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In essence, symbolic dynamical systems are dynamical systems on a topo-
logical (in fact metric) space, and therefore share many of the topological
properties that general dynamical systems can have. In this chapter, we
discuss several of these general topological properties, such as minimality,
entropy, versions of equicontinuity and mathematical chaos, as well as topo-
logical mixing and shadowing properties.

2.1. Basic Notions from Dynamical Systems

A dynamical system is a mathematical description of how a physical sys-
tem evolves in time. It consists of

• a phase space X, usually a metric space, or at least topological
space, describing the state of the system. For example, R2n can
be used to describe the positions and velocities of n point-particles
moving along a line, or R6n for the positions and velocities of n
point-particles moving in R3.

• a time space, which could be R (for continuous time) or N0 :=
N ∪ {0} (or Z if the dynamical system is time-invertible) if the ob-
servations are only made at discrete time steps. More complicated
(multi-dimensional or group-valued) time can be considered too,
but in this text, time is always discrete: N0 or Z.

• an evolution rule, which for discrete time take the form of a trans-
formation T : X → X satisfying
(1) T 0(x) = x for all x ∈ X.
(2) Tm+n(x) = Tm(Tn(x)) for all m,n ∈ N0 (or Z) and all x ∈ X.

This is realized if we let Tn be the n-fold composition:

Tn(x) = T ◦ T ◦ · · · ◦ T
︸ ︷︷ ︸

n times

and T−n is the n-fold composition of its inverse transformation if
it exists. If T is continuous, then (X,T ) is called a continuous
dynamical system.

Definition 2.1. Let (X,T ) be a dynamical space on a topological space.
The orbit of x ∈ X is the set

orb(x) =

{

{Tn(x) : n ∈ Z} if T is invertible;

{Tn(x) : n ≥ 0} if T is non-invertible.

The set orb+(x) = {Tn(x) : n ≥ 0} is the forward orbit of x. This notation
is useful if T is invertible; if T is non-invertible, then orb+(x) = orb(x).

Exercise 2.2. Let σ : Σ → Σ be invertible. Is there a difference between
x ∈ orb(x) \ {x} and x ∈ orb+(x) \ {x}?
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We distinguish several types of orbit. Namely, a point x is

• periodic if Tn(x) = x for some n ≥ 1. The smallest such n is
called the period of x. If the period is 1, then x is called a fixed
point.

• preperiodic if Tm+n(x) = Tm(x) for some m,n ∈ N. The minimal
such m,n are called the preperiod and period of x.

• asymptotically periodic if there is a periodic point y /∈ orb(x)
such that d(Tn(x), Tn(y)) → 0 as n → ∞. The periodic point y is
attracting if it is periodic and has a neighborhood1 U such that
⋂
Tn(U) = {y}. If y has a neighborhood U such that

⋂
Tn(U) =

{y}, then y is repelling.

For example, for the quadratic family with a = 3.83187405528332 . . . as
in Exercise 1.36, the point x = 1

2 has period 3, and since Q′
a(

1
2) = 0, it is

easy to show that 1
2 is attracting. The two fixed points are 0 and 1− 1

a ; they
are repelling. For the circle rotation Rα, every point is periodic if and only
if α ∈ Q; x = m/n in lowest terms, then it is periodic with period n, and
can be called neutral. If α /∈ Q, then every orbit is dense in S1.

Definition 2.3. Let (X,T ) be a dynamical space on a topological space.
The ω-limit set of x is the set of accumulation points of its forward orbit.
In formula

ω(x) =
⋂

n∈N

⋃

m≥n

Tm(x) = {y ∈ X : ∃ ni → ∞, lim
i→∞

Tni(x) = y}.

We call x recurrent if x ∈ ω(x).

Analogously for invertible shifts, the α-limit set of x is the set of accu-
mulation points of its backward orbit of x:

α(x) =
⋂

n∈N

⋃

m≤−n

Tm(x) = {y ∈ X : ∃ ni → ∞, lim
i→∞

T−ni(x) = y}.

Definition 2.4. Given a dynamical system (X,T ), a point x ∈ X is called
nonwandering if for every neighborhood U ∋ x there is an n ≥ 1 such
that T−n(U) ∩ U 6= ∅. The nonwandering set, Ω(T ), is the set of all
nonwandering points.

Recurrent points are always nonwandering, but Ω(T ) can contain non-
recurrent points. In the one-sided full shift, for instance, x = 0111111 · · · is
not recurrent but nonwandering. If (X,T ) has a dense orbit, then Ω(T ) = X.

1If the space X is one-dimensional, then we can speak of one-sided attracting if there is a
one-sided neighborhood U of y such that

⋂
Tn(U ∪ {y}) = {y}.
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Definition 2.5. Two dynamical systems (X, f) and (Y, g) are (topolog-
ically) conjugate if there is a homeomorphism ψ : X → Y such that
ψ ◦ f = g ◦ ψ.

If ψ ◦f = g ◦ψ and ψ : X → Y is a continuous, onto, but not necessarily
one-to-one map, then ψ is called a semi-conjugacy or factor map, (Y, g)
is called a factor of (X, f), and (X, f) is called an extension of (Y, g).
This extension is almost one-to-one if there is a dense set Y ′ such that
#ψ−1(y) = 1 for all y ∈ Y ′.

A conjugacy ψ : X → Y is called pointed if it sends specified points
x ∈ X and y ∈ Y to each other.

Lemma 2.6. Let (X, f) and (Y, g) be dynamical systems that are conjugate
via g ◦ ψ = ψ ◦ f . Then

(1) If p is a (pre)periodic point for f , then ψ(p) is a (pre)periodic point
of g, and the (pre)periods are the same.

(2) If f, g are continuous, then the conjugacy preserves ω-limit sets:
ψ(ω(x)) = ω(ψ(x)).

(3) If the periodic point p is attracting/repelling, then ψ(p) is also at-
tracting/repelling.

Proof. First note that

ψ ◦ fn = ψ ◦ f ◦ ψ−1 ◦ ψ ◦ f ◦ ψ−1 ◦ ψ ◦ f ◦ ψ−1 ◦ · · · ◦ f
= g ◦ ψ ◦ ψ−1 ◦ g ◦ ψ ◦ ψ−1 ◦ g ◦ ψ ◦ ψ−1 ◦ · · · ◦ g ◦ ψ = gn ◦ ψ.

1. Take p such that fn(p) = p and q = ψ(p). Then gn(q) = gn ◦ ψ(p) =
ψ ◦fn(p) = ψ(p) = q, so q if n-periodic for g. Next, suppose that fm+n(p) =
fm(p), and set ψ(p) = q. Then gm+n(q) = gm+n ◦ ψ(p) = ψ ◦ fm+n(p) =
ψ ◦ fm(p) = gm ◦ ψ(p) = gm(q).
2. Now assume that x ∈ ωf (a), so there is a sequence nk → ∞ such
that fnk(a) → x. Set y = ψ(x) and b = ψ(a). Then, by continuity of f ,
gnk(b) = gnk ◦ ψ(a) = ψ ◦ fnk(a) → ψ(x) = y, so y ∈ ωg(b).
3. If p = f(p) is asymptotically attracting, then for every a ∈ X sufficiently
close to p, we have p = ωf (a). By part 1., q := ψ(p) is a fixed point of g,
and by part 2., q = ωg(y) for y = ψ(x). �

Exercise 2.7. Is the following true? If X is a factor of Y and Y a factor of
X, then X and Y are conjugate.

Example 2.8. The quadratic Chebyshev polynomial Q2(y) = 2y2 − 1
on [−1, 1] is conjugate to the tent map T (x) = min{2x, 2(π − x)} on [0, π].
Indeed,

(2.1) Q2 ◦ ψ = ψ ◦ T for ψ(x) = cosx,
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It is very unusual to find smooth conjugacies between maps, and even here,
ψ is not diffeomorphic at the endpoints 0, 1. But applying (2.1) n times and
then differentiating, we find

(Qn
2 )

′ ◦ ψ(x) · ψ′(x) = ψ′(Tn(x)) · (Tn)′(x).

If x is a p-periodic point of T , and hence y = ψ(x) an p-periodic point of
Q2, we see that |(Qp)′(y)| = 2p. The only periodic point where this fails is
y = ψ(0) = 1, because ψ′(0) = 0.

Note that the same conjugacy works for the degree n Chebyshev poly-
nomial Qn and the slope n tent map with n branches. The characterization
of Chebyshev polynomials Qn(x) = cos(n arccosx) is the cause of this.

Example 2.9. We show that two circle rotations Rα and Rβ are not conju-
gate if 0 ≤ α < β < 1. Let < denote the positive orientation on S1. Choose
n ∈ N such that nα ≤ k < nβ and (n − 1)β ≤ k for some integer k. Then,
setting y = ψ(0),

(2.2) Rn
α(0) ≤ 0 ≤ Rα(0) and y ≤ Rn

β(y) ≤ Rβ(y).

The homeomorphism ψ : S1 → S1 must either preserve or reverse the ori-
entation of the circle, but neither way is compatible with (2.2). Therefore
there cannot be any conjugacy.

A more structural way to see this is using lifts and rotation numbers, see
Theorem 4.54. Indeed, the rotation number ρ(f) is preserved on conjugacy,
and ρ(Rα) = α 6= β = ρ(Rβ).

Definition 2.10. Two dynamical systems (X, f) and (Y, g) are called orbit
equivalent if there is a homeomorphism ψ : X → Y such that ψ(orbf (x)) =
orbg(ψ(x)) for all x ∈ X, i.e., ψ sends orbits to orbits (set-wise, not neces-
sarily point-wise).

Clearly, a conjugacy is an orbit equivalence. If f and g are themselves
homeomorphisms, and ψ ◦ f = g−1 ◦ ψ, then ψ is called a flip-conjugacy
and this is also an orbit equivalence. More generally, if ψ is a conjugacy or
flip-conjugacy, then ψ ◦ fk is an orbit equivalence for each k ∈ Z.

Orbit equivalence implies the existence of two functions m,n : X → Z,
called orbit cocycles, such that

ψ ◦ f(x) = gn(x) ◦ ψ(x) and ψ ◦ fm(x) = g ◦ ψ(x).

Thus the orbit cocycles of a conjugacy are constant 1 and of a flip conjugacy
are constant −1. Another special case of orbit equivalence is a speed-up:
(Y, g) is a speed-up of (X, f) if it is orbit equivalent and the orbit cocycle
m : X → Z is non-negative.
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Definition 2.11. Two dynamical systems (X, f) and (Y, g) are strongly
orbit equivalent if their orbit cocycles are continuous on X, except for at
most one point each.

2.2. Transitive and Minimal Systems

The following definition expresses that all parts of a dynamical system con-
nect to each other:

Definition 2.12. A dynamical system (X,T ) is (topologically) transitive
if for every two non-empty open2 sets U, V ⊂ X, there is an n ≥ 0 such that
U ∩T−n(V ) 6= ∅.3 It is called totally transitive if TN is transitive for each
N ∈ N.

Clearly totally transitive implies transitive. The other implication fails;
for example, σ is transitive on the two-point subshift {(10)∞, (01)∞} but σ2

is not.

Proposition 2.13. Let X be a compact regular Hausdorff space4 without
isolated points and which is second countable, i.e., it possesses a countable
basis of its topology. A continuous map T : X → X is a topologically
transitive map if and only if there is a dense orbit.

Remark 2.14. The notion of dense orbit may need further explanation if
the subshift is two-sided. Consider the sequence

(2.3) x = · · · 000000000000000000.101000101000000000101000101 · · ·
This sequence emerges from the Cantor substitution

χCantor :

{

0 → 000

1 → 101

from the seed 0.1. This sequence has a dense forward orbit orb+(x) within

its forward orbit closure orb+(x) as well as a dense backward orbit orb−(x)

within its forward orbit closure orb−(x). However, orb−(x) is not dense in
its two-sided orbit closure.

Proof. Let {Uj}j∈N be a countable basis of the topology. Let U, V ⊂ X
be arbitrary open sets. Take j, k ∈ N such that Uj ⊂ U , Uk ⊂ V . Since
orb(x) is dense, and X has no isolated points, x visits each Uj infinitely

2Some authors use the abbreviation opene for open and non-empty.
3Many texts write Tn(U)∩V 6= ∅, which may be more intuitive but the fact that Tn(U) need

not be open (or not measurable even if U is measurable) might in some case lead to inadvertent
problems.

4Regular Hausdorff means that singletons {x} are closes and for all closed sets A and x /∈ A

there are neighborhoods U ∋ x and V ⊃ A such that U ∩ V = ∅.
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often. Hence there is m,n ∈ N such that Tm(x) ∈ Uj and Tm+n(x) ∈ Uk.
This shows that U ∩ T−n(V ) 6= ∅.

Conversely, by topological transitivity applied to U1 and U2, we can find
n1 such that U1 ∩ T−n1(U2) 6= ∅. By continuity of T , U1 ∩ T−n1(U2) is an
open set. Choose V2 open such that V 2 ⊂ U1 ∩ T−n2(U2). Here we use the
regular Hausdorff property of X.

Next, using topological transitivity applied to V2 and U3, choose n2 > n1
such that V2 ∩ T−n2(U3) 6= ∅. Then choose an open set V3 such that V3 ⊂
V2 ∩ T−n2(U3).

Continuing this way we find a nested sequence of open sets Vk, with
V k ⊂ Vk−1, and a sequence of integers (nk) such that Vk ⊂ T−nk(Uk+1).

Let V∞ = ∩kVk. Since V k ⊂ Vk−1, and closed sets inX are automatically
compact, this intersection is non-empty, and every x ∈ V∞ has a dense orbit.
This concludes the proof. �

A strong form of transitivity is minimality:

Definition 2.15. A dynamical system (X,T ) is minimal if every orbit is
dense in X.

Remark 2.16. It is a straightforward application of Zorn’s Lemma that
every dynamical system on a compact space5 contains at least one minimal
subsystem. For compact metric spaces, this fact can also be shown without
the use of Zorn’s Lemma, see [296, Chapter 1, Theorem 2.2.1].

Proposition 2.17. Let X be a compact topological space. We have the fol-
lowing equivalent characterizations for a continuous dynamical system (X,T )
to be minimal:

(i) There is no closed T -invariant proper subset of X;

(ii) Every orbit is dense in X;

(iii) There is a dense orbit and T is uniformly recurrent6, i.e., for
every open set U ⊂ X there is an N ∈ N such that for every x ∈ U
there is 1 ≤ n ≤ N such that Tn(x) ∈ U .

Proof. We prove the three implications by the contrapositive.
(i) ⇒ (ii): Suppose that x ∈ X has an orbit that is not dense. Then orb(x)
is a T -invariant closed proper subset, so (i) fails.

5Compactness is important, otherwise one could take a single non-recurrent orbit (without
its closure) as the phase-space. An interesting example with only recurrent orbits but no minimal
subset is due to Auslander [37, page 27].

6The word “almost periodic” is frequently used as well, e.g. in [278,369,386,450], but it is
not the same with all authors, and sometimes refers to a different notion. For instance, in [467]
it is used as “periodically recurrent” in Definition 2.19.
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(ii) ⇒ (iii): By (ii) every orbit is dense, so there is at least one dense orbit.

Now to prove uniform recurrence, let U be any open set and U0 an open
subset such that U0 ⊂ U .

Suppose that for every N ∈ N there is xN ∈ U0 such that Tn(xN ) /∈ U0

for all 1 ≤ n ≤ N . Let x ∈ U0 ⊂ U be an accumulation point of (xN )N∈N.
Suppose by contradiction that there is n ≥ 1 such that Tn(x) ∈ U0. Take
an open set V ∋ x such that Tn(V ) ⊂ U0. Next take N ≥ n so large that
xN ∈ V . But this means that Tn(xN ) ∈ U0, which is against the definition
of xN . Hence no such n exists, and therefore orb(x) is not dense, and (ii)
fails.
Now take y ∈ U arbitrary (so not necessarily in U0), and take x ∈ U0 with
a dense orbit. Find a sequence ki such that T ki(x) → y. For each i there is
1 ≤ ni ≤ N such that T ki+ni(x) ∈ U0. Passing to a subsequence, we may as
well assume that ni ≡ n. Then Tn(y) = Tn(limi T

ki(x)) = limi T
ki+n(x) ∈

U0 ⊂ U . This proves the uniform recurrence of U .

(iii) ⇒ (i): Let x be a point with a dense orbit. Suppose that Y is a
closed T -invariant proper subset of X and let U ⊂ X be nonempty open
such that U ∩ Y = ∅. Let n ≥ 0 be minimal such that u := Tn(x) ∈ U .
Let N = N(U) ≥ 1 be as in the definition of uniform recurrence, and let
y ∈ Y be arbitrary. Since orb(y) ⊂ Y , there is an open set V ∋ y such that
V ∩ T−i(U) = ∅ for 0 ≤ i ≤ N .

Take n′′ > n minimal such that Tn′′

(u) ∈ V , and let n′ < n′′ be maximal

such that Tn′

(u) =: u′ ∈ U . Then T i(u′) /∈ U for all 1 ≤ i ≤ n′′ − n′ + N .
Since N was arbitrary, this contradicts the uniform recurrence and hence
such Y cannot exist. �

Definition 2.18. Uniform recurrence means that the set

N (x, U) := {n ∈ Z or N : x ∈ T−n(U)}

is syndetic for every x ∈ X, i.e., it has bounded gaps (from the Greek
συνδετικoς = bound together). A set that is not syndetic has a complement
that is thick: for every N ∈ N it contains blocks {n, n+ 1, . . . , n+N}.

Definition 2.19. A dynamical system is called periodically recurrent if
for every nonempty open set U , there is N such that U ⊂ T−kN (U) for all
k ∈ N (or k ∈ Z if T is invertible).

Since periodic recurrence is obviously stronger than uniform recurrence,
we have the following corollary.

Corollary 2.20. Every periodically recurrent dynamical system is minimal.
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Definition 2.21. Given a dynamical system (X,T ), a point x ∈ X is uni-
formly recurrent (resp. periodically recurrent) if for every neighbor-
hood U ∋ x, the set N (x, U) is syndetic (resp. N (x, U) ⊃ {bk : k ∈ N or Z}
for some b ∈ N).

Corollary 2.22. Let (X,T ) be a continuous dynamical system and x ∈ X
have a dense orbit. Then (X,T ) is minimal (resp. periodically recurrent) if
and only if x is uniformly recurrent (resp. periodically recurrent).

Proof. If (X,T ) is minimal, then x is uniformly recurrent by Proposi-
tion 2.17, part (iii).

Conversely, assume that x is uniformly recurrent. First observe that
every u ∈ orb(x) is uniformly recurrent too. Indeed, suppose u = Tn(x),
and let V be an open neighborhood of x. Then for every open neighborhood
U of u, also U ′ = T−n(U)∩V is an open neighborhood of x, and N (u, U) ⊃
N (x, U ′) + n. Now minimality of (X,T ) follows precisely as in the step (iii)
⇒ (i) in the proof of Proposition 2.17.

The proof for x periodically recurrent is analogous. �

Definition 2.23. A dynamical system (X,T ) on a metric space (X, d) is
uniformly rigid if for every ε > 0 there is an iterate n ≥ 1 such that
d(Tn(x), x) < ε for all x ∈ X.

Lemma 2.24. A continuous dynamical system (X,T ) on a Cantor set (or
compact zero-dimensional set) is uniformly rigid if and only if it is periodi-
cally recurrent.

For this result, it is important that the space X is zero-dimensional. For
example, irrational rotations Rα on the circle are uniformly rigid but only
uniformly, so not periodically, recurrent. The uniform rigidity follows imme-
diate because a circle rotation is an isometry and every point is recurrent.
But periodic recurrence fails because for every n ∈ N and x ∈ S1, the set
{Rkn

α (x) : k ∈ N} is dense in S1. The below proof, however, shows that
a periodically recurrent dynamical system on a compact space is uniformly
rigid.

Proof. ⇒: Take ε > 0 arbitrary with corresponding iterate n ≥ 1, and let
k ∈ N be the smallest integer such that 2−k < ε. Thus the distance between
every two distinct k-cylinders Z in X is at least ε. By uniform rigidity
Tn(Z) = Z, and therefore T kn(Z) = Z for all k ≥ 0, proving periodic
recurrence.
⇐: Let ε > 0 be arbitrary. For each x ∈ X, we can find a neighborhood Ux

of diam(Ux) < ε and iterate nx such that Tnx(Ux) ⊂ Ux. By compactness,

there is a finite collection x1, . . . , xN such that X =
⋃N

i=1 Uxi
. Take n =

lcm{nx1
, . . . , nxN

}. Then d(Tn(x), x) < ε for each x ∈ X, as required. �
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The following weakening of minimality is of importance for e.g. Toeplitz
shifts and B-free shifts, see Sections 4.5 and 4.6.

Definition 2.25. A dynamical system (X,T ) is called essentially minimal
if it contains a unique minimal set Y , i.e., a unique non-empty closed set Y
such that T (Y ) = Y .

Clearly, essentially minimal maps can have at most one periodic orbit,
but as the subshift X := {σk(· · · 000001000000 · · · )}k∈Z ∪ {0∞} shows, X \
Y 6= ∅ is possible. However, the two-sided orbit closure of (2.3) does not
give an essentially minimal shift.

Proposition 2.26. Given a dynamical system (X,T ) and a point y ∈ X,
the following are equivalent:

(i) (X,T ) is essentially minimal and y is contained in its minimal set.

(ii) For every x ∈ X, ω(x) ∋ y.

If in addition, T is invertible, then two further equivalent statements are:

(iii) For every x ∈ X, α(x) ∋ y.

(iv) For every open set U ∋ y, ∪n∈ZT
n(U) = X.

Proof. (i) ⇒ (ii): ω(x) is a closed non-empty T -invariant set, so by Zorn’s
Lemma, it contains a minimal set. But Y is the unique minimal set, so
y ∈ ω(x).
(ii) ⇒ (i): Assume by contradiction that y ∈ Y and Y ′ are minimal sets,
and take x ∈ Y , x′ ∈ Y ′. By assumption y ∈ ω(x) ∩ ω(x′), so y ∈ Y ∩ Y ′.
Thus Y ∩ Y ′ is a non-empty, closed and T -invariant subset of both Y and
Y ′. Since Y and Y ′ are minimal, Y = Y ∩ Y ′ = Y ′.
(i) ⇔ (iii): Use the above with T−1 instead of T .
(i) ⇒ (iv): Let U be an arbitrary neighborhood of y. Since ∪n∈ZT

n(U)
is an open (two-sided!) T -invariant set, its complement Y ′ is closed and
T -invariant. If Y ′ 6= ∅, then it contains a minimal set that is disjoint from
y, contradicting essential minimality. Hence ∪n∈ZT

n(U) = X.
(iv) ⇒ (iii): Let x ∈ X be arbitrary; we can assume without loss of
generality that x 6= T k(y) for all k ≥ 0, because if y is periodic then

α(x) = orb(y) ∋ y, and otherwise we replace x by T−(k+1)(x) to get it
outside the forward orbit of y. Let (Ur)r∈N be a nested sequence of neigh-
borhoods of y such that ∩rUr = {y}. Since ∪n∈ZT

n(Ur) = X and X is

compact, there is a finite Nr such that ∪Nr

n=−Nr
Tn(U) = X. Applying TNr

to both sides, we obtain ∪2Nr

n=0T
n(U) = X. Thus there is nr ≤ 2Nr such that

T−nr(x) ∈ Ur. As we can do this for every r, we have found a sequence (nr)
(and nr → ∞ because x 6= T k(y) for any k ≥ 0) such that T−nr(x) → y.
Thus y ∈ α(x), as required. �
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2.3. Equicontinuous and Distal Systems

The opposite to expansive (recall Definition 1.38) is equicontinuous.

Definition 2.27. A dynamical system (X,T ) on a metric space (X, d) is
called equicontinuous if for all ε > 0 there exists δ > 0 such that if d(x, y) <
δ, then d(Tn(x), Tn(y)) < ε for all n ≥ 0 (or n ∈ Z if T is invertible). This
is sometimes also called Lyapunov stability.

Naturally, if T is not injective, then distality fails immediately. Every
isometry, i.e., a dynamical system such that d(T (x), T (y)) = d(x, y) for all
x, y ∈ X is equicontinuous.

Exercise 2.28. Let (X,T ) be an equicontinuous dynamical system. Show
that it is topologically transitive if and only if it is minimal.

Lemma 2.29. Let (X,T ) be an equicontinuous surjection on a compact
metric space (X, d). Then the nonwandering set Ω(T ) = X.

Proof. Suppose by contradiction that x ∈ X is wandering, i.e., there is
an ε > 0 such that T k(Bε(x)) ∩ Bε(x) = ∅ for all k ≥ 1. In particular,
x is not periodic. By equicontinuity, there is δ > 0 such that d(a, b) < δ
implies d(Tn(a), Tn(b)) < ε/2 for all n ≥ 0. Construct a backward orbit
(x−n)n≥0, i.e., Tn(x−n) = x and T k(x−n) /∈ Bε(x) for all k ∈ N \ {n}.
By compactness of X, (x−n)n≥0 has an accumulation point y ∈ X. Let
m < n be so that d(y, x−m) < δ and d(y, x−n) < δ. Then Tn(x−n) = x ∈
Bε(x) and Tn(x−m) = Tn−m(x) /∈ Bε(x), so d(Tn(x−m), Tn(y)) ≥ ε/2 or
d(Tn(x−n), T

n(y)) ≥ ε/2. This contradicts equicontinuity of T and hence
there cannot be a wandering point. �

Lemma 2.30. If an equicontinuous dynamical system (X,T ) on a compact
metric space (X, d) is topologically transitive, then it is uniformly rigid.

See [315, Proposition 1.1] for more general results in this direction.

Proof. Suppose z ∈ X that has a dense orbit. Take ε > 0 arbitrary and
choose δ ∈ (0, ε/3) such that d(x, y) < δ implies d(Tn(x), Tn(y)) < ε/3

for all n ≥ 0. Choose N ∈ N so large that
⋃N−1

n=0 Bδ(T
n(z)) = X and

d(TN (z), z) < δ. Now let x arbitrary and take 0 ≤ n < N such that
d(Tn(z), x) < δ. Then

d(TN (x), x) ≤ d(TN (x), TN+n(z)) + d(Tn+N (z), Tn(z)) + d(Tn(z), x)

≤ ε

3
+
ε

3
+ δ < ε

as required. �
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If T : X → X is equicontinuous on a metric space (X, d), then the metric

d∞(x, y) := sup
n≥0

d(Tn(x), Tn(y))

is well-defined (i.e., not infinite) and non-expanding because

d∞(T (x), T (y)) = sup
n≥1

d(Tn(x), Tn(y)) ≤ sup
n≥0

d(Tn(x), Tn(y)) = d∞(x, y).

However, equicontinuity also gives for every ε > 0 some δ > 0 (and δ → 0
as ε → 0) such that d(x, y) < δ implies d∞(x, y) < ε, and therefore xn → x
in the metric d if and only if xn → x in the metric d∞. Hence both metrics
generate the same topology.

If T is itself a strict contraction, then also d∞(T (x), T (y)) < d∞(x, y),
but if X is compact and T surjective, then the dynamical system (X,T ) is
an isometry in the metric d∞.

Proposition 2.31. If a dynamical system (X,T ) is equicontinuous and sur-
jective on a compact metric space (X, d), then T preserves d∞.

Proof. We already have seen that d∞(T (x), T (y)) ≤ d∞(x, y) for all x, y ∈
X. Assume by contradiction that we have strict inequality for some choice
a 6= b, say d∞(a, b) = d∞(T (a), T (b)) + 9ε for some ε > 0.

Consider the product system T2 : X
2 → X2 with metric

d2((x, x
′), (y, y′)) := max{d∞(x, y), d∞(x′, y′)}.

Clearly T2 is non-expanding on (X2, d2). Let B ⊂ X2 be the ε-ball w.r.t. d2
around (a, b). So, if (x, y) ∈ B, then d∞(x, a) < ε and d∞(y, b) < ε. Assume
by contradiction that there is n ≥ 1 such that B ∩ Tn

2 (B) 6= ∅. This would
mean that d∞(Tn(x), a) < 3ε and d∞(Tn(y), b) < 3ε. But then

d∞(a, b) ≤ d∞(a, Tn(x)) + d∞(Tn(x), Tn(y)) + d∞(Tn(y), b)

≤ 3ε+ d∞(T (x), T (y)) + 3ε

≤ 6ε+ d∞(T (x), T (a)) + d∞(T (a), T (b)) + d∞(T (b), T (y))

≤ 3ε+ ε+ d∞(a, b)− 9ε+ ε = d∞(a, b)− ε.

This contradiction shows that Tn
2 (B) ∩B = ∅ for all n ≥ 1. But then (a, b)

is a wandering point for T2, contradicting Lemma 2.29. �

Related notions to equicontinuity are distality and its opposite: proxi-
mality.

Definition 2.32. A dynamical system (X,T ) on a metric space (X, d) is
distal if lim infn d(T

n(x), Tn(y)) > 0 for every x 6= y. Conversely, a pair
(x, y) ∈ X2 is called proximal if lim infn d(T

n(x), Tn(y)) = 0. That is, a
distal dynamical system has no proximal pairs (except (x, x)). A dynamical
system (X,T ) is called proximal if every pair (x, y) ∈ X2 is proximal.
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Auslander & Ellis (see e.g. [13]) proved that for every x ∈ X, there exists

a y ∈ X such that orb(y) is a minimal subset of X and (x, y) is a proximal
pair. Note that proximality is not an equivalence relation: it is not transitive.
For example, (101)(000)2(101)3(000)4 · · · and (000)(101)2(000)3(101)4 · · ·
are both proximal to 0∞ under the shift, but not to each other. A stronger
version of proximality that does give an equivalence relation the following:

Definition 2.33. Let (X,T ) be a dynamical system on a metric space (X, d).
Then a pair of points (x, y) is syndetically proximal if for every ε > 0,
the set {n ∈ N or Z : d(Tn(x), Tn(y)) < ε} is syndetic.

The following result for subshifts goes back to [152,542], see also [421,
Theorem 19] for the proof.

Theorem 2.34. Given a subshift (X,σ), the following are equivalent.

(1) Proximality is an equivalence relation.

(2) Every proximal pair is syndetically proximal.

(3) The orbit closure {σn × σn(x, y) : n ∈ N or Z} of every (x, y) ∈ X×
X contains exactly one minimal set in the product shift.

Distality doesn’t imply equicontinuity, see Exercise 2.37. Neither does
equicontinuity imply distality; think of T (x) = x/2 on X = [0, 1] or on
X = R. However:

Corollary 2.35. Every equicontinuous surjection (X,T ) on a compact met-
ric space (X, d) is distal.

Proof. Assume by contradiction that T is not distal. Then there are x 6= y
and a sequence (nk)k∈N such that d(Tnk(x), Tnk(y)) → 0. Since X is com-
pact, and passing to a subsequence, we can assume limk T

nk(x) = limk T
nk(y) =

z in the metric d. But then also limk T
nk(x) = limk T

nk(y) = z in the metric
d∞, and this contradicts that T is an isometry in d∞. �

In particular, equicontinuous surjections on compact metric space are
invertible, because distal dynamical systems are.

Corollary 2.36. An equicontinuous surjection (X,T, d) on a compact metric
space has an equicontinuous inverse.

Proof. Take Kε = {(x, y) ∈ X2 : d(x, y) ≥ ε} for ε > 0. We claim that

δ(ε) := inf{d(Tnx, Tny) : (x, y) ∈ Kε, n ∈ N} > 0.

Indeed, assume by contradiction that there are sequences (xk, yk) ⊂ Kε

and (nk) ⊂ N such that d(Tnkxk, T
nkyk) ≤ 1/k for all k ∈ N and (xk, yk) →

(x∞, y∞) ∈ Kε. By Corollary 2.35, T is distal, so η := inf{d(Tn(x∞), Tn(y∞)) :
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n ≥ 0} > 0. By equicontinuity, there is γ(η) > 0 is such that d(x, y) < γ(η)
implies that d(Tn(x), Tn(y)) < η/3 for all n ≥ 0. Take k > 3/η so large that
(xk, yk) ∈ Bγ(η)(x∞, y∞). Then by the triangle inequality

d(Tnk(x∞), Tnk(y∞)) ≤ d(Tnk(x∞), Tnk(xk)) + d(Tnk(xk), T
nk(yk))

+ d(Tnk(yk), T
nk(y∞))

< η/3 + η/3 + η/3 = η,

contradicting the choice of η. Hence two points u, v ∈ X with d(u, v) < δ(ε)
have d(T−n(u), T−n(v)) < ε for all n ∈ N. This is equicontinuity of T−1. �

Exercise 2.37. a) Show that the map T (x, y) = (x, x+ y) on the two-torus
T2 is distal but not equicontinuous.
b) Let α ∈ [0, 1] be irrational. Show that the map T (x, y) = (x+α, x+y) on
the two-torus T2 is distal but not equicontinuous. (Here showing minimality
is the hard part, see Proposition 6.26).

Proposition 2.38. Every subshift (X,σ) with a non-periodic minimal set
is proximal (so not equicontinuous by Corollary 2.35).

The non-periodicity is essential, otherwise X = {(01)∞, (10)∞} is an
equicontinuous counterexample. Non-periodicity implies in particular that
X is uncountable.

Proof. First assume that the shift is one-sided. If it is distal, then it has
to be invertible, and therefore a homeomorphism. But a one-sided shift
is locally expanding, and locally expanding homeomorphisms only exist on
finite spaces, see Proposition 1.41. Hence, there are no distal one-sided shifts
other than finite unions of periodic orbits.

Now if (X,σ) is a two-sided shift, then its one-sided restriction (X+, σ)
is a subshift too. Here we need to check that σ : X+ → X+ is surjective,
but this follows because if x+ is the one-sided restriction of x ∈ X, then
y+ := σ−1(x)+ ∈ X+ and σ(y) = x. Furthermore, since X has a non-
periodic minimal set, X+ has a non-periodic minimal set too. Thus the
above argument shows that (X+, σ) cannot be distal. �

Definition 2.39. Given a dynamical system (X,T ), we say that (Y, S) is
the maximal equicontinuous factor (MEF) if it is equicontinuous and
semi-conjugate to (X,T ), and every other equicontinuous factor of (X,T ) is
also a factor of (Y, S).

Every dynamical system has a MEF, and it can be shown that the MEF
is unique up to conjugacy. This goes back to a result of Ellis & Gottschalk
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[233]. The proof we give is for invertible dynamical systems7 and relies on
the notion of regional proximality:

Definition 2.40. Let (X,T ) be a dynamical system on a metric space (X, d).
Two points x, y ∈ X are regionally proximal if there are sequences xi → x
and yi → y and (ni) ⊂ N such that d(Tni(xi), T

ni(yi)) → 0. In this case
we write x ∼rp y. It is not obvious that ∼rp is a transitive relation8, and
therefore we take the transitive hull x ∼trp y if there is a sequence x = z0 ∼rp

z1 ∼rp · · · ∼rp zN = y.

Proposition 2.41. Every continuous invertible dynamical system (X,T ) on
a compact metric space (X, d) has a maximal equicontinuous factor.

Proof. First we note that if (X,T ) is equicontinuous and x ∼rp y, then
x = y. Indeed, otherwise for any ε > 0 and δ = δ(ε) as in the defini-
tion of equicontinuity, there is xi ∈ Bδ(x), yi ∈ Bδ(y) and ni such that
d(Tni(xi), T

ni(yi)) < ε. But then also

d(Tni(x), Tni(y)) ≤ d(Tni(x), Tni(xi)) + d(Tni(xi), T
ni(yi))

+ d(Tni(yi), T
ni(y)) < 3ε.

Therefore (x, y) is not a distal pair, but equicontinuous maps are distal, see
Corollary 2.35.

The (transitive hull) relation ∼trp is an equivalence relation that is T -
invariant and also T−1-invariant. The equivalence classes are closed, and if
xk → x, yk → y are such that xk ∼trp yk, then also x ∼trp y. Therefore
the quotient space Xeq = X/ ∼trp is a well-defined Hausdorff space (and in
fact metric space with quotient metric deq), and the maps T and T−1 are
well-defined on it.

Now suppose by contradiction that T and hence T−1 is not equicontin-
uous on the quotient space Xeq. Then there is ε > 0 such that for all i ∈ N,
there are x′i, y

′
i ∈ Xeq, deq(x

′
i, y

′
i) < 1/i and ni ∈ N such that deq(xi, yi) > ε

for xi = T−ni(x′i) and yi = T−ni(y′i). By passing to a subsequence, we can
assume that xi → x and yi → y and deq(x, y) ≥ ε. But x ∼trp y by construc-
tion, contradicting that Xeq has only trivial regionally proximal pairs. �

7see [369, Theorem 2.44] for a proof of the non-invertible case, which is not constructive if
it comes to the factor map

8See e.g. [312,421,481] for further information
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2.3.1. Mean Equicontinuity. Instead of assuming that nearby points al-
ways remain close under iteration, mean equicontinuity stipulates that iter-
ates of nearby points remain close on average. This notion was first used by
Fomin [247] under the name of mean Lyapunov stability9.

Definition 2.42. A dynamical system (X,T, d) on a metric space is called
mean equicontinuous if for every ε > 0 there is a δ > 0 such that d(x, y) <
δ implies

lim sup
n→∞

1

n

n−1∑

i=0

d(T ix, T iy) < ε.

Mean equicontinuity is more versatile than its strict version. Clearly,
circle rotations Rα : S1 → S1 with angle α /∈ Q are isometries and there-
fore equicontinuous . Their symbolic versions, i.e., Sturmian shifts, see Sec-
tion 4.3, are expansive and therefore not equicontinuous. Indeed, equip S1

with an orientation and a partition {[0, α) , [α, 1)}, with symbols 1 and 0 re-
spectively, as is done in Example 1.33. If x < y ∈ S1 are very close together,
then there are still iterates n ∈ N such that Rn

α(x) < 0 < Rn
α(y), so the

symbolic distance dσ(σ
n ◦ i(x), σn ◦ i(y)) = 1. However, since this happens

less frequently as the distance |x− y| becomes smaller, mean equicontinuity
of a Sturmian shift is still achieved.

Another variation of equicontinuity, which is a priori weaker than mean
equicontinuity, is Weyl mean equicontinuity: for every ε > 0 there is a
δ > 0 such that d(x, y) < δ implies

lim sup
n−m→∞

1

n−m

n−1∑

i=m

d(T ix, T iy) < ε.

However, it was proved in [207] for minimal dynamical systems (and [260,
449] in more generality) that (X,T ) is mean equicontinuous if and only if
for every ε > 0 there is a δ > 0 and N ∈ N such that d(x, y) < δ implies

1

n−m

n−1∑

i=m

d(T ix, T iy) < ε for all m and n ≥ m+N.

Some of the stronger results on mean equicontinuity rely on invariant
measures, and therefore don’t quite fit in this section on topological dynam-
ics. We present some of this nonetheless, and refer to Chapter 6 for the
relevant details. Given a T -invariant Borel probability measure µ, we call
(X,T ) µ-mean equicontinuous if for every η > 0, there is a set Y ⊂ X of
measure µ(Y ) > 1− η such that T is mean equicontinuous on Y .

9This was defined as for every ε > 0 there is δ > 0 such that d(x, y) < δ implies
d(Tn(x), Tn(y)) < ε for all n ∈ N except for a set of density zero. This is equivalent to Def-
inition 2.42 by Lemma 8.52.
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As shown in [204,435], if (X,T ) is an almost one-to-one extension of a
minimal equicontinuous dynamical system (Y, S), then (Y, S) is the maximal
equicontinuous factor of (X,T ).

It follows from Theorem 6.22 (or more precisely the remarks that follow
it) that transitive mean equicontinuous dynamical systems are uniquely er-
godic. Thus the following characterization of mean equicontinuity, due to
[207] for minimal dynamical systems and to [260] in general, makes sense:

Theorem 2.43. A continuous dynamical system (X,T ) is mean equicontin-
uous if and only if its semi-conjugacy to its maximal equicontinuous factor is
at the same time a measure-theoretic isomorphism between the unique invari-
ant probability measures of (X,T ) and its maximal equicontinuous factor10.

Let us show that the symbolic version of an equicontinuous homeomor-
phism with a reasonable partition is mean equicontinuous.

Theorem 2.44. Let (X,T ) be an equicontinuous homeomorphism on a com-
pact metric space (X, d) with T -invariant measure11 µ. Let P = {P0, . . . , Pr−1}
be a finite partition such that

(1) P is generating (c.f. Theorem 6.47), i.e., for every x 6= x′ ∈ X
there is n ∈ Z such that Tn(x) and Tn(x′) lie in different partition
elements;

(2) limε→0 µ(Uε) = 0 where Uε is the ε-neighborhood of ∂P = {x ∈ X :
x ∈ P i ∩ P j for some 0 ≤ i < j < r}.

Let (Y, σ) be the symbolic system associated to (X,T,P), i.e., the smallest
subshift such that the itinerary i(x) ∈ Y for every x ∈ X. Then (Y, σ) is
mean equicontinuous.

Proof. Choose N ∈ N arbitrary and 0 < ε′ < 2−N/(2N + 1). Choose ε > 0
so small that µ(Uε) < ε′. By equicontinuity of (X,T ) there is δ > 0 such
that d(Tn(x), Tn(x′)) < ε for all n ∈ Z whenever d(x, x′) < δ. Next take
M ∈ N so large that the diameter diam(i−1([e−M · · · eM ])) < δ for every
two-sided (2M + 1)-cylinder [e−M · · · eM ].

Now take y, y′ ∈ Y such that dσ(y, y
′) ≤ 2−M , where dσ is the symbolic

metric, i.e., y, y′ are in the same two-sided (2M+1)-cylinder. The sequences
y, y′ may not be well-defined itineraries of points inX, but this is remedied by
assuming that points x ∈ X such that Tn(x) ∈ ∂P get multiple itineraries,
according to which P i contains Tn(x). In this sense there are x, x′ such
that at least one of their multiple itineraries equal y and y′ respectively. In
particular, d(x, x′) < δ and therefore d(Tn(x), Tn(x′)) < ε for all n ∈ Z. The

10In this case, (X,T ) is called a topo-isomorphic extension of its MEF.
11If (X,T ) is minimal, then µ is unique.
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points Tn(x) and Tn(x′) can only lie in different partition elements if they
both lie in Uε. Unless Tn(x), Tn(x′) ∈ ∪N

j=−NT
j(Uε), their itineraries satisfy

dσ(i(T
n(x)), i(Tn(x′))) ≤ 2−N . But the measure µ(∪N

j=−NT
j(Uε)) ≤ (2N +

1)ε′ and by Oxtoby’s Ergodic Theorem 6.20, x and x′ visit ∪N
j=−NT

j(Uε)

with frequency ≤ (2N + 1)ε′. Therefore

lim sup
n→∞

1

n

n−1∑

j=0

dσ(σ
j(i(x)), σj(i(x′)))

≤ lim sup
n→∞

1

n

n−1∑

j=0

dσ(i(T
j(x)), (T j(i(x′)))

≤ (2N + 1)ε′ + (1− (2N + 1)ε′)2−N ≤ 2−N+1.

This proves mean equicontinuity. �

2.4. Topological Entropy

The notion of topological entropy was introduced, by Adler, Konheim
& McAndrew [9] in 1969. Nowadays, the definition due to the American
mathematician Rufus Bowen [98] and, independently, his Russian colleague
Efim Dinaburg [198] is most often12 used.

Entropy is a measure of disorder of the dynamical system, and one pop-
ular definition of chaos is that the topological entropy is positive.

Let (X,T ) be continuous dynamical dynamical system on a compact
metric space (X, d). If my eyesight is not so good, I cannot distinguish two
points x, y ∈ X if d(x, y) ≤ ε. I may still be able to distinguish their orbits,
if d(T kx, T ky) > ε for some k ≥ 0. Hence, if I’m willing to wait up to n− 1
iterations, I can distinguish x and y if

dn(x, y) := max{d(T kx, T ky) : 0 ≤ k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated. Among all the
subsets of X of which all elements are mutually (n, ε)-separated, choose one,
say En(ε), of maximal cardinality. Then sn(ε) := #En(ε) is the maximal
number of n-orbits I can distinguish with my ε-poor eyesight.

Remark 2.45. Compactness ofX together with continuity of T ensures that
sn(eps) <∞. However, also for discontinuous maps, such as β-transformations,
it can be proven that sn(eps) < ∞ for all ε > 0 and n ∈ N. Consequently,
this approach to topological entropy usually also works for discontinuous
functions.

12Note, however, that the Adler, Konheim & McAndrew definition requires only a topology,
whereas the Bowen-Dinaburg definition is metric.
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The topological entropy is defined as the limit (as ε → 0) of the
exponential growth-rate of sn(ε):

(2.4) htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε).

Note that sn(ε1) ≥ sn(ε2) if ε1 ≤ ε2, so lim supn
1
n log sn(ε) is a decreasing

function in ε, and the limit as ε→ 0 indeed exists.

Instead of (n, ε)-separated sets, we can also work with (n, ε)-spanning
sets, that is, sets that contain, for every x ∈ X, a point y such that dn(x, y) ≤
ε. Let rn(ε) denote the minimal cardinality among all (n, ε)-spanning sets.
Due to its maximality, En(ε) is always (n, ε)-spanning, and no proper subset
of En(ε) is (n, ε)-spanning. Each y ∈ En(ε) must have a point of an (n, ε/2)-
spanning set within an ε/2-ball (in dn-metric) around it, and by the triangle
inequality, this ε/2-ball is disjoint from the ε/2-balls centered around all
other points in En(ε). Therefore,

(2.5) rn(ε) ≤ sn(ε) ≤ rn(ε/2).

Thus we can equally well define

(2.6) htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε).

Example 2.46. Let (X,σ) be the full shift on N symbols. Let ε > 0 be
arbitrary, and take m minimal such that 2−m < ε. If we select a point from
each n+m-cylinder, this gives an (n, ε)-spanning set, whereas selecting one
point from each n-cylinder gives an (n, ε)-separated set. Therefore

logN = lim sup
n→∞

1

n
logNn ≤ lim sup

n→∞

1

n
log sn(ε) ≤ htop(σ)

≤ lim sup
n→∞

1

n
log rn(ε) ≤ lim sup

n→∞

1

n
logNn+m

= logN.

Exercise 2.47. Show that for subshifts the definition of (1.2) coincides with
(n, ε)-definition in this section.

Example 2.48. Consider the β-transformation Tβ : [0, 1) → [0, 1), x 7→
βx mod 1 for some β > 1. Take ε < 1

2β2 , and Gn = { k
βn : 0 ≤ k < βn}.

Then Gn is (n, ε)-separating, so sn(ε) ≥ βn. On the other hand, G′
n =

{2kε
βn : 0 ≤ k < βn

2ε } is (n, ε)-spanning, so rn(ε) ≤ βn

2ε . Therefore

log β = lim sup
n→∞

1

n
log βn ≤ htop(Tβ) ≤ lim sup

n→∞

1

n
log

βn

2ε
= log β.

Circle rotations, or in general isometries, have zero topological entropy.
Indeed, if E(ε) is an ε-separated set (or ε-spanning set), it will also be (n, ε)-
separated (or (n, ε)-spanning) for every n ≥ 1. Hence sn(ε) and rn(ε) are
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independent of n, and their exponential growth-rates are equal to zero. In
more generality:

Proposition 2.49. Every equicontinuous transformation (X,T ) on acom-
pact metric space (X, d) has zero entropy.

Proof. Let ε > 0 be arbitrary and choose δ > 0 as in the definition of
equicontinuity. Then diam(Tn(Bδ(x)) ≤ 2ε for all x ∈ X and n ≥ 0 (or
n ∈ Z if T is invertible). Take M = ⌈diam(X)/δ⌉. Hence, a single cover
of X by M δ-balls constitutes a cover of (n, ε)-balls for all n. Therefore
htop(T ) ≤ limε→0 limn→∞

1
n logM = 0. �

Corollary 2.50. Given a continuous map T : X → X, htop(T
k) = khtop(T )

for all k ≥ 0, and if T is invertible, then htop(T
k) = |k|htop(T ) for all k ∈ Z.

Proof. For any k ∈ N, a (kn, ε)-separated set for T is also an (n, ε)-separated
set for T k. Therefore

htop(T
k) = lim

n→∞

1

n
log sn(ε, T

k) = k lim
n→∞

1

kn
log sn(ε, T ) = khtop(T ).

Clearly the identity T 0 has zero entropy. If T is invertible, and En(ε) is
an (n, ε)-separated set, then Tn−1(En(ε)) is an (nε)-separated set for T−1.
Therefore htop(T

−1) = htop(T ). Combined with the first part, it follows that

htop(T
k) = |k|htop(T ) for all k ∈ Z. �

Corollary 2.51. If (Y, S) is a continuous factor of (X,T ) (where (X, d)
is a compact metric space), then htop(S) ≤ htop(T ). In particular, conju-
gate dynamical systems on compact metric spaces have the same topological
entropy.

Proof. Let π : X → Y be a continuous factor map. Since X is compact, π
is uniformly continuous, so for ε > 0, we can find δ > 0 such that d(x, y) < δ
implies d(π(x), π(y)) < ε. Therefore, if En(δ) is an (n, δ)-spanning set for
T , then π(En(δ)) is an (n, ε)-spanning set for S (but possibly not a minimal
(n, ε)-spanning set, even if En(δ) is minimal). It follows that rn(δ, T ) ≥
rn(ε, S), and hence htop(T ) ≥ htop(S). �

Proposition 2.52. The entropy of a dynamical system (X,T ) restricted to
the nonwandering set Ω(T ) satisfied htop(T ) = htop(T |Ω(T )).

Since T -invariant measures have to be supported on the nonwandering
set, this proposition follows from the Variational Principle (Theorem 6.62).

Example 2.53. The nonwandering set Ω(σ) of the subshift

X = {0n11n20n31n4 · · · : 0 ≤ n1 ≤ max{n1, 1} ≤ n2 ≤ n3 ≤ n4 ≤ . . . }
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consists of periodic orbits 0k1k0k1k · · · or 1k0k1k0k · · · , i.e., with period 2k.
Therefore the number of 2n-periodic points (not necessarily prime period
2n) equals twice the number of divisors of n, and hence is ≤ 2n. In view of
Proposition 2.52, we have htop(σ) = 0.

2.4.1. Amorphic Complexity. If the cardinalities of (n, ε)-separated and
of (n, ε)-spanning sets increase subexponentially, then one could compute
polynomial growth-rates instead. This is called power entropy:

(2.7) hpow(T ) = lim
ε→0

lim sup
n→∞

log sn(ε)

log n
,

see [296]. However, in practice this isn’t a very powerful tool to distinguish
between dynamical systems, because for instance, all dynamical systems with
linear word-complexity have hpow(T ) = 1. A recent approach [261], which
turns out to distinguish between many zero-entropy systems (even of lin-
ear complexity and between some semi-conjugate dynamical systems), is
amorphic complexity13. It is based on the average time v that orbits are δ
apart. Given a dynamical system (X,T ) on a metric space (X, d), two points
x, y ∈ X are (δ, v)-separated for some δ > 0 if

lim sup
n→∞

1

n
#{0 ≤ j < n : d(T j(x), T j(y)) ≥ δ} ≥ v.

A set S ⊂ X is (δ, v)-separated if every x 6= y ∈ S are (δ, v)-separated. Let
Sep(δ, v) denote the maximal cardinality of the (δ, v)-separated sets. We say
that (X,T ) has finite separation numbers if Sep(δ, v) <∞ for all δ, v > 0.
If Sep(δ, v) = ∞ for some δ, v > 0, then (X,T ) has infinite separation
numbers, and in this case the amorphic complexity defined below is infinite,
hence not so useful. This occurs, for instance, in the following cases, see
[261, Theorem 1.1]:

Theorem 2.54. Let (X,T ) be a continuous dynamical system on a com-
pact metric space (X, d). If htop(T ) > 0 or T is weakly mixing w.r.t. some
non-atomic invariant probability measure (see Definition 6.82), then T has
infinite separation numbers.

Hence we are only interested in dynamical systems with separation num-
bers that are finite, but potentially unbounded in v.

Definition 2.55. Assume that (X,T ) has finite separation numbers. The
upper/lower amorphic complexity is the polynomial growth-rate of the

13This notion was first used in the context of aperiodic tilings that approximate “amorphous”
material. The name was coined for this reason.
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separation numbers as function of v tending to zero:

(2.8)







ac(T ) = supδ>0 lim supv→0
log Sep(δ,v)

− log v ,

ac(T ) = supδ>0 lim infv→0
log Sep(δ,v)

− log v .

If these quantities are the same, then ac(T ) = supδ>0 limv→0
log Sep(δ,v)

− log v is the

amorphic complexity of T .

Remark 2.56. Amorphic complexity can also be defined by spanning sets
[261, Section 3.2]. A set S ⊂ X is (δ, v)-spanning if for every y ∈ X there is
an x ∈ S such that

lim sup
n→∞

1

n
#{0 ≤ j < n : d(T j(x), T j(y)) ≥ δ} < v.

Letting Span(δ, v) denote the minimal cardinality of the (δ, v)-spanning sets,
(2.8) holds with Sep(δ, v) replaced by Span(δ, v).

If T is an isometry, then the frequency of two points x, y ∈ X being ≥ δ
apart is 0 or 1, depending on whether d(x, y) < δ or ≥ δ. Therefore Sep(δ, v)
is independent of v, so ac(T ) = 0. More generally:

Proposition 2.57. If (X,T ) is equicontinuous, then the amorphic complex-
ity ac(T ) = 0.

Proof. Let ε > 0 be arbitrary. By equicontinuity and the compactness of
X, we can take δ > 0 such that Tn(Bδ(x)) ⊂ Bε/2(T

n(x)) for all x ∈ X
and n ∈ N or Z. Thus two points in Bδ(x) are never (ε, v)-separated for any
v ∈ (0, 1]. Let N(δ) be the number of such δ-balls that can be packed in

X, so that no such ball contains the center of another. Then log Sep(ε,v)
− log v ≤

logN(δ)
− log v → 0 as v → 0. Therefore ac(T ) = 0. �

Further properties concern iterates and factors, see [261, Proposition 1.3].

Lemma 2.58. Let (X,T ) and (Y, S) be two dynamical systems on compact
metric spaces.

• If (Y, S) is a topological factor of (X,T ), then ac(S) ≤ ac(T ). In
particular, amorphic complexity is preserved under conjugacy.

• ac(Tn) = ac(T ) for every n ∈ N.

• ac(S × T ) = ac(S) + ac(T ).

In later sections, we compute the amorphic complexity of some particular
dynamical systems, such as Sturmian shifts, see Section 4.3.1, and Toeplitz
shifts, see Section 4.5.
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2.5. Mathematical Chaos

Mathematical chaos doesn’t have a single definition, but the basic idea it
tries to capture is that forward orbits are unpredictable. The computa-
tion of orbits in any (physical) dynamical systems inherently brings errors:
measurement errors, round-off errors, error in the mathematical model. Un-
predictability means that initial errors blow up over time (sometimes ex-
ponentially fast, as is the case with subshifts). Therefore distal dynamical
systems on compact spaces (in particular isometries) are not chaotic in any
common definition. On the other hand, expansivity is in general too strong
a property to require for chaos. For instance, a tent map

Ts : [0, 1] → [0, 1], Ts : x 7→ min{sx, s(1− x)}
is chaotic if the slope s ∈ (

√
2, 2], but not expansive. Indeed, x = 1+ε

2 and

y = 1−ε
2 are ε apart, but Tn

s (x) = Tn
s (y) for all n ≥ 1. A weaker, more

appropriate, definition in this context is the following:

Definition 2.59. A dynamical system (X,T ) on a metric space (X, d)
has sensitive dependence on initial conditions if there is δ > 0 such
that for all ε > 0 and x ∈ X, there is y ∈ Bε(x) and n ≥ 0 such that
d(Tn(x), Tn(y)) > δ.

This leads to one of the most common definitions of chaos [192]:

Definition 2.60. A dynamical system (X,T ) on a metric space (X, d) is
chaotic in the sense of Devaney if

(1) X has a dense set of periodic orbits;

(2) T has a dense orbit;

(3) (X,T ) has sensitive dependence on initial conditions.

As was soon realized by Banks et al. [44], unless X is a single periodic orbit,
3. follows automatically from 1. and 2. See also Silverman’s study [494] on
chaos and topological transitivity.

Proposition 2.61. Let (X,T ) be a continuous dynamical system on an
infinite metric space (X, d). If T has a dense set of periodic orbits as well as
a dense orbit, then T has sensitive dependence on initial conditions.

Proof. Since X is infinite and has a dense orbit, no periodic point is iso-
lated, and are at least two periodic orbits, say orb(p) and orb(q). Let
δ := min{d(x, y) : x, y ∈ orb(p) ∪ orb(q), x 6= y}/6 > 0. Take x ∈ X and
ε > 0 arbitrary. Then Bε(x) contains a periodic point r /∈ orb(p) ∪ orb(q).
If there is n ≥ 0 such that d(Tn(x), Tn(r)) > δ, then sensitive dependence is
established at x. Therefore assume that d(Tn(x), Tn(r)) ≤ δ for all n ≥ 0.
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Since there is a dense orbit, we can find y ∈ Bε(x) such that p, q ∈
orb(y) = X. Take j, k ∈ N such that

d(T j+i(y), T i(p)) < δ and d(T k+i′(y), T i′(q)) < δ

for all 0 ≤ i, i′ ≤ per(r). We can choose 0 ≤ i, i′ ≤ per(r) such that

d(T i(p), r) ≤ d(T i(p), T j+i(y)) + d(T j+i(y), T j+i(x)) + d(T j+i(x), r) ≤ 3δ

and

d(T i′(q), r) ≤ d(T i′(q), T k+i′(y))+d(T k+i′(y), T k+i′(y))+d(T k+i′(x), r) ≤ 3δ.

But then d(T i(p), T i′(q)) ≤ 6δ, contradicting the choice of δ. This proves
the result. �

The requirement of a dense set of periodic orbits in Devaney chaos is
restrictive, because it precludes minimal systems to be chaotic. The following
notion doesn’t have this drawback.

Definition 2.62. A dynamical system (X,T ) on a metric space (X, d) is
chaotic in the sense of Auslander-Yorke if

(1) T has a dense orbit;

(2) (X,T ) has sensitive dependence on initial conditions.

The following results is known as the Auslander-Yorke dichotomy [38]:

Theorem 2.63. Every minimal dynamical system (X,T ) is either equicon-
tinuous or has sensitive dependence on initial conditions.

In fact, there is a version of the Auslander-Yorke dichotomy, see [14,
410,533,543], saying that a transitive dynamical system either has sensitive
dependence on initial conditions (see Definition 2.59), or is uniformly rigid.
This implies in particular that for minimal dynamical systems, equicontinuity
is equivalent to uniform rigidity.

Remark 2.64. There is also an analogue for mean equicontinuity, see [383]
and also [266], saying that every minimal dynamical system is either mean
equicontinuous or mean sensitive, which means that there is a δ > 0
such that for every x ∈ X and neighborhood U ∋ x, there is y ∈ U such
that lim supn

1
n

∑n−1
i=0 d(T

ix, T iy) > δ. A measure-theoretic version of the
dichotomy is due to [265], which states that given an ergodic T -invariant
Borel measure µ, (X,T ) is either µ-mean equicontinuous or µ-mean sen-
sitive, i.e., mean sensitive with “neighborhood U ” replaced by “Borel set
U ∋ x with µ(U) > 0”.
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The paper of Li & Yorke [375] from 1973 might be called a popular (par-
tial) rediscovery of Sharkovskiy’s theorem [482] from 196414, but it started
the following characterization as well.

Definition 2.65. Let (X,T ) be a dynamical system on a metric space (X, d).
A pair of points x, y ∈ X is called a Li-Yorke pair if

lim inf
n→∞

d(Tn(x), Tn(y)) = 0 and lim sup
n→∞

d(Tn(x), Tn(y)) > 0.

A set S ⊂ X is called scrambled if (x, y) is a Li-Yorke pair for every two
distinct x, y ∈ S. The dynamical system is chaotic in the sense of Li and
Yorke if there is an uncountable scrambled set.

Huang & Ye [315, Theorem 4.1] proved that if a continuous dynamical
system is transitive and properly contains a periodic orbit, then it is chaotic
in the sense of Li-Yorke. In particular, Devaney chaos implies Li-Yorke chaos.

Example 2.66. Let us construct an uncountable scrambled set in the full
shift space X = {0, 1}N0 . First define an equivalence relation ∼ by setting
x ∼ y if there is n0 ∈ N such that either xn = yn for all n ≥ n0 or xn 6= yn
for all n ≥ n0. That is, x and y have either the same or opposite tails. Each
equivalence class is countable, because for each fixed n0 there are finitely
many equivalent points with the same n0. Since X is uncountable, there are
uncountably many equivalence classes.

Next, using the axiom of choice, construct a set Y ⊂ X that contains
exactly one point in each equivalence class.

Now define an injection π : X → X by π(x)j = xn for each 2n − 1 ≤
j < 2n+1 − 1. Then S = π(Y ) is uncountable and scrambled. Indeed, for
every x 6= y ∈ Y , there are infinitely many n such that xn = yn and then
d(σ2

n−1 ◦ π(x), σ2n−1 ◦ π(y)) ≤ 2−n. Also there are infinitely many n such
that xn 6= yn and then d(σ2

n−1 ◦ π(x), σ2n−1 ◦ π(y)) ≥ 1− 2−n.

Similarly, all non-trivial subshifts of finite type (SFTs) are Li-Yorke
chaotic, but Sturmian subshifts (or more generally distal maps) are not Li-
Yorke chaotic (lim infn d(T

n(x), Tn(y)) > 0 for distinct x 6= y ∈ X).

14Sharkovskiy’s Theorem states that if a continuous map of the real line has a periodic
point of period n, it also has a periodic point of period m for every m ≺ n in the Sharkovskiy
order 1 ≺ 2 ≺ 4 ≺ 8 ≺ · · · ≺ 4 · 7 ≺ 4 · 5 ≺ 4 · 3 · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 · · · ≺ 7 ≺

5 ≺ 3. Sharkovskiy related during the 2018 IWCTA: International Workshop and Conference
on Topology & Applications (Kochi, India) in honor of his 1000-th moon that the printer of his
original publication didn’t have the sign ≺ at his disposal, and therefore he suggested to use the
letter Y turned side-ways. The publisher followed this suggestion, but turned the Y in the different
direction as Sharkovskiy had intended, and therefore the Sharkovskiy order was first printed as
3 Y 5 Y 7 Y . . . 6 Y 10 Y 14 Y . . . 12 Y 20 Y 28 Y . . . . . . Y 4 Y 2 Y 1 in [482]. Štefan [507] in
his 1977 proof used 3 ⊢ 5 ⊢ 7 ⊢ . . . and the English translation of Sharkovskiy’s proof [483] by
Tolosa used 3 ⊲ 5 ⊲ 7 ⊲ . . .
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Exercise 2.67. Let X = AN0 be the full shift space for some alphabet A
containing a. Define π : X → X by

π(x)k =

{

xk−n2 n2 ≤ k ≤ n2 + n;

a n2 + n < k ≤ n2 + 2n.

Show that π(X) is a scrambled set.

An important, long conjectured, result ties Li-Yorke chaos to topological
entropy.

Theorem 2.68. Every dynamical system of positive entropy is Li-Yorke
chaotic.

This is the main result of [79], see also [467, Chapter 5] and [206].
The converse is, however, not true. There exist examples of continuous (so-
called 2∞) interval maps, which have periodic points of period 2n for each
n ∈ N and no periodic points with other periods, which have (therefore)
zero topological entropy, but which still are Li-Yorke chaotic, see [500,546].
Example 2.53 gives a subshift which has zero entropy but is Li-Yorke chaotic.

Theorem 2.69. Let X = {1, . . . , d}N. For every probability vector p =
(p1, . . . , pd), every scrambled set has zero p-Bernoulli measure.

Proof. Let (X,B, µp, σ) be the p-Bernoulli shift and assume by contra-
diction that S ⊂ X is a scrambled set with µp(S) > 0. Take two dis-
tinct Lebesgue density points a and b of S′, and for any n, let Zn(a) and
Zn(b) be the corresponding n-cylinders of a and b respectively. Because a
and b are density points, the Lebesgue fractions of µp(σ

n(S ∩ Zn(a))) and
µp(σ

n(S ∩ Zn(b))) tend to 1 as n→ ∞. That means that there are distinct
x, y ∈ S and some n ∈ N such that σn(x) = σn(y). But then (x, y) is not a
Li-Yorke pair. This contradiction shows that µp(S) = 0. �

2.6. Transitivity and Topological Mixing

Transitivity prevents that the phase space consist of multiple pieces that
don’t communicate with each other. Topological mixing prevents that they
communicate with each other only at a periodic sequence of iterates. There
are several related concepts in addition to (totally) transitive from Defini-
tion 2.12:

Definition 2.70. A dynamical systems (X,T ) on a topological space is
called topologically mixing if for every two open set U, V there is N ≥ 0
such that U ∩ T−n(V ) 6= ∅ for all n ≥ N .
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Topologically mixing dynamical systems on metric space are sensitive to
initial conditions (provided X consists of at least two points), and therefore
equicontinuous dynamical systems cannot be topologically mixing. In partic-
ular, since topological mixing is inherited by factors, the maximal equicon-
tinuous factor of a topologically mixing dynamical system is trivial.

Definition 2.71. A dynamical system (X,T ) on a topological space is called
topologically exact (also called locally eventually onto or leo for short)
if for every open set U there is N ≥ 0 such that TN (U) = X.

Invertible dynamical systems (other than the identity on a singleton) are
never topologically exact, and neither are nontrivial dynamical systems with
zero entropy.

Lemma 2.72. If a dynamical system (X,T ) on a non-trivial metric space
(X, d) is topologically exact, then htop(T ) > 0.

Proof. Take x0 6= x1 ∈ X, and choose 0 < ε < d(x0, x1)/3. Let U0 and U1

be the ε-neighborhoods of x0 and x1 respectively. By topological exactness,
there is N ∈ N such that TN (U0) = X = TN (U1). Hence, for an arbitrary
n ∈ N and every w = w0w1 · · ·wn−1 ∈ {0, 1}n, there is xw ∈ X such that
T kN (xw) ∈ Uwk

for all 0 ≤ k < n. If w 6= w′ ∈ {0, 1}n, then the nN -distance
dnN (xw, xw′) > ε. Hence, every (nN, ε)-spanning set must contain at least
2n elements and htop(T ) ≥ 1

N log 2 > 0. �

Theorem 2.73. If T : [0, 1] → [0, 1] is a continuous transitive interval
map, then htop(T ) ≥ 1

2 log 2. If in addition T is topologically mixing, then

htop(T ) >
1
2 log 2.

This result is due to Blokh, see [86,88]. A compact exposition of this
and related results can be found in [467, Proposition 4.70].

Definition 2.74. A dynamical system (X,T ) on a topological space is
called weakly topologically mixing if for every four non-empty open sets
U1, U2, V1, V2, there is n such that U1∩T−n(V1) 6= ∅ and U2∩T−n(V2) 6= ∅,
or equivalently, the product system T × T on X ×X is transitive.

When presenting these notions, we consistently write the adjective “topo-
logical” because there are also measure-theoretic versions of exact, mixing
and weak mixing. These are discussed in Section 6.7. Some specific differ-
ences exist, for instance, ther eis no topological analog of Theorem 6.85.

From the definition it is clear that topological weak mixing implies that
the product system (X2, T × T ) is transitive. In fact, Furstenberg [263]
showed that this holds for every N -fold Cartesian product (XN , T ×· · ·×T ).
An important result on topological weak mixing is the following multiple



46 2. Topological Dynamics

recurrence (a dynamical version of Van der Waerden’s Theorem) due to
Furstenberg & Weiss [264]: if (X,T ) is minimal then for every open set
U ⊂ X and m ∈ N, there is n ∈ N such that U × Tn(U) × T 2n(U) × · · · ×
Tmn(U) 6= ∅. Glasner [272] extended this to multiple transitivity: if (X,T )
is minimal and topologically weak mixing, then for x in a residual subset of
X, the m-tuple (x, . . . , x) has a dense orbit under T ×T 2×· · ·×Tm. Further
results can be found in e.g. [135,411].

The following hierarchy (which also holds for the measure-theoretic ana-
log) will not come as a surprise:

Theorem 2.75. The following implications hold:

top.
exact

⇒ topologically
mixing

⇒ topologically
weak mixing

⇒ totally
transitive

⇒ topologically
transitive

The reverse implications are in general false.

Counter-examples to the reverse implications can be found among subshifts:

full Petersen’s Chacon Fibonacci Thue-Morse
shift shift substitution shift substitution shift shift

where the Fibonacci, Chacon and Thue-Morse substitution shifts are defined
in Examples 1.3, 1.27 and 1.6, respectively. Petersen’s shift [440] is an ex-
ample of a zero entropy subshift that is topologically mixing. Lemma 2.72
shows that it cannot be topologically exact.

Remark 2.76. Although none of the reverse implications in Theorem 2.75
holds in all generality, for many subshifts, some of these notions are equiv-
alent. For instance, sofic shifts and density shifts that are totally transitive
are topologically mixing, cf. [234] and Theorem 3.61. For coded and syn-
chronized shifts, total transitivity is equivalent to topologically weak mixing,
see [234, Theorem 1.1].

In terms of the set of visit times for sets U, V ⊂ X,

(2.9) N (U, V ) = {n ∈ N0 or Z : U ∩ T−n(V ) 6= ∅}.
the notions in this section can be expressed as follows. For all U,U ′, V, V ′ ⊂
X open and non-empty:

• topologically exact:
⋂

x∈X N (U, {x}) is cofinite.

• topologically mixing: N (U, V ) is cofinite.

• topologically weak mixing: N (U, V ) ∩N (U ′, V ′) is infinite.

• topologically transitive: N (U, V ) is non-empty.

• totally transitive: ∀k N (U, V ) ∩ kN is non-empty.
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2.7. Shadowing and Specification

Definition 2.77. Let (X,T ) be a dynamical system on a metric space (X, d).
A sequence (xn)n∈N0or Z is called a δ-pseudo-orbit if d(T (xn), xn+1) < δ for
all n ∈ N0 or Z.

Given that every floating-point calculation has round-off errors, orbits
that a computer calculates numerically are always pseudo-orbits for some
small δ. Whether such pseudo-orbits represent an approximations of actual
orbits is captured in the following definition.

Definition 2.78. A dynamical system (X,T ) on a metric space (X, d) has
the shadowing property if for every ε > 0 there is δ > 0 such that for
every δ-pseudo-orbit (xn), there is y ∈ X so that orb(y) ε-shadows (xn),
i.e., d(xn, T

n(y)) < ε for all n.

By now, many variations of shadowing have been studied, for example
average shadowing (the average error need to be smaller than ε), periodic
shadowing (periodic pseudo-orbits are ε-shadowed by actual periodic orbits),
limit shadowing (the ε in the shadowing tends to zero as the iterates |n| →
∞). We refer to the monograph by Pilyugin [447], although many variations
of shadowing are from a later date, cf. [53,274,410].

The seminal result for shadowing is the Anosov Shadowing Lemma [26]
for hyperbolic sets. Work by Bowen [95] showed that hyperbolic dynamical
systems, and this includes SFTs, have the shadowing property.

Definition 2.79. Let f : M → M be a C1 diffeomorphism of a C1 Rie-
mannian manifold M . An f -invariant set Λ is called hyperbolic if there
is a uniformly transversal splitting TqM = Es

q ⊕ Eu
q of the tangent spaces

that is continuous in q ∈ Λ, invariant under f , i.e., Dfq(E
s
q) = Es

f(q) and

Dfq(E
u
q ) = Eu

f(q), and tangent vectors in Es
q resp. Eu

q decrease exponentially

fast under forward resp. backward iteration.

If f :M →M is not invertible, then we need to select inverse branches in
order for Eu

q to be well-defined. The manifold contains stable and unstable
local manifolds W s

loc(q) and W u
loc(q) of q, tangent to Es

q and Eu
q respectively,

such that

d(fn(q), fn(x)) → 0 exponentially, as

{

n→ ∞ if x ∈W s
loc(q),

n→ −∞ if x ∈W u
loc(q).

In the symbolic setting, i.e., a subshift (X,σ) takes the place of (M, f), we
can define

{

W s
loc(q) = {x ∈ X : xn = qn for all n ≥ 0},

W u
loc(q) = {x ∈ X : xn = qn for all n ≤ 0}.
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Theorem 2.80 (Anosov Shadowing Lemma). Let Λ be a hyperbolic set of
a C1 diffeomorphism f : M → M , and let Λε denote the ε-neighborhood
of Λ. Then for every ε > 0 there is δ > 0 such that every δ-pseudo orbit
(xk) ⊂ Λδ (finite, one-sided or two-sided infinite), there is x ∈ Λε such that
d(fk(x), xk) < ε for all k.

The analogue of this theorem for periodic shadowing is called the Anosov
Closing Lemma. See [336, Sections 6.4 and 18.1].

One may think that uniform expansion is enough to guarantee shadow-
ing, but it is not as simple as that. For example (see [167], and [112, Theo-
rem 6.3.5]), tent maps Ts with slope s ∈ (1, 2) have the shadowing property if
and only if the critical point c is recurrent or its kneading map is unbounded
(in the terminology of Section 3.6.3).

An important variation of shadowing, also introduced by Bowen [97],
is specification. In this case, no pseudo-orbits are involved, but particular
pieces of orbits are to be ε-shadowed for particular intervals of time, allowing
gaps in between that are inverse proportional to log ε.

Definition 2.81. A dynamical system (X,T ) on a metric space (X, d) has
specification for K points if for every ε > 0 there is a gap size N with the
following property: for all points x1, . . . , xK ∈ X and iterates m1 ≤ n1 <
m2 ≤ n2 < · · · < mK ≤ nK with mk+1 − nk ≥ N , there is x ∈ X such that

(2.10) d(T j(x), T j−mk(xk)) < ε for all k ∈ {1, . . . ,K}, mk ≤ j < nk.

Sometimes specification includes the requirement that x is periodic as well
(periodic specification) and that specification holds for all K ∈ N (strong
specification).

Remark 2.82. For subshifts (X,σ), this definition can be simplified. We
give the version for strong specification, because it is the one in most frequent
use in this context. There is a gap size N∗ such that for all K ∈ N and every
K-tuple x1, . . . , xK ∈ X and iterates m1 ≤ n1 < m2 ≤ n2 < · · · < mK ≤ nK
with mk+1 − nk ≥ N∗, there is x ∈ X such that

(2.11) xj = xkj−mk
for all k ∈ {1, . . . ,K}, mk ≤ j < nk.

Since d(x, xk) ≤ 1
2 if and only if x0 = xk0, condition (2.11) implies (2.10)

with N(ε) = N∗ for ε > 1
2 . For ε ∈ (0, 12 ], condition (2.11) implies (2.10)

with N(ε) = N∗ + n where n is minimal such that 2−n < ε.

The strength of specification is that a single orbit can shadow many
other orbits consecutively, in particular orbits that have different dynamical
behaviors.

Lemma 2.83. A dynamical system with specification is topologically mixing
and if the specification is periodic, then the set of periodic orbits is dense.
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Proof. Specification allows one to connect ε-neighborhoods of any two points
x1, x2 by an orbit of length N = N(ε). To show topological mixing, take
n ≥ 1 arbitrary and m1 = n1 = 0, m2 = n2 = n1 + N(ε) and m′

2 = n′2 =
n1+N+n as in the definition of specification. Then there are x, x′ ∈ Bε(x1)
such that TN (x) ∈ Bε(x2) and TN+n(x) ∈ Bε(x2) as required. Finally, for
any x1 ∈ X and ε > 0, we can find a periodic point x ∈ Bε(x1), so the set
of periodic points is dense. �

The next result is due to Bowen [97] and in more generality to Sigmund
[492, Proposition 3].

Proposition 2.84. Every continuous dynamical system with specification
on a compact metric space has positive topological entropy.

Proof. Take distinct point a, b ∈ X and let ε = d(a, b)/3. Let N be the gap
size associated to ε. Now for every K ∈ N and chain {x1, . . . , xK} ⊂ {a, b}K
and the integers Let mk = nk = mk+1 − N , there is a point x such that
d(Tmk(x), xk) < ε for k = 1, . . . ,K. There are 2K choices of {x1, . . . , xK}
and the corresponding points x are (nK , ε)-separated. Hence, according to
Definition (2.4), htop(T ) ≥ 1

1+N log 2 > 0. �

The following was first shown by Bowen [99].

Lemma 2.85. Every continuous factor of a dynamical system (X,T ) with
specification on a compact metric space (X, d) has specification.

Proof. Let (Y, S) be a factor of (X,T ) such that π : X → Y is the semi-
conjugacy. Since X is compact, π is uniformly continuous. Choose ε > 0
arbitrary, and take δ > 0 such that the π-image of every δ-neighborhood inX
is contained in an ε-neighborhood in Y . Find N = N(δ) as in Definition 2.81
of specification for (X,T ). Choose K ∈ N and m1 ≤ n1 < m2 ≤ n2 < · · · <
mK ≤ nK with gaps mk+1 − nk ≥ N and points y1, . . . , yK ∈ Y arbitrary.
Choose xk ∈ π−1(yk) for each 1 ≤ k ≤ K. Since (X,T ) has specification,
there is x ∈ X that δ-shadows the pieces of orbits of the xk’s at the required
time intervals. Thus y := π(x) ε-shadows the pieces of orbits of the yk’s at
the required time intervals. This completes the proof. �

Theorem 2.86. Let (X,T ) be an expansive continuous dynamical system on
a compact metric space (X, d). If T has specification then it is intrinsically
ergodic, i.e., T has a unique measure of maximal entropy.

This was proven in [99], and it applies of course to subshifts. Strong spec-
ification makes it possible, and even easy, to approximate invariant measures
in the weak∗ topology by equidistributions on periodic orbits. Indeed, if x is
a typical15 point for an ergodic T -invariant measure µ, then for arbitrarily

15in the sense that the Ergodic Theorem 6.13 holds for x.
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large n, we can find an n-periodic point pn that ε-shadows the orbit of x up
to iterate n−N . The equidistribution µn := 1

n

∑n−1
i=0 δT i(p) then tends to µ

as n→ ∞. Similar ideas work for non-ergodic measures, see Definition 1.30.
An extended version of this argument yields that the measure of maximal
entropy is the weak∗ limit of 1

#{p:Per(p)≤n}

∑

Per(p)≤n δp, see [99] and [155].

Further variations of specification were designed to extend this proof of in-
trinsic ergodicity to dynamical systems where specification fails, see Buzzi
[131], Climenhaga & Thompson [155, 156] and Kwietniak and coauthors
[371,372]. This applies for instance to (factors of) β-shifts and gap shifts.


