

(3.7)

Then u is called a rotational sequence.

Remark 3.3.4. The additional sequences obtained by taking the closure can also be
obtained by taking the half-open interval the other way around:

un =

{
1 if Rn

α(x) ∈ (0, α],

0 if Rn
α(x) /∈ (0, α].

In either way, the resulting two-sided subshift (Xα = orbσ(u), σ) is an extension of
(S1, Rα) where i : S1 → Xα is the inverse factor map i = ψ−1. Therefore the xn =
Ralpha

n(0), n ∈ Z, have fibers ψ−1(xn) consisting of two point, whereas #ψ−1(x) = 1
for all other x. Thus (Xα, σ) is an almost one-to-one extension of the circle rotation.

Lemma 3.3.5. Every rotational word u is palindromic: for every finite subword
w1w2 . . . wn occurring in u, also the reversed word wnwn−1 . . . w1.
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Proof. By symmetry, the two-sided itinerary of β := α/2 is a palindrome entirely:
un = u−n for all n ∈ Z. Since {kα+β (mod 1)}k is dense in the circle and uniformly
recurrent, every subword w1w2 . . . wn in every itinerary will have its reversed copy
wnwn−1 . . . w1 in the same itinerary.

Lemma 3.3.6. If w is a bi-special subword of a rotational sequence, then it coincides
with a prefix of i(2α (mod 1)) of length qn + aqn+1 − 2 for some n ∈ N and 0 ≤
a < an+1, where pn/qn are the convergents of the continued fraction expansion α =
[0; a1, a2, a3, . . . ] (see Section ??).

Proof. Each subword w corresponds to a subinterval Jw of the circle, namely the
interval of points x such that i(x) starts with w. If w is left-special, so 0w and 1w are
both allowed, then R−1

α (Jw) contains 0 or α in its interior. In the former case, α ∈ J◦w,
so not all x ∈ Jw have the same first letter in their itinerary. Therefore α ∈ R−1

α (J◦w)
and R2

α(0) ∈ J◦w.

Let Ĵw := R−2
α (J◦w) 3 0. Now if w is also right-special, then R

|w|+2
α (Ĵ◦w) =

R
|w|
α (J◦w) 3 0, and therefore y := R

−(|w|+2)
α ∈ Ĵ◦w. This means that y is preimage

of 0 such that no preimage of 0 of lower order belongs to (0, y).

0qn−1 qnqn + qn−1 2qn + qn−1 = qn+1 qn+1 + qnqn+2

Figure 3.4: Positions of the preimages of 0 under Rα that are closest to 0.

The points y with this property are ordered as in Figure 3.4, where the numbers j
refer to the points R−jα (0). Therefore |w|+ 2 = qn+aqn+1 and the lemma follows.

Exercise 3.3.7. Show that every bi-special word of a rotational sequence (so Sturmian
sequence by Lemma 3.3.17) is a palindrome.

We give a bit of the wider theory of circle homeomorphism so as also to include
Denjoy circle maps which have minimal sets that are exactly conjugate to Sturmian
shifts.

Theorem 3.3.8 (Denjoy). A circle homeomorphism f : S1 → S1 has a well-defined
rotation number

ρ(f) = lim
n→∞

F n(x)− x
n

(mod 1), independent of and uniformly in x,

where F : R→ R is a lift of f , i.e., a continuous map of the universal cover R of S1

such that F (x) (mod 1) = f( (mod 1)). Furthermore,

• ρ(f) = p
q
∈ Q (in lowest terms) if and only if f has a q-periodic point;
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• if ρ = ρ(f) /∈ Q, then f is semi-conjugate to the rotation Rρ: h ◦ f = Rρ ◦ h.
In fact, h is a conjugacy if and only if f is minimal.

For the proof we refer to [?], but let us give some details on how non-minimal circle
homeomorphisms f with irrational rotation numbers can be constructed. Start with
the rotation Rρ : S1 → S1 and select some x1 ∈ S1 (or in fact any finite or countable set
of points xj ∈ S1 such that |xj − xk|/ρ /∈ Z for j 6= k). For each k and n ∈ Z, replace
Rn
ρ (xk) by a closed interval Ik,n of length 2−(k+|n|); this creates a new circle K with

circumference 1 +
∑

k

∑
n∈Z 2−(k+|n| = 1 + 3

∑
k 2−k. Extend f : Ik,n → Ik,n+1 as an

affine (or any orientation preserving) homeomorphism, and for all x ∈ S1\∪k,nRn
ρ (xk)

set f(x) = Rρ(x). Then f : K → K is indeed a homeomorphism, and h : K → S1,

h(x) =

{
Rn
ρ (xk) if x ∈ Ik,n,

x otherwise,
(3.8)

is a semiconjugacy, see Figure 3.5. Such circle homeomorphisms f are called Denjoy
circle maps. There is some restriction on how smooth such homeomorphisms can
be. Denjoy proved that if f is a C1 diffeomorphism such that log f ′ has bounded
variation, then f is minimal. On the other hand, for every γ ∈ [0, γ), there are C1+γ

Denjoy circle maps, see [141].

f : K → K
Rρ : S1 → S1

h
Ik,0 •h(Ik,0)

Ik,1 •h(Ik,1)

Ik,−1 •h(Ik,−1)

Ik,2

•
h(Ik,2)

Ik,−2

•
h(Ik,−2)

Figure 3.5: The semiconjugacy h from a Denjoy circle map to a rotation

Take Rρ, split open the orbit of 0, replacing the points Rn
ρ (0) by intervals In, and

denote the corresponding Denjoy circle map by f : K → K. Then K \ ∪nI◦n is a
minimal Cantor set. If we code [sup I0, inf I1] ∩X by 1 and [sup I1, inf I0] ∩X by 0,
then the coding map i : X → {0, 1}Z is precisely a conjugacy between (X, f) and a
two-sided rotational shift Xρ with frequency ρ = ρ(f).

If we split open S1 only along the backward orbit of 0, then we obtain a one-sided
Sturmian shift.

Theorem 3.3.9. The amorphic complexity of any non-periodic two-sided rotational
subshift (Xρ, σ) is 1. Equivalently, ac(f) = 1 for any Denjoy circle map f : K → K.
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Proof. Since the two-sided shift σ : Xρ → Xρ is conjugate to f : C → C for C =
K \ ∪k,nI◦k,n, it suffices to show that ac(f|C) = 1.

Take three points ξ1, ξ2, ξ3 ∈ ∪k,nIk,n such that d(h(ξi), h(ξj)) ≥ 1
4

for i 6= j.
Let δ := min{|Ik,n| : Ik,n 3 ξj for some j} be the minimal length of the intervals
corresponding to the ξis.

Since h(∪k,nIk,n) is a countable set, we can take N := b1/v points in C such
that S := {h(xi) : i = 1, . . . , N} is an equidistant lattice in S1 with minimal mutual
distance 1/N . Set J = [xi, xj] for some i 6= j, ordered in such a way that |h(J)| ≤ 1

2
.

Whenever Rn
ρ (h(J)) 3 ξ1, |fn(J)| ≥ δ, but S1 \Rn

ρ (h(J)) has length ≥ 1/2, so it must
contain ξ2 and/or ξ3. Therefore also |K \ fn(J)| ≥ δ, and thus d(fn(xi), f

n(zj) ≥ δ.
Since

lim
n→∞

#{0 ≤ k < n : Rk
n(h(J)) 3 ξ1} = Leb(h(J)) ≥ 1

N
≥ v,

we obtain lim supn→∞#{0 ≤ k < n : d(hk(xi), h
k(xj)) ≥ δ} ≥ v, so S is (δ, v)-

separated. Since #S ≥ 1
v
− 1, it follows that ac(f) ≥ 1.

Now for the other direction, we will use (δ, v)-spanning sets, see Remark ??. Define
a function ψv : S1 → [0, |K|] (where |K| is the circumference of K) as

ψv(x) = Leb(h−1([x, x+ v]).

Note that d(x, y) ≤ Leb(h−1([h(x), h(y)])) (because d(x, y) measures the shortest arc
between x and y), and ψv(d(h−1([x, x+ v])) for all v sufficiently small and x outside
the countable set h(∪k,nIk,n). Therefore ψv is measurable and in fact L1. The Birkhoff
Ergodic Theorem 4.2.3 implies that for Leb-a.e. y ∈ S1,

lim
n→∞

1

n
#{0 ≤ k < n : ψv(R

k
ρ(y)) ≥ δ|K|} = Leb({ψv ≥ δ|K|}) =: mv. (3.9)

We claim that mv ≤ 2v(b1/δc + 1). Indeed, if mv > 2v(b1/δc + 1), then the set
{ψv ≥ δ|K|} cannot be contained in the union of at most b1/δc+2 intervals of length
v. Therefore there are Ñ = b1/δc + 2 points ξi ∈ S1 such that ψv(ξi) ≥ δ|K| and of
minimal mutual distance d(ξi, ξj) ≥ v. Therefore

Ñ∑
i=1

|h−1([ξi, ξi + v])| =
Ñ∑
i=1

ψv(ξi) ≥ Ñδ|K| ≥ (1 + δ)|K|,

contradicting that h−1([ξi, ξi + v]) are Ñ disjoint intervals inside a circle of circumfer-
ence |K|. This proves the claim.

Hence we can find a set S = {y1, y2, . . . , yN} for N = b1/vc such that h(S) is
an equidistant lattice on S1 (with minimal mutual distance 1/N) and (3.9) holds for
every h(yi). Without loss of generality, the yis can be arranged in circular order on
K.
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Now take y ∈ K arbitrary, and i such that y ∈ [yi, yi+1 (mod N)). Then h(y) ∈
[h(y), h(y) + v) and d(fk(yi), f

k(y)) ≤ φv(R
k
ρ(h(yi)). Therefore

lim sup
n→∞

1

n
#{0 ≤ k < n : d(fk(yi), f

k(y)) ≥ δ}

≤ lim sup
n→∞

1

n
#{0 ≤ k < n : ψv(R

k
ρ(h(yi)) ≥ δ} = mv,

which means that S is (δ,mv)-spanning. Using the spanning set equivalent of (??),
we obtain

ac(f) ≤ sup
δ|K|>0

lim sup
v→0

log 2v(b1/δc+ 1)

− log v
= 1,

and the result follows.

3.3.2 Balanced words

Another characterization of Sturmian words its by it property of being balanced.

Definition 3.3.10. A subshift X is called balanced if there exists N ∈ N such that
for all a ∈ A and n ∈ N, the number of symbols a within any two n-words w,w′ in
L(X), differs by at most N . If N is not specified, then balanced stands for balanced
with N = 1.

Definition 3.3.11. Clearly, a balanced word x contains precisely one of 00 and 11
as factors, (unless x = 10101010 . . . or x = 01010101 . . . ). We say that a balanced
word x ∈ {0, 1}N or Z is of type i is the word ii appears in x.

Lemma 3.3.12. Every rotational sequence is balanced.

Proof. An equivalent way to to define a rotational sequence u is that there is a fixed
β ∈ S1 such that

un = bnα + βc − b(n− 1)α + βc (3.10)

for all n ∈ Z. This is easy to check, except that in order to include the sequences
mentioned in Remark 3.3.4, we need to add the alternative definition

un = dnα + βe − d(n− 1)α + βe (3.11)

for all n ∈ Z.
Write |u|a = #{1 ≤ i ≤ n : ui = a}. By telescoping series,

|uk+1 . . . uk+n|1 = b(k + 1)α + βc − bkα + βc+

b(k + 2)α + βc − b(k + 1)α + βc+ . . .

+b(k + n)α + βc − b(k + n− 1)α + βc
= b(k + n)α + βc − bkα + βc = bnαc or bnαc+ 1

regardless of what k is. It follows that u is balanced.
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Lemma 3.3.13. If X is an unbalanced subshift on alphabet {0, 1}, then there is a
(possibly empty) word w such that both 0w0, 1w1 ∈ L(X).

Proof. Given u = u1 . . . un ∈ L(X) and a ∈ A, write |u|a = #{1 ≤ i ≤ n : ui = a}.
Let K be minimal such there are K-words a = a1 . . . aK and b = b1 . . . bK ∈ L(X) such
that | |a|1 − |b|1 | ≥ 2. Since |a|1 − |b|1 can change by at most 1 if a, b are shortened
or expanded by one letter, the minimality of K implies that a = 0a2 . . . aK−10 and
b = 1b2 . . . abK−11 (or vice versa) and |a2 . . . aK−1|1 = |b2 . . . bK−1|1. If a2 . . . aK−1 =
b2 . . . bK−1, then we have found our word w. Otherwise, take k = min{j > 1 : aj 6= bj}
and l = max{j < K : aj 6= bj}. We have four possibilities, all leading to shorter
possible words a and b.

k l k l

a = 0 . . . 1 . . . 1 . . . 0 a = 0 . . . 1 . . . 0 . . . 0

b = 1 . . . 0 . . . 0︸ ︷︷ ︸
shorter a,b

. . . 1 b = 1 . . . 0 . . . 1 . . . 1︸ ︷︷ ︸
shorter a,b

k l k l

a = 0 . . . 0 . . . 1 . . . 0 a = 0 . . . 0 . . . 0 . . . 0

b = 1 . . . 1︸ ︷︷ ︸
shorter a,b

. . . 0 . . . 1 b = 1 . . . 1 . . . 1 . . . 1︸ ︷︷ ︸
shorter a,b

This contradicts the minimality of K. The proof is complete, but note that we have
proved that |w| ≤ K − 2 as well.

3.3.3 Sturmian sequences

Definition 3.3.14. A sequence u ∈ {0, 1}N or {0, 1}Z is called Sturmian if it is
recurrent under the shift σ, and the number of n-words in u equals pu(n) = n+ 1 for
each n ≥ 0. Take the shift-orbit closure X = orbσ(u). The corresponding subshift
(X, σ) for X = orbσ(u) is called a Sturmian subshift.

Remark 3.3.15. The assumption that u is recurrent is important for the two-sided
case. Also . . . 00000100000 . . . has p(n) = n + 1, but we don’t want to consider such
asymptotically periodic sequences. In fact, for one-sided infinite words, the recurrence
follows from the assumption that pu(n) = n+ 1.

Remark 3.3.16. A Sturmian sequence contains exactly one left-special and one right-
special word of length n for each n ∈ N. If they coincide, then this is a bi-special word,
see Lemma 3.3.6.

Lemma 3.3.17. Every rotational sequence is Sturmian.

Proof. Let u(x) denote the itinerary of x ∈ S1. If uk(x) = uk(y) for 0 ≤ k < n, then
Rk
α(x) and Rk

α(y) belong to the same set [0, α) or [α, 1) for each 0 ≤ k < n. In other
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words, the interval [x, y) contains no point in Qn := {R−kα (x) : 0 ≤ k ≤ n}. But Qn

consists of exactly n+ 1 points, and it divides the circle in n+ 1 intervals. Each such
interval corresponds to a unique n-word in the language, so p(n) = n+ 1.

Theorem 3.3.18. A non-periodic sequence is Sturmian if and only if it is balanced.

Exercise 3.3.19. Show that there are balanced periodic sequences. In fact, every
finite word in a Sturmian shift, when repeated periodically, is balanced.

Proof. Let x ∈ AN or AZ for A = {0, 1}.
⇐: We prove by contrapositive, so assume that there is N minimal such that

p(N) ≥ N + 2. (Recall from Proposition 3.3.2 that p(N) ≤ N implies that x is
periodic.) Since p(1) = #A = 2 and 00 and 11 cannot both be words of x (otherwise
it wouldn’t be balanced at word-length 2), N ≥ 3. In fact, for all n < N − 1, there
is one right-special word, but there are two distinct right-special words, say u and v,
of length N − 1. In particular, u and v can only differ at their first symbol, because
otherwise there are two distinct right-special words of length N − 2. Hence there is
w such that 0w = u and 1w = v. But since u and v are right-special, 0w0 and 1w1
are both words in x, and x cannot be balanced.
⇒: Again, proof by contrapositive, so assume that p(n) = n + 1 for all n ∈ N,

but x is not balanced. Let N be the minimal integer where this unbalance becomes
apparent. We have p(2) = 3. Since both 01 and 10 occur in x (otherwise it would
end in 0∞ or 1∞) at least one of 00 and 11 cannot occur in x, and hence N ≥ 3.

By Lemma 3.3.13, there is a word w = w1 . . . wN−2 such that both 0w0 and 1w1
occur in x.

Observe that w1 = wN−2, because otherwise both 00 and 11 occur in x. To be
definite, suppose that w1 = wN−2 = 0.

If N = 3, then w1 = wN−2, so w is a palindrome. If N ≥ 4, then w2 = wN−3

because otherwise 000 and 101 both occur in x, contradicting that N is the minimal
length where the unbalance becomes apparent.

Continuing this way, we conclude that w is a palindrome: wk = wN−k−1 for all
1 ≤ k ≤ N − 2.

Since p(N − 2) = N − 1 and w is bi-special, exactly one of 0w and 1w is right-
special. Say 0w0, 0w1 and 1w1 occur, but not 1w0.

Claim: if 1w1 is a prefix of the 2N − 2-word xj+1 . . . xj+2N−2, then 0w does not
occur in this word.

Suppose otherwise. Since |1w1| = N and |0w| = N − 1, the occurrence of 0w
must overlap with 1w1, say starting at entry k. Then wk . . . wN−21 = 0w1 . . . wN−k−1,
so wk = 0 6= 1 = wN−k−1. This contradicts that w is a palindrome, and proves the
claim.

Now xj+1 . . . xj+2N−2 contains N words of length N − 1, but not 0w, according to
the claim. That means that one of the remaining N − 1-words must appear twice,
and none of these words is right-special. It follows that xj+1 . . . xj+2N−2 can only
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be continued to the right periodically, and p(n) ≤ N for all n. This contradiction
concludes the proof.

Proposition 3.3.20. If the infinite sequence u is balanced, then

α := lim
n→∞

1

n
|u1 . . . un|1

exists and is irrational. We call α the frequency of u.

Proof. Define
Mn = min{|uk+1 . . . uk+n|1 : k ≥ 0}. (3.12)

Since u is balanced, max{|uk+1 . . . uk+n|1 : k ≥ 0} = Mn + 1, so |uk+1 . . . uk+n|1 = Mn

or Mn + 1 for every k ∈ N. For q, n ∈ N such that n > q2, we can write n = kq + r
for a unique k ≥ q and 0 ≤ r < q. We have

kMq ≤Mkq+r = Mn ≤ k(Mq + 1) + r. (3.13)

Dividing by n gives
Mq

q
− 1

q

kMq

n
≤ Mq

q
+

2

q
.

Since this holds for all q ≤ q2 < n, we conclude that {Mn

n
}n∈N is a Cauchy sequence,

say with limit α.
Now to prove that α is irrational, assume by contradiction that α = p

q
and take

k = 2m in (3.13). This gives

Mq

q
≤ M2mq

2mq
≤ M2mq + 1

2mq
≤ Mq + 1

q
,

so {M2mq

2mq
}m is increasing and {M2mq+1

2mq
}m is decreasing in m. They converge to p

q
, so

p = Mq or Mq+1. But this can only be if every q-word in u has exactly Mq or exactly
Mq + 1 ones in it, which is of course not true. This completes the proof.

Lemma 3.3.21. If u an u′ are balanced words with the same frequency α, then u and
u′ generate the same language.

Proof. From the proof of Proposition 3.3.20 we know that α ∈ (Mn

n
, Mn+1

n
) and α ∈

(M
′
n

n
, M

′
n+1
n

) where Mn and M ′
n are given by (3.12) for u and u′ respectively. This

implies that Mn = M ′
n for all n ∈ N. Since for each n ∈ N, u and u′ each have only

one right-special n-word, it suffices to prove that these right-special word, say w and
w′ are the same. Assume by contradiction that there is some minimal n such that
w 6= w′. Hence there is an n−1-word v such that w = 0v and w′ = 1v (or vice versa).
But v is right-special, so all four of 0v0, 0v1, 1v0 and 1v1 occur in the combined
languages. But then Mn+1 = |v|1 ≤M ′

n+1 − 1, a contradiction.
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Theorem 3.3.22 (Morse & Hedlund [185]). Every Sturmian sequence is rotational.

Proof. Let u be a Sturmian sequence; by Theorem 3.3.18 it is balanced as well.
By Proposition 3.3.20, u has an irrational frequency α = limn

1
n
|u1 . . . un|1, and by

Lemma 3.3.21, every Sturmian sequence with frequency α generates the same lan-
guage as u. It is clear that the rotational sequence vn = bnαc − b(n − 1)αc has
frequency α. Therefore there is a sequence bj such that σbj(v)→ u. By passing to a

subsequence if necessary, we can assume that limj R
bj
α (0) = β. Then (assuming that

nα + β /∈ Z, so we can use continuity of x 7→ bxc at this point):

un = lim
j

(σbjv)n = lim
j
b(n+ bj)αc − b(n+ bj − 1)αc

= bnα + βc − b(n− 1)α + βc.

If nα+β ∈ Z, then we need to take the definition (3.11) into account. Note, however,
that since α /∈ Q, this occurs at most for one value of n ∈ Z. This proves the
theorem.

3.4 Toeplitz shifts

Definition 3.4.1. A sequence x ∈ AN (resp. x ∈ AZ) is called a Toeplitz sequence
if for every i ∈ N, there exists qi ∈ N such that xi = xi+kqi for all k ∈ N (resp.
k ∈ Z). The orbit closure Xq = {σn(x) : n ≥ 0} is called a Toeplitz shift.

The notion as introduced and name by Jacobs & Keane [151]. They took inspira-
tion of construction by Otto Toeplitz (1881 – 1940) [221] to create an almost periodic
function on the real line, but otherwise, Toeplitz was not involved.

Figure 3.6: Konrad Jacobs (1928 – 2015) and Mike Keane (1940 – )

Proposition 3.4.2. If χ : A → A∗ is a constant length substitution such that χ(a)
starts with the same symbol for each a ∈ A, then the unique fixed point of χ is a
Toeplitz sequence.

Proof. Fix the symbol a ∈ A such that χ(a) starts with a, so ρ = ρ1ρ2ρ3 · · · =
limn χ

n(a) is the fixed point of χ. Let N = |χ(b)| for each b ∈ A. Then clearly
ρ1+kN = a for all k ∈ N, so we can take q1 = N .
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It follows that χ(ρ1 . . . ρ1+kN) (which has length kN2 + N) starts and ends with
χ(a). Therefore qi = N2 for i = 2, . . . , N . Continuing by induction, we find qi = N r

for i = N r−1 + 1, . . . N r.

Example 3.4.3. The simplest way to construct a Toeplitz sequence emerges from
taking qi = 2i, the powers of 2, and xqi/2+kqi = 1

2
(1 − (−1)i) for all k ≥ 0 and

i = 1, 2, 3, . . . The resulting Toeplitz sequence is the Feigenbaum sequence,

ρfeig = 1011101010111011101110101011101010111010101110111011101010111011 . . .

see Example 3.2.6 for more details on this sequence. Although ρfeig is Toeplitz, not

every sequence in Xfeig = orbσ(ρfeig) has the Toeplitz property. For example, ρfeig
has two preimages in Xfeig, namely 0ρfeig and 1ρfeig. Of these two, only 0ρfeig is a
Toeplitz sequence.

As will be shown in Section ??, ρfeig is the kneading sequence of an infinitely
renormalizable unimodal map. In fact, the kneading sequence of every infinitely renor-
malizable unimodal map is a Toeplitz sequence. More generally, Alvin [7, 8] classifies
all the Toeplitz sequences which appear as a kneading sequence (and for which the
unimodal maps act on ω(c) as (strange) adding machines).

Proposition 3.4.4. The Thue-Morse sequence

ρTM = 1001 0110 0110 1001 0110 1001 1001 0110

is obtained from the Thue-Morse substitution χTM : 0 7→ 01, 1 7→ 10. Show that ρTM
not a Toeplitz sequence.

Sketch of Proof. One can show for each q ∈ N, that ρ1+kq cannot have the same value
for all k, i.e., ρ1 is not the first element of any infinite arithmetic progression. In fact,
there are no infinite arithmetic progression kj = jq + r at all such that ρkj is the
same for all j. This follows from estimates of the possible lengths of such arithmetic
progression in the Thue-Morse sequence by Pashina, see [194]. However, the shift
generated by x factorizes to the Feigenbaum substitution shift via the sliding block
code 01, 10 → 1, 00, 11 → 1 (see Example 3.2.6) and the Feigenbaum substitution
shift is Toeplitz.

Lemma 3.4.5. A Toeplitz shift (Xq, σ) is uniformly rigid and hence minimal.

Proof. We give the proof for one-sided Toeplitz sequences; the proof of two-sided
sequences goes likewise. Let [x1x2 . . . xn] be any cylinder set. Then every digit xi
reappears with gap qi. Hence, if Ln = lcm(q1, . . . , qn) is the least common multiple
of q1, . . . , qn, then σkL([x1x2 . . . xn]) ⊂ [x1x2 . . . xn] for all k ∈ N. This is uniform
rigidity. The minimality of the corresponding subshift follows from Lemma 1.5.11
and Corollary 1.5.9.
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The way to build up a Toeplitz sequence in {0, 1}N or Z, is to start with x1 = 1,
choose q1 and set x1+k1n = 1 for all k ∈ N (or Z for a two-sided Toeplitz sequence,
but we will focus on the one-sided Toeplitz sequences). The rest of the entries get
a “temporary ∗” xi = ∗. Next set x2 = 0, choose q2 (not coprime with q1) and set
x2+kq2 = 0. Continuing this way inductively, let xi be the first remaining temporary
∗s and choose qi − i a multiple of the period of the pattern of the remaining ∗s. The
periodic sequence Sk(qj) ∈ {0, 1, ∗}N of the j-th line of this construction is called the
qj-skeleton of the Toeplitz sequence.

Example 3.4.6. As an example of building

q1 = 3 : 1∗∗1∗∗1∗∗1∗∗1∗∗1∗∗1∗∗1∗∗1∗∗. . .
q2 = 6 : 10∗1∗∗10∗1∗∗10∗1∗∗10∗1∗∗10∗. . .
q3 = 3 : 1011∗11011∗11011∗11011∗1101 . . . (3.14)

q4 = 12 : 1011011011∗11011011011∗1101 . . .
...

...
...

...

In most cases, qj+1 is a multiple of qj, but (3.14) shows that this is not necessary.
However, if q = (qj)j≥1 is such that qj divides qj+1 for all j ∈ N, then we call q the
periodic structure of the Toeplitz sequence x.

This construction of skeletons yield an extension of Proposition 3.4.2.

Theorem 3.4.7. The one-sided sequence x ∈ AN is Toeplitz if and only if there is
a sequence of constant length substitutions χi : Ai → Ai−1 on finite alphabets Ai
with A = A0 such that χi(a) starts with the same symbol for each a ∈ Ai, and
x = limi→∞ χ1 ◦ χ1 ◦ · · · ◦ χi(a), a ∈ Ai arbitrary.

Proof. Let Ni = χi(a) be the length of the words from the i-th substitution. By the
condition that x1 = χ1(a) for all a ∈ A1, we find x1+kN1 = x1 for all k ∈ N. By
composing χ1 ◦ χ2, we obtain x1 . . . xN1 = x1+kN1N2 . . . xN1+kN1N2 for all k ∈ N. In
general, the initial block x1 . . . xN1N2···Nr repeats with period N1N2 · · ·NrNr+1, so x is
Toeplitz.

Conversely, if x = x1x2x3 . . . is Toeplitz on alphabetA0, then there is N1 such that
x1+kN1 = x1 for all k ∈ N, and there is a finite collection of N1-words bk, k = 1, . . . , K1,
all starting with x1 such that x = bk1bk2bk3 . . . Consider {bk}Nk=1 as the letters of
alphabetA1, and define the substitution χ1(bk(as letter) = bk(as N1-word). Then x =
χ1(bk1bk2bk3 . . . ). Since the N1-words bki appear with their own gap, bk1bk2bk3 · · · ∈ AN

1

is a Toeplitz sequence on its own right, and we can repeat the construction.

3.4.1 Regular Toeplitz sequences

When constructing a Toeplitz sequence this way, at step n, you have an Ln-periodic
sequence, where Ln = lcm(q1, . . . , qn). We call the Toeplitz sequence regular if
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1
Ln

#{0 < i < Ln : xi = ∗} → 0 as n → ∞. In fact, the official definition is slightly
weaker:

Definition 3.4.8. A sequence x ∈ AN or AZ is a regular Toeplitz sequence if it
is the limit of skeletons Sk(Ln) ∈ (A ∪ {∗})N or (A ∪ {∗})Z of period Ln such that

lim
n

Sk∗(Ln)

Ln
= 0 where Sk∗ := #{1 ≤ i ≤ Ln : Sk(Ln)i = ∗}.

Theorem 3.4.9. A regular Toeplitz shift has zero entropy.

Proof. We follow [169, Theorem 4.76]. Let V (i) be the Li-word in (A∪{∗})Li obtained
in the i-th step of the construction of Example 3.4.6, i.e., we have now an Li-periodic
skeleton Sk(i) = V (i)∞ ∈ (A ∪ {∗})N. Let ri = |V (i)|∗ be the number of ∗s in V (i).
Then there are at most #Ari ways to fill in the ∗s later on, and there are at most
#Ari Li-words in the Toeplitz sequence x starting at a position 1 + kLi. Therefore
qx(Li) ≤ Li#Ari , and

lim
i→∞

1

Li
log px(Li) ≤ lim

i→∞

logLi + ri log #A
Li

≤ log #A lim
i→∞

ri
Li

= 0.

Since px(n) is subadditive, Fekete’s Lemma ?? implies that limn
1
n

log px(n) = 0.

The following upper bound for the amorphic complexity of regular Toeplitz se-
quences was shown in [125].

Theorem 3.4.10. Let (Xq, σ) be a Toeplitz sequence with periodic structure q =

(qj)
∞
j=1. Then ac(σ) ≤ lim supj→∞

log qj+1

− log Sk∗(qj)
. In particular, if qj+1 ≤ C1q

t
j and

Sk∗(qj) ≤ C2q
−u
j , then ac(σ) ≤ t

u
.

With some more work, and for the two-letter alphabet, one can improve the
upper bound to ac(σ) ≤ lim supj→∞

log qj
− log Sk∗(qj)

. By stipulating further properties on

the Toeplitz sequence, one can (see [125, Section 5]) give examples showing that this
upper bound is sharp, and also that for a dense set of values a ∈ [1,∞] (including
a = 1 and a =∞), there is a Toeplitz shift with ac(σ) = a.

Proof of Theorem 3.4.10. Note that the densities Sk∗(qj) are decreasing in j, and by
regularity of the Toeplitz shift, limj Sk∗(qj)→ 0. Choose δ > 0 arbitrary and m ∈ N
such that 2−m < δ. Next choose v arbitrary and j such that (2m+ 1)Sk∗(qj+1) < v ≤
(2m+ 1)Sk∗(qj). Then

Sep(δ, v) ≤ Sep(2−m, (2m+ 1)Sk∗(qj)).

We claim that the right hand side is bounded by qj+1. Indeed, assume by contradiction
that there is a (2−m, (2m+ 1)Sk∗(qj))-separated set S with more than qj+1 elements.
Then at least two of them, say x, y ∈ S, share the same qj+1-skeleton. This means
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that x and y differ at most in qj+1Sk∗(qj+1) positions in every qj+1-block. Since
d(σk(x), σk(y)) ≥ δ only if xi 6= yi for some i with |i− k| ≤ m,

#{0 ≤ k < nqj+1 : d(σk(x), σk(y)) ≥ δ}
≤ (2m+ 1)#{0 ≤ k < nqj+1 : xk 6= yk} ≤ (2m+ 1)Sk∗(qj+1).

When taking the limit n → ∞, we get a contradiction with the choice of j. This
proves the claim.

Therefore Sep(δ, v) ≤ pj+1. Take logarithms and divide left and right hand side
by − log v ≥ − log(2m+ 1)Sk∗(j) respectively gives

log Sep(δ, v)

− log v
≤ log qj+1

− log(2m+ 1)− log Sk∗(j)
.

Note that m depends only on δ. Thus taking the superior limit v → 0 (and hence

j →∞), we obtain ac(σ) ≤ lim supj
log qj+1

− log Sk∗(j)
as claimed.

Theorem 3.4.11. For every real number K ≥ 0, there is a Toeplitz shift (X, σ) such
that htop(σ) = K. For every real number K ≥ 1, there is a Toeplitz shift (X, σ) that

has polynomial word-complexity with exponent K, i.e., limn→∞
log p(n)

logn
= K.

Proof. We start with the positive entropy Toeplitz sequence, following [169, Theorem
], who in turn follows [237]. Let A be an alphabet such that log #A ≥ 2K and take
a sequence (ki)i∈N such that

∏∞
i=1(1 − 1

ki
) = 2K

log #A ∈ (0, 1). Start with an L0-word

V (0) containing r0 = L0/2 ∗s. We construct the i-th skeleton V (i)∞ with |V (i) = Li
recursively. Given V (i), let W (i) be the concatenation of the (#A)ri copies of V (i)
where the ri ∗s are replaced by the (#A)ri ri-words n A. Then set

V (i+ 1) := W (i)V (i)(#A)ri (ki−1),

so that |V (i + 1)| = ki(#A)ri , each non-∗ symbol in V (i) returns with periodic gap
≤ Li, and V (i+ 1) contains ri+1 = ri

ki−1
ki
∗s.

It follows that limi
ri
Li

= r0
L0

∏∞
i=1(1− 1

ki
) = r0

L0

2K
log #A > 0 (so regularity fails). The

number px(Li) of Li in x is bounded below by (#A)ri (namely the words that start at
a positive 1+kLi) and bounded above by Li(#A)ri (all starting positions). Therefore

ri log #A
Li

≤ log px(Li)

Li
≤ logLi + ri log #A

Li

whence limi
log p(Li)

Li
= r0 log #A

L0

∏∞
i=1(1− 1

ki
) = r0

L0
2K = K. Fekete’s Lemma ?? shows

that the entropy limn
log p(n)

n
= K.

We will not give the examples with logarithmic complexity limn
log px(n)

logn
= K ≥ 1,

but the technique is the same.
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3.4.2 Adding machines

Adding machines (as the more general enumeration system in Section ??) are a
class of symbolic systems that are not subshifts. They are also called odometers,
after the device in a car to measure distance. Such an odometer consists of a number
of disks, with the digits 0, . . . , 9 written on the edge. A single “tick” moves the right-
most disk by one unit, and if the 9 is passed (so the disk is back at position 0), it
ticks over the second disk by one unit, see Figure 3.7.

Figure 3.7: Some mechanical adding machines and the decimal odometer of a car.

A mathematical odometer has infinitely many disks, and the number of digits may
vary from disk to disk.

The most common one is the dyadic adding machine a : Σ→ Σ for Σ = {0, 1}N.
For x ∈ Σ, let k = inf{i : xi = 0}. Then a is defined as

a(x)i =


0 i < k,

1 i = k,

xi i > k.

(3.15)

In particular, if x = 111 . . . , so k =∞, then a(x) = 000 . . . .
In more generality, we can choose a sequence p := (pi)i≥1 of integers pi ≥ 2, and

define a on Σp := {(xi)i≥1 : xi ∈ {0, 1, . . . , pi − 1}} analogously to (3.15). It is also
instructive to view this procedure algorithmically, as “add one and carry”.

c := 1 ; k := 1

Repeat

s := xk + c;

If s ≥ pk then c := 1 else c := 0 (3.16)

xk := s (mod pk) ; k := k + 1

Until c = 0

In fact, Σp is a group under the same rule of “add and carry”, and a : Σp → Σp is
invertible.

Proposition 3.4.12. Every odometer (Σp,a) is a topological group under addition.
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Proof. The addition z = x + y of two sequences x, y ∈ X with add-and-carry goes
according to the algorithm

c := 0 ; k := 1

Repeat for all k ∈ N
s := xk + yk + c;

If s ≥ pk then c := 1 else c := 0

zk := s (mod pk) ; k := k + 1

It is straightforward to check that this is continuous in x and y.

Exercise 3.4.13. Show that an odometer (Σp,a) is conjugate to its own inverse
(Σp,a

−1).

Remark 3.4.14. There is a common alternative way to write adding machines.
Given p = (pj)j∈N, define a sequence q = (qj)j∈N0 by q0 = 1 and qj =

∏j
k=1 pk.

Set

Σ̃q = {y = (yj)
∞
j=1 : yj ∈ {0, . . . , qj − 1}, qj−1|(yj − yj−1) for all j ∈ N},

where y0 = 0 by convention. Define b : Σp → Σ̃q by

b(x)k =
k∑
j=1

xjqj−1 with inverse b−1(y)k =
yk − yk−1

qk−1

. (3.17)

Then b is a homeomorphism, and

b ◦ a = ã ◦ b for ã(y)k = yk + 1 (mod qk) for all k ∈ N.

If car odometers were constructed as Σ̃q, then qj = 10j and the j-th figure on the
odometer would be the total number of kilometers driven (mod 10j).

Proposition 3.4.15. Every odometer is uniformly rigid and hence periodically re-
current.

Proof. Take ε > 0 arbitrary and take k such that 2−k < ε. Let qk = p1p2 . . . pk.
Then aqk(x)i = xi for all i ≤ k, i.e., d(aqk(x), x) < ε as required. Periodic recurrence
follows by Lemma 1.5.11.

Proposition 3.4.16. Every odometer is strictly ergodic, i.e., it is minimal and has
a unique invariant probability measure, see Section 4.3.

Proof. Given any n-cylinder Z, every x ∈ Σp will visit it exactly once in in every
p1p2 · · · pn iterates of a. Therefore orba(x) is dense in Σp and the only a-invariant
probability measure has µ(Z) = (p1p2 · · · pn)−1.
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Proposition 3.4.17. Every odometer is an isometry, and hence of zero entropy.

Proof. Let x, y ∈ Σp and n = min{i ≥ 1 : xi 6= yi}, so d(x, y) = 2−n. It is easy
to check that mini{a(x)i 6= a(y)i} = n as well. Therefore a is an isometry, and in
particular equicontinuous. Proposition 1.6.2 shows that htop(a) = 0.

Proposition 3.4.18. An odometer has no subshift other than periodic subshifts as
continuous factors. However, an odometer can be a factor of a subshift.

Proof. Clearly the restriction of a to the first n digits gives an p1p2 · · · pn-periodic
orbit. However, since a is an isometry, it cannot have an expansive continuous factor,
and by Proposition ??, all non-periodic transitive subshifts are expansive.

Conversely, take the Feigenbaum substitution shift (Xfeig, σ) with Xfeig = orbσ(ρ)
for the fixed point

ρfeig = ρ0ρ1ρ2 · · · = 1011 1010 10111011 1011101010111010 1011 . . .

The shift is invertible on Xfeig, except that ρfeig itself has two preimages 0ρfeig
and 1ρfeig. We define a factor map ϕ onto the dyadic inverse odometer (X,a−1), for

Σ = {0, 1}N. Since odometers are conjugate to their own inverses (see Exercise 3.4.13),
this gives a factor mp onto (Σ,a) too.

Follow the following algorithm:

y1 := min{n ≥ 1 : xn = 0} (mod 2),

y2 := min{n ≥ 1 : xy1+2n = 1} (mod 2),

y3 := min{n ≥ 1 : xy1+2y2+4n = 0} (mod 2),

y4 := min{n ≥ 1 : xy1+2y2+4y3+8n = 0} (mod 2),
...

...

and set ϕ(x) = y. Note that this is not a sliding block code, since the windows to
consider to determine yi increase with i. However, ϕ is continuous, and one can check
that ϕ ◦ σ = a−1 ◦ ϕ. Note also that since the above minima are taken over n ≥ 1,
ϕ(0ρfeig) = ϕ(1ρfeig) and in fact ϕ(σ−k(0ρfeig)) = ϕ(σ−k(1ρfeig)) for all k ≥ 0.

Theorem 3.4.19. Let (Xq, σ) be a Toeplitz shift with periodic structure q and assume
that p = (pi)i≥1 with p1 = q1, pi = qi/qi−1 is an integer sequence. Then (Σp,a) is
the maximal equicontinuous factor of (Xq, σ), and (Xq, σ) is a non-trivial almost
one-to-one extension of (Σp,a).

Proof. Let Xq be the orbit closure of the Toeplitz sequence x with periodic structure
q. Let Sk(j) be the j-th skeleton of x, so it is a qj-periodic sequence in (A ∪ {∗})∞.
For y ∈ Xq, define

πj(y) = r ∈ {0, . . . , pj − 1} if yi = Sk(j)i+r whenever Sk(j)i+r 6= ∗.
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Therefore πj(σ
ny) = πj(y)+n (mod qj), so πj is surjective, and π−1(r), r = 0, . . . , qj−

1, are qj disjoint clopen sets in Xq. For y ∈ Xq, it may not be clear from the first qj
entries what πj(y) is. However, for every j, there is mj such that the first mj entries
determine the value of πj(y). Therefore πj is continuous.

Note that π(y)j − π(y)j−1 is always a multiple of qj−1. Thus we can define π :
Xq → Σ̃q by

π(y)j = πj(y).

Then π−1(z) = ∩jπ−jj (z), as the intersection of nested non-empty closed sets, is itself
non-empty. Thus π is surjective, continuous, and π ◦ σ = ã ◦ π, were ã is defined in
Remark 3.4.14. In fact, via b we can recode (Σ̃q, ã) to the adding machine (Σp,a)
as Remark 3.4.14 explains. This adding machine is thus a factor of the Toeplitz shift
and, as all adding machines, it is equicontinuous.

If we set π̃ = b ◦ π, we see further that π̃(σn(x)) = an(00000 . . . ) =: 〈n〉 for each
n ∈ N0, and that also π̃−1(〈n〉) = {σn(x)}. Therefore (Xp, σ) is an almost one-to-
one extension of (Σp,a). However, there must be z ∈ Σp such that π̃−1(z) ≥ 2,
because otherwise (Σp,a) would be conjugate to the (expansive) subshift (Xq, σ),
contradicting Proposition 3.4.18.

Theorem 3.4.20. Every minimal equicontinuous dynamical system on the Cantor
set is conjugate to an adding machine.

Proof. See [169, Theorem 4.4].



Chapter 4

Methods from Ergodic Theory

In ergodic theory, we study dynamical systems (X,B, T ) by means of probability1

measures µ : B → [0, 1]. Here B is the σ-algebra of measurable sets (usually the Borel
algebra generated by the open sets).

Definition 4.0.1. A measure µ on (X,B, T ) is called invariant if µ(A) = µ(T−1A)
for all A ∈ B, the σ-algebra of measurable sets.

That there exists invariant measures in the first place is guaranteed by the Krylov-
Bogul’jubov Theorem:

Theorem 4.0.2 (Krylov-Bogul’jubov). If T is a continuous map on a compact space
X, then there is at least one T -invariant measure.

Proof. Let ν be any probability measure and define Césaro means:

νn(A) =
1

n

n−1∑
j=0

ν(T−jA).

These are all probability measures. The collection of probability measures on a com-
pact metric space is known to be compact in the weak∗ topology, i.e., there is limit
probability measure µ and a subsequence (ni)i∈N such that for every continuous func-
tion ψ : X → R: ∫

X

ψ dνni →
∫
ψ dµ as i→∞. (4.1)

On a metric space, we can, for any ε > 0 and closed set A, find a continuous function
ψA : X → [0, 1] such that ψA(x) = 1 if x ∈ A and

µ(A) ≤
∫
X

ψAdµ ≤ µ(A) + ε and µ(T−1A) ≤
∫
X

ψA ◦ T dµ ≤ µ(T−1A) + ε.

1Occasionally also by infinite measures, but not in this text
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Here we use outer regularity of the measure µ: µ(A) = inf{µ(U) : U ⊃ A is open}.
We take U ⊃ A so small that µ(U) − µ(A) < ε and make sure that ψA = 0 for all
x /∈ U . Note that it is important that A is closed, because if there exists a ∈ ∂A \A,
then the above property fails for µ = δa.

Now by the definition of µ

|µ(T−1(A))− µ(A)| ≤
∣∣∣∣∫ ψA ◦ T dµ−

∫
ψA dµ

∣∣∣∣+ ε

= lim
i→∞

∣∣∣∣∫ ψA ◦ T dνni −
∫
ψA dνni

∣∣∣∣+ ε

= lim
i→∞

1

ni

∣∣∣∣∣
ni−1∑
j=0

(∫
ψA ◦ T j+1 dν −

∫
ψA ◦ T j dν

)∣∣∣∣∣+ ε

≤ lim
i→∞

1

ni

∣∣∣∣∫ ψA ◦ T ni dν −
∫
ψA dν

∣∣∣∣+ ε

≤ lim
i→∞

2

ni
‖ψA‖∞ + ε = ε.

Since ε > 0 is arbitrary, µ(T−1(A)) = µ(A). Because the closed sets generate the
σ-algebra of Borel sets, µ(T−1(A)) = µ(A) also for arbitrary Borel sets.

Exercise 4.0.3. To demonstrate the role of the compactness assumption in Theo-
rem 4.0.2, consider the fixed point ρ of Cantor substitution χCantor from Example ??,
and let X = {σn(ρ) : n ≥ 0} (so no closure taken!). Show that (X, ρ) has no invariant
probability measure.

Invariant measures allow us to study the behavior of typical orbits (i.e., all orbit
except for a set of µ-measure zero, i.e., up to a nullset, and this is denoted as a.e.
(almost everywhere) or µ-a.e. or (mod µ).

4.1 Ergodicity

The notion of ergodicity says that the space X doesn’t fall apart in separate positive
measure components.

Definition 4.1.1. A measure µ is called ergodic if A ∈ B is invariant, i.e., T−1(A) =
A (mod µ) then µ(A) = 0 or µ(Ac) = 0. That is, the only T -invariant sets are
nullsets or the whole space up to a nullset.

Corollary 4.1.2. If (X,T, µ) is ergodic, then the only T -invariant functions (i.e.,
v = v ◦ T µ-a.e.) are constant µ-a.e.

Proof. If v is a non-constant T -invariant function that is not constant µ-a.e., then
there is some c ∈ R such that µ({x ∈ X : v(x) ≤ c}) and µ({x ∈ X : v(x) > c})
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both have positive measure. But these sets are T -invariant, proving that µ cannot be
ergodic.

Exercise 4.1.3. Show that ergodicity of µ is equivalent to: if µ = αµ′ + (1 − α)µ′′

for two measures and some α ∈ (0, 1), then µ = µ′ = µ′′. Conclude that if there is
only one invariant probability measure, it has to be ergodic.

The set of all invariant measure M(T ) is a convex set called the Choquet sim-
plex. The actual definition of a Choquet simplex is that it is a compact, metrizable,
convex set in which every element can be decomposed uniquely as convex combination
of extremal points.

The set of probability measures has indeed this property, since, as Exercise 4.1.3
showed, the ergodic measures Merg(T ) are precisely the extremal points of this sim-
plex. Hence for every µ ∈ M(T ), there is some probability measure ν on Merg(T )
such that

µ(A) =

∫
Merg(T )

µerg(A)dν for every A→ B.

which is called the ergodic decomposition of the measures µ. The Choquet sim-
plex is called Poulsen simplex if the collection ergodic measures lie dense
in the Choquet simplex, see the work of Sigmund [217] and Bowen ????
Downarowicz demonstrated that the family of Toeplitz shifts is so rich that for ev-
ery simplex Σ, there is a Toeplitz shift whose Choquet simplex equals Σ, see [103].
Later, Cortez & Rivera-Letelier [81] showed that enumeration systems have this same
richness.

Definition 4.1.4. A dynamical system (X,T )is called entropy dense if for every
invariant measure µ, there is a sequence of ergodic measures µn such that µn → µ in
the weak∗ topology and the entropies h(µn)→ h(µ).

Obviously, uniquely ergodic systems are entropy dense, but there are many more
systems which have this property for non-trivial reasons.

Theorem 4.1.5. A subshift with specification is entropy dense and the collection
of equidistributions is dense in the Choquet simplex (which therefore is a Poulsen
simplex).

Due to ???? Kifer & Weiss, see also Pfister & Sullivan ???? B-free shifts are also
entropy dense, as are β-shifts [?].

4.2 Birkhoff’s Ergodic Theorem

A simple consequence of the existence of an invariant probability measure is:
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Theorem 4.2.1 (Poincaré Recurrence Theorem). If (X,B, T ) has an invariant prob-
ability measure, then for every set A ∈ B and µ-a.e. x ∈ A, there is n ≥ 1 such that
T n(x) ∈ A. This property of µ is called recurrence, hence the name of the theorem.

Remark 4.2.2. Every continuous map on a compact space has an invariant measure,
as shown in Theorem 4.0.2. If there is only one invariant measure, it has to be ergodic
as well, see Exercise 4.1.3.

Proof of Theorem 4.2.1. Let A be an arbitrary measurable set of positive measure (if
µ(A) = 0, the result is trivially true). As µ is invariant, µ(T−i(A)) = µ(A) > 0 for all
i ≥ 0. On the other hand, 1 = µ(X) ≥ µ(∪iT−i(A)), so there must be overlap in the
backward iterates of A, i.e., there are 0 ≤ i < j such that µ(T−i(A) ∩ T−j(A)) > 0.
Take the j-th iterate and find µ(T j−i(A)∩A) ≥ µ(T−i(A)∩T−j(A)) > 0. This means
that a positive measure part of the set A returns to itself after n := j − i iterates.

For the part A′ of A that didn’t return after n steps, assuming A′ has positive
measure, we repeat the argument. That is, there is n′ such that µ(T n

′
(A′) ∩ A′) > 0

and then also µ(T n
′
(A′) ∩ A) > 0.

Repeating this argument, we can exhaust the set A up to a set of measure zero,
and this proves the theorem.

The property demonstrated is this theorem is called recurrence. Theorem 4.2.1
is an instance of a very general fact observed in ergodic theory:

Space Average = Time Average (for typical points).

This is expressed in the

Theorem 4.2.3 (Birkhoff Ergodic Theorem). Let µ be a probability measure and
ψ ∈ L1(µ). Then the ergodic average

ψ∗(x) := lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i(x)

exists µ-a.e. (everywhere if ψ is continuous), and ψ∗ is T -invariant, i.e., ψ∗ ◦T = ψ∗

µ-a.e. If in addition µ is ergodic then

ψ∗ =

∫
X

ψ dµ µ-a.e. (4.2)

Remark 4.2.4. A point x ∈ X satisfying (4.2) is called typical for µ. To be precise,
the set of µ-typical points also depends on ψ, but for different functions ψ, ψ̃, the
(µ, ψ)-typical points and (µ, ψ̃)-typical points differ only on a nullset.

Exercise 4.2.5. Let (X,T,B, µ) be an ergodic measure preserving system on a com-
pact metric space. Show that T is topologically transitive on supp(mu).
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Definition 4.2.6. Sometimes µ-typical points are called µ-generic. A point x ∈
X is called quasi-generic w.r.t. µ if there are sequences (an)n∈N and (bn)n∈N with
bn − an →∞ such that

lim
n→∞

1

bn − an

bn−1∑
j=an

ψ ◦ T j(x) =

∫
X

ψ dµ for every continuous function ψ.

4.3 Unique ergodicity

Definition 4.3.1. A transformation (X,T ) is uniquely ergodic if it admits only
one invariant probability measure.

Since X is compact and σ is continuous, there is at least one invariant measure
by Theorem 4.0.2. The question we raise in this section is whether there is a unique
invariant measure. In this case, the subshift (X, σ) is called uniquely ergodic. If
(X, σ) is both uniquely ergodic and minimal, we call it strictly ergodic.

Lemma 4.3.2. If (X, σ) is uniquely ergodic, then its measure µ is ergodic.

Proof. Suppose not, so there is an invariant set B ∈ B such that b := µ(B) ∈ (0, 1).
Clearly also its complement Bc is invariant, and has measure 1 − b. Construct a
measure µ̃ as µ̃(A) = 1

2
µ(A ∩ B) + 1−b/2

1−b µ(A ∩ Bc) for every A ∈ B. Then µ̃ is
invariant as well, contradicting the uniqueness of µ.

A very useful property of uniquely ergodic systems is that Birkhoff averages con-
ference uniformly, rather than only a.e.

Lemma 4.3.3 (Oxtoby’s Theorem). Let X be a compact space and T : X → X
continuous. A transformation (X,T ) is uniquely ergodic if and only if, for every
continuous function, the Birkhoff averages 1

n

∑n−1
i=0 f ◦ T i(x) converge uniformly to

a constant function.

The main consequence of unique ergodicity is the uniform existence of visit fre-
quencies, i.e., for a uniquely ergodic subshift (X, σ, µ) we have for every word a1 . . . aN
and all x ∈ X

µ([a1 . . . aN ]) = lim
n→∞

1

n
#{0 ≤ j < n : xj+1 . . . xj+N = a1 . . . aN}. (4.3)

Proof. If µ and ν were two different ergodic measures, then we can find a continuous
function f : X → R such that

∫
fdµ 6=

∫
fdν. Using the Ergodic Theorem for both

measures (with their own typical points x and y), we see that

lim
n→∞

1

n

n−1∑
k=0

f ◦ T k(x) =

∫
fdµ 6=

∫
fdν = lim

n→∞

1

n

n−1∑
k=0

f ◦ T k(y),
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so there is not even convergence to a constant function.
Conversely, we know by the Ergodic Theorem 4.2.3 that limn

1
n

∑n−1
k=0 f ◦ T k(x) =∫

fdµ is constant µ-a.e. But if the convergence is not uniform, then there are se-
quences (xi), (yi) ⊂ X and (mi), (ni) ⊂ N, such that

lim
i

1

mi

mi−1∑
k=0

f ◦ T k(xi) := a 6= b =: lim
i

1

ni

ni−1∑
k=0

f ◦ T k(yi).

Define functionals µi, νi : C(X) → R as µi(g) = lim infi
1
mi

∑mi−1
k=0 g ◦ T k(x) and

νi(g) = lim infi
1
ni

∑ni−1
k=0 g ◦ T k(x). Both sequences have weak accumulation points

µ and ν which are easily shown to be T -invariant measures, see the proof of Theo-
rem 4.0.2.

More precisely, since (C(X), ‖ ‖∞) is a separable Banach space, we can find a
countable dense subset (gj)j∈N and (by a diagonal argument) we can take subsequences
of (mi)i∈N and (ni)i∈N along which µi(gj) and νi(gj) converge for all j ∈ N.

But µ and ν are not the same. because if we take subsequence a subsequence
(jr)r∈N such that gjr → f , then limr µ(gjr) = µ(f) = a 6= b = ν(f) = limr ν(gjr).
Hence (X,T ) cannot be uniquely ergodic.

Example 4.3.4. No non-periodic SFT is uniquely ergodic. Indeed, there are infinitely
many periodic sequences x = (x1 . . . xn)∞, and the equidistribution δx(B) = 1

n
#(B ∩

orbσ(x)) is an invariant measure. The same holds for sofic shifts.
On the other hand, Sturmian shifts (X, σ) are strictly ergodic, and their unique

measure is obtained by lifting Lebesgue measure from the circle, using the itinerary
map i : S→ X, that is: µ(B) = Leb(i−1(B)).



Chapter 5

Automata and Coding

Allouche and Shallit: bαn+βc is an automatic seuqence if and only if α ∈ Q,
and then it is periodic. Definition... [5] ????

5.1 Automata

In this section we discuss some variations on the Turing machine, and ask the question
what languages they can recognize or generate. The terminology is not entirely
consistent in the literature, so some of the below notions may be called differently
depending on which book you read.

5.1.1 Finite automata

A finite automaton (FA) is a simplified type of Turing machine that can only read a
tape from left to right, and not write on it. The components are

M = {Q,A, q0, F, f}

where

Q = collection of states the machine can be in.

A = the alphabet in which the tape is written.

q0 = the initial state in Q.

F = collection of final states in Q; the FA halts when it reaches one.

f = is the rule how to go from one state to the next when reading

a symbol a ∈ A on the tape. Formally it is a function Q×A → Q.

A language is regular if it can be recognized by a finite automaton.

Example 5.1.1. The even shift (Example 0.1.13) is recognized by the following finite
automaton with Q = {q0, q1, q2, q3} with initial state q0 and final states q2 (rejection)

83
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and q3 (acceptance). The tape is written in the alphabet A = {0, 1, b} where b stands
for a blank at the end of the input word. The arrow qi → qj labeled a ∈ A represents
f(qi, a) = qj.

q3

q2q1q0

1

1

0

0

b b

Figure 5.1: Transition graph for a finite automaton recognizing the even shift.

This example demonstrates how to assign a edged-labeled transition graph to a
finite automaton, and it is clear from this that the regular languages are precisely the
sofic languages.

It is frequently easier, for proofs or constructing compact examples, to allow finite
automata with multiple outgoing arrows with the same label. So, if we are in state
q, read symbol a on the input tape, and there is more than one outgoing arrow with
label a, then we need to make choice. For computers, making choices is somewhat
problematic - we don’t want to go into the theoretical subtleties of random number
generators - but if you take the viewpoint of probability theory, you can simply assign
equal probability to every valid choice, and independent of the choices you may have
to make elsewhere in the process. The underlying stochastic process is then a discrete
Markov process.

Automata of this type are called non-deterministic finite automata (NFA),
as opposed to deterministic finite automata (DFA), where never a choice needs to
be made. A word is accepted by an NFA if there is a positive probability that choices
are made that parse the word until the end without halting or reaching a rejecting
state.

We mention without proof (see [148, page 22] or [5, Chapter 4]):

Theorem 5.1.2. Let L be a language that is accepted by a non-deterministic finite
automaton. Then there is a deterministic finite automaton that accepts L as well.

Corollary 5.1.3. Let wR = wn . . . w1 stand for the reverse of a word w = w1 . . . wn.
If a language L is recognized by a finite automaton, then so is its reverse LR = {wR :
w ∈ L}.

Proof. Let (G,A) the edge-labeled directed graph representing the FA for L. Reverse
all the arrows. Clearly the reverse graph (GR,A) in which the directions of all arrows



5.1. AUTOMATA 85

are reversed and the final states become initial states and vice versa, recognizes LR.
However, even if in G, every outgoing arrow has a different label (so the FA is deter-
ministic), this is no longer true for (GR,A). But by Theorem 5.1.2 there is also an
DFA that recognizes LR.

q3

q2q1q0

1

2

b

0

1

2

b b

2

q2q1q00

ε ε

2

1

Figure 5.2: Finite automata recognizing L = {0k1l2m : k, l,m ≥ 0}.

Sometimes it is easier, again for proofs or constructing compact examples, to allow
finite automata to have transitions in the graph without reading the symbol on the
input take (and moving to the next symbol). Such transitions are called ε-moves.
Automata with ε-moves are almost always non-deterministic, because if a state q has
an outgoing arrow with label a and an outgoing arrow with label ε, and the input
tape reads a, then still there is the choice to follow that a-arrow or the ε-arrow.

Example 5.1.4. The follow automata accept the language L = {0k1l2m : k, l,m ≥ 0},
see Figure 5.2. The first is with ε-moves, and it stops when the end of the input is
reached (regardless which state it is in). That is , if the FA doesn’t halt before the end
of the word, then the word is accepted. The second is deterministic, but uses a blank
b at the end of the input. In either case q0 is the initial state.

Again without proof (see [148, page 22]):

Theorem 5.1.5. Let L be a language that is accepted by a finite automaton with
ε-moves. Then there is a non-deterministic finite automaton without ε-moves that
accepts L as well.
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5.2 The Chomsky hierarchy

A different approach to complexity of languages is due to Noam Chomsky’s (1928– )
study to describe grammar of natural languages, based on production rules.

Figure 5.3: Noam Chomsky in 1977 and his hierarchy.

For example, to build sentences in English, you could (repeatedly) use the follow-
ing rules, until there are no variables (i.e., the things within 〈 〉) left:

〈sentence〉 → 〈articled noun phrase〉〈transitive verb〉〈articled noun phrase〉
〈articled noun phrase〉 → 〈article〉〈noun phrase〉

〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈noun phrase〉 → 〈noun〉

〈noun〉 → mouse, cat, book, decency

〈article〉 → the, a

〈adjective〉 → big, small, high, low, red, green, orange, yellow

〈transitive verb〉 → chases, eats, hits, reads

This produces sentence such as

a small yellow mouse chases a big green cat
a high low red decency eats a orange book

(5.1)

Here the first sentence is fine; the second is nonsense. But apart from the fact that
“a orange” should be “an orange” it is grammatically correct.

In arithmetic, we can make the following example:

〈expression〉 → 〈expression〉 ∗ 〈expression〉
〈expression〉 → 〈expression〉+ 〈expression〉
〈expression〉 → (〈expression〉)
〈expression〉 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
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This can generate all kind of arithmetic expressions by repeatedly adding and multi-
plying the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, that a pocket calculator should be able the
compute. For instance

9 + 5 ∗ 3 + 7, (9 + 5) ∗ 3 + 7, 9 + 5 ∗ (3 + 7), (9 + 5) ∗ (3 + 7),

all with different outcomes.
Formally, this grammar has the following components

G = (V, T, P, S),

where

V = collection of variables to which production rules can be applied.

T = collection of terminals which remain unchanged.

P = collection of production rules to replace variable with strings in V ∪ T.
S = a special variable, called the starting symbol.

The language L(G) of a grammar G is the collection of all words in T ∗ that, starting
from S, can be generated by repeated application of the production rules until no
variables are left.

The Chomsky hierarchy is a classification of languages according to how com-
plicated the production rules are. In order of increasing complexity, they are

regular languages (RL) ⊂ context-free languages (CFL)

⊂ context sensitive languages (CSL)

⊂ recursively enumerable languages (ER)

although there are also unrestricted grammars, which is a wider class still.

5.2.1 Regular grammars

The regular grammars can be brought in a form where the production rules are
one of the following types:

left-linear or right-linear
A→ Bw A→ wB
A→ w A→ w

where A,B ∈ V and w ∈ T ∗ (possibly w is empty).

Example 5.2.1. The even shift (Example 0.1.13) is recognized by the following left
and right-linear regular grammars on T = {0, 1}.

left-linear right-linear
S → S0 S → 0S
S → S11 S → 11S
S → ε S → ε
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Note that the language L is reversible, i.e., LR = L, and this property makes it so
simple to convert the left-linear productions into the right-linear productions.

Theorem 5.2.2. Every regular grammar (left-linear or right-linear) produces a lan-
guage that can be recognized by a finite automaton and vice versa.

Hence a regular grammar produced the language of a sofic subshifts.

Proof. First assume that G = {V, T, P, S} is a right-regular grammar. Construct a
finite automaton with ε-moves {Q,A, q0, F, f} where Q consists of all q such that
q = S or q is a (not necessarily proper) suffix of the right hand side of a production
rule. Define

f(q, a) =

{
q′ if q ∈ V, a = ε, q → q′ is a production;

q′ if q = aq′ ∈ T ∗ ∪ T ∗V, a ∈ T, q → aq′ is a production.

Conversely, if a finite automaton is given by {Q,A, q0, F, f}, then make the right-
regular grammar G = {V, T, P, qS} where the productions are p → aq whenever
f(p, a) = q, and p→ a if f(p, a) = q and q is a final state.

A left-linear grammar is found by first constructing a finite automaton that accepts
exactly the reverse wR = wn . . . w1 of every w = w1 . . . wn ∈ L (see Corollary 5.1.3),
and then taking the right-linear grammar for this reverse language LR. Then rewrite
every production rule A → wB to A → Bw to obtain a left-linear grammar that
accepts exactly the original L.

5.2.2 Context-free grammars

The second sentence in (5.1) makes no sense, because (for example) high does not
go together with low, and decencies don’t eat. In other words, the grammar rules
produces word combinations without looking at the meaning of the particular words,
and which words can go together. This is the explanation behind the term context-
free. Formally, a context-free grammar (V, T, P, S) is one in which the the set P of
productions is finite, and each of them has the form A→ α, where α ∈ (V ∪ T )∗ is a
finite string of variables and terminals.

Example 5.2.3. Consider the language L := {01n2n : n ≥ 1}. That is, every
maximal block of 1s is succeeded by an equally long word of 2s.

This is a context-free language, generated by the productions

S → 01A2

A→ 1A2

A→ ε (the empty word)

Assume by contradiction that L is sofic. Then there is a finite edge-labeled tran-
sition graph G which generates L. Since the are only finitely many, say r, vertices,
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every word 1n for n ≥ r must contain a subword 1m corresponding to a loop in G.
But then we can also take this loop k times. In particular, for each word 01n2n, also

01n+(k−1)m2n = 01a 1m1m1m . . . 1m︸ ︷︷ ︸
the m-loop k times

1b2n

is generated in G. But 01n+(k−1)m2n /∈ L, so we have a contradiction.

This example shows that context-free grammars are a strictly wider class than the
regular grammars, and it also illustrates the working of a general class of lemmas,
called Pumping Lemmas that are frequently used in this field as a tool to distinguish
grammars. The simplest (which we exploited in Example 5.2.3):

Lemma 5.2.4 (Pumping Lemma for Regular Languages). Let L be a regular lan-
guage. Then there is N such that for every w ∈ L of length |w| ≥ N , we can
decompose w = tuv such that |uv| ≤ N , v 6= ε and tukv ∈ L for all k ≥ 1.

Proof. As in Example 5.2.3. Note that N ≤ #{vertices in G}.

Corollary 5.2.5. [[121, Corollary 6.1.11]] The language of a Sturmian sequence x
with irrational rotation number is not regular.

Proof. If the language L(x) was regular, then by the Pumping Lemma 5.2.4, there
are words tukv ∈ L(x) for some u 6= ε and any k ≥ 1. But limk→∞ |tukv|1 ∈ Q and
this contradicts that to rotation number of x /∈ Q.

Exercise 5.2.6. Let L = {01n
2

: n ≥ 1}. Show that L is not a regular language. Is
it context-free?

Exercise 5.2.7. Using the Pumping Lemma 5.2.4 to show that there are β-shifts Xβ

that are not regular.

Lemma 5.2.8 (Pumping Lemma for Context-free Languages). Let L be a context-
free language. Then there is N such that for every w ∈ L of length |w| ≥ N , we can
decompose w = rstuv such that 1 ≤ |su| ≤ |stu| ≤ N , and rsktukv ∈ L for all k ≥ 1.

Proof. See [148, Chapter 6].

Corollary 5.2.9. The language L(x) of a Sturmian word x is not context-free.

Proof. Take N ∈ N and for a given N -word w of x, let w = rstuv be the composition
as in Lemma 5.2.8. If L(x) were context-free, then rsktukv ∈ L(x) as well. But then
the limit frequency of 1s is

lim
k→∞

|rsktukv|1
|rsktukv|

=
|su|1
|su|

∈ Q,

contradicting that Sturmian sequences have irrational frequencies.
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From the shape of its production rules, it is clear that the language of Exam-
ple 5.2.3 is context-free. No finite automaton can keep track of the precise number of
1s before starting on the 2s, but there is a simple memory device that can. Imagine
that for every 1 you see, you put a card on a stack, until you reach the first 2. At
every 2 you read you remove a card again. If at the end of the word no cards are left
on the stack, the word is accepted.

This device is simple in construction: you can only add or remove at the top of
the stack; what is further down you can not read until you first remove all the cards
above it. On the other hand, the stack has no prescribed upper height, so requires
infinite memory.

Formally, the (push-down) stack has its (finite) stack alphabet B (think of
cards of different color) which is different from A and a starting stack symbol Z0 ∈ B
(the color of the initial card on the stack at the start of the automaton. The moves
f : Q ×A× B → Q × B∗ now also involve adding cards to the stack (with colors in
B) or removing them. The resulting automaton with stack is called a push-down
automaton.

Theorem 5.2.10. A language is (not more complicated than) context-free if and only
if it is recognized by a push-down automaton.

A
B

C
D

F

C ′

D′

A′
B′

Figure 5.4: A 3-dimensional “heterogeneous” baker transformation.

Exercise 5.2.11. A piecewise affine and “heterogeneous”1 hyperbolic map F : [0, 1]3 →
[0, 1]3 (see Figure 5.4) is defined as

F (x, y, z) =


(4x− 2, y/2, (1 + z)/2) if (x, y, z) ∈ A,
(4x− 2, (1 + y)/2, (1 + z)/2) if (x, y, z) ∈ B,
(2x, 2y, z/4) if (x, y, z) ∈ C,
(2x, 2y, (1 + z)/4) if (x, y, z) ∈ D,

1i.e., stable manifolds don’t have the same dimension at every point
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and primes indicate the F -images of each of these four boxes, see [3].
(a) Why is the partition into these four boxes not a Markov partition? (b) Why is the
symbolic shift (X, σ) associated with this partition (i.e., a subshift of {A,B,C,D}Z
not a SFT . Hint: AC can be followed by D but can AAC be followed by D?
(c) Show instead that (X, σ) is a context-free subshift, as well as synchronizing.

5.2.3 Context-sensitive grammars

A context-sensitive grammar (V, T, P, S) is one in which the set P of productions is
finite, and each of them has the form α → β, where α, β ∈ (V ∪ T )∗ and |β| ≥ |α|.
The terminals themselves cannot change, but they can swap position with a variable.
For example aA→ Aa and aA→ Ba are valid production rules in a context-sensitive
grammar.

Remark 5.2.12. The word context-sensitive comes from a particular normal form
of the productions, in which each of them has the form α1Aα2 → α1Bα2, where B ∈
(V ∪T )∗ is a non-empty finite string of variables and terminals, and α1, α2 ∈ (V ∪T )∗

are contexts in which the production rule can be applied. Only when A is preceded by
α1 and succeeded by α2, the production rule can be applied, leaving the context α1, α2

unchanged.

Example 5.2.13. Consider the language L = {1n2n3n : n ≥ 1}. Pumping Lemma 5.2.8
can be applied to show that L is not context-free. However L is context-sensitive. For
example, we can use the productions

S → 123

S → 11A23

A2 → 2A

2A3 → 2233

2A3 → 22B33

2B → B2

1B2 → 11A2

In practice, A is a marker moving right, doubling 23 when it hits the first 3. The
procedure can stop here, or produce marker B that moves to the left, doubling 1 when
it hits the first 1.

Example 5.2.14. The following set of productions produces the language L = {12n :
n ≥ 0}, that is: strings of 1s of length equal to a power of 2.

S → AC1B 1D → D1
C1 → 11C AD → AC
CB → DB 1E → E1
CB → E AE → ε
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Here A and B are begin-marker and end-maker. C is a moving marker, doubling the
number of 1s when it moves to the right. When it reaches the end-marker B, then

• it changes to a moving marker D, which just moves to the left until it hits
begin-marker A, and changes itself in C again. In this loop, the number of 1s
is doubled again.

• or, it merges with the end-marker B to a new marker E. This marker E moves
left until it hits begin-marker A. It then merges with A into the empty word:
end of algorithm.

This language is context-sensitive, although the production rules CB → E and AE →
ε strictly speaking not of the required form. The trick around it is to glue a terminal
1 to (pairs of) variables in a clever way, and then call these glued strings the new
variables of grammar, see [148, page 224].

We mentioned Turing machines in the introduction. In effect, a Turing machine
is a finite automaton with a memory device in the form of an input tape that can be
read, erased and written on, in little steps of one symbol at the time, but otherwise
without restrictions on the tape. If the finite automaton part is non-deterministic,
then we call it a non-deterministic Turing machine. If we put a restriction on the
tape that it cannot be used beyond where the initial input is written, then we have
a linearly bounded non-deterministic Turing machine or linearly bounded
automaton (LBA). To avoid going beyond the initial input, we assume that the
input is preceded by a begin-marker, than cannot be erased, and to the left of which
the reading/writing device cannot go. Similarly, the input is succeeded by an end-
marker, than cannot be erased, and to the right of which the reading/writing device
cannot go.

Theorem 5.2.15. A language is (not more complicated than) context-sensitive if and
only if it is recognized by a linearly bounded non-deterministic Turing machine.

5.2.4 Recursively enumerable grammars

A grammar is called recursively enumerable if there is no restriction anymore on the
type of production rules. For this largest class in the Chomsky hierarchy, there is no
restriction on the Turing machine anymore either.

Theorem 5.2.16. A language is (not more complicated than) recursively enumerable
if and only if it is recognized by a Turing machine.

In summary, we have the table:
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Type Automaton Productions Example
regular finite automaton A→ w,A→ wB (right-linear) {ambn : m,n ≥ 1}
(sofic shift) A→ w,A→ Bw (left-linear)

context-free push-down A→ γ ∈ (V ∪ T )∗ {anbn : n ≥ 1}
automaton

context- linearly bounded α→ β, α, β ∈ (V ∪ T )∗, {a2n : n ≥ 0}
sensitive non-deterministic |β| ≥ |α| (ór αAβ → αγβ

Turing machine ∅ 6= γ ∈ (V ∪ T )∗)

recursively Turing machine α→ β (no restrictions)
enumerable
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edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.

[122] A. Fraenkel, Systems of enumeration, Amer. Math. Monthly 92 (1985)
105–114.

[123] G. A. Freiman, Diofantovy priblizheniya i geometriya chisel (zadacha
Markova) [Diophantine approximation and geometry of numbers (the
Markov spectrum)], Kalininskii Gosudarstvennyi Universitet, Kalinin,
1975.
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