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2 1. First Examples and General Properties of Subshifts

Symbolic dynamics is concerned with spaces of (infinite) sequences of
symbols. Such sequences can come from the symbolic description of a dy-
namical system, but they also have intrinsic interest. Symbol sequences are
used to code messages, digitally process sound and images, and as the ob-
jects that computers process. The “dynamics”, usually, but not exclusively,
refers to a transformation σ of such sequences in the form of a shift by one
unit to the left. For example,

{

σ(10011 . . . ) = 0011 . . . for one-sided sequences,

σ(011.10011 . . . ) = 0111.0011 . . . for two-sided sequences.

That is, for a right-infinite sequence, the first symbol disappears, and for a
bi-infinite sequence, the dot that indicates position zero, moves one place to
the right. A closed σ-invariant subset sequences combined with this left-shift
operation σ is called a subshift. In this chapter, we give the basic notions
and examples of subshifts, and discuss the number and frequency of their
subwords.

1.1. Symbol Sequences and Subshifts

Let A be a finite or countable alphabet of letters. Usually A = {0, . . . , N −
1} or {0, 1, 2, . . . } but we can use other letters and symbols too. We are
interested in the space of infinite or bi-infinite sequences of letters:

Σ = AN or Z = {x = (xi)i∈N or Z : xi ∈ A}.

Such symbol strings find applications in data-transmission and storage, lin-
guistics, theoretical computer science and also dynamical systems (symbolic
dynamics). A finite string of letters, say x1 · · ·xn ∈ An is called a word or
block. A k-word is a word of k letters and ǫ is the empty word (of length
0). We use the notation Ak = {k-words in Σ} and

A∗ = {words of any finite length in Σ including the empty word}.

Given a subshift (X,σ), a finite word u appearing in some x ∈ X is sometimes
called a factor1 of x. If u is concatenated as u = vw, then v is a prefix and
w a suffix of u.

A cylinder set2 is any set of the form

[ek · · · el] = {x ∈ Σ : xi = ei for k ≤ i ≤ l}

1We will rather not use this word, because of possible confusion with the factor of a subshift
(= image under a sliding block code, see Section 1.4).

2In greater generality, if X is a topological space and n ∈ N ∪ {∞}, every set of the form
A×Xn−k for A ⊂ Xk is called a cylinder set. If X = R, n = 3 and A is a circle in R2, then A×R

is indeed a geometrical cylinder, stretching infinitely far in the third direction.
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Intersections of cylinder sets are again cylinder sets. The cylinder sets form
a basis of the product topology on Σ, i.e., a set is open in the product
topology precisely if it can be written as arbitrary unions of cylinder sets.

Note that a cylinder set is both open and closed (because it is the com-
plement of the union of complementary cylinders). Sets that are both open
and closed are called clopen.

Lemma 1.1. If 2 ≤ #A < ∞, then Σ = AN or Z is a Cantor set (that is
(i) compact, (ii) without isolated points and (iii) its connected components
are points). If #A = ∞ then Σ is not compact.

Proof. (i) Set A = {0, 1, . . . , N − 1} with discrete topology. Clearly A is
compact, because it is finite. Compactness of Σ then follows from Tychonov’s
Theorem.
(ii) No point x is isolated, because, for arbitrary x ∈ Σ, the sequence xn

defined as xni = xi if i 6= n and xnn = xn + 1 (mod 1), converges to x.
(iii) If x 6= y, say n = min{|i| : xi 6= y}, then Z := {x′ ∈ X : xi =
x′i for all |i| ≤ n} and X \ Z are two clopen disjoint non-empty sets whose
union is X. Thus x and y cannot belong to the same connected component.

If #A = ∞, then the collection {[a]}a∈A is an open cover without finite
subcover, so Σ is not compact. �

Shift spaces with product topology are metrizable. One of the usual3

metrics that generates product topology is

d(x, y) = 2−m for m = sup{n ≥ 0 : xi = yi for all |i| < n},
so in particular d(x, y) = 1 if x0 6= y0, and diam(Σ) = 1. If (xk)k∈N is a
sequence of sequences such that xk → x, then there is k0 ∈ N such that
d(xk, x) < 2−m for every k ≥ k0. The definition of the metric d implies
that xki = xi for all |i| ≤ m. In other words, xk → x means that xk[a,b] is

eventually constant x[a,b] on every finite window [a, b].

The shift map or left-shift σ : Σ → Σ, defined as

σ(x)i = xi+1, i ∈ N or Z,

is invertible on AZ (with inverse σ−1(x)i = xi−1) but non-invertible on AN.
We can use the ε-δ definition of continuity for δ = ε/2 to show that σ is
uniformly continuous. This is even true if #A = ∞.

Definition 1.2. A pair (X,σ) with X ⊂ Σ and σ the left-shift is a subshift
(often called simply shift) if it is closed (in product topology) and strongly

3Other metrics are d′(x, y) = 1

m
or d′(x, y) =

∑
i |xi − yi|2−|i|, but they are equivalent to

d(x, y), not in the sense that there is some C such that 1

C
d(x, y) ≤ d′(x, y) ≤ Cd(x, y) for all

x, y ∈ Σ, but in the sense that the embedding i : (Σ, d′) → (Σ, d) as well as its inverse i−1 are
uniformly continuous. This implies that they generate the same topology.
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shift-invariant, i.e., σ(X) = X. If σ is invertible, then we also stipulate that
σ−1(X) = X. For example, if

x = . . . 000.111111 . . . ,

then X = {σn(x) : n ≥ 0} is not a subshift, because x ∈ X but σ−1(x) /∈ X.

In Examples 1.3–1.6, we use A = {0, 1}.
Example 1.3. The set X = {x ∈ Σ : xi = 1 ⇒ xi+1 = 0} is called the
Fibonacci shift4. It disallows sequences with two consecutive 1’s. This Fi-
bonacci shift is an example of a subshift of finite type (SFT), see Section 3.1.
The collection X can be represented by a graph in multiple ways:

• X is the collection of labels of infinite paths through the vertex-
labeled graph in Figure 1.1 (left). Labels are given to the vertices
of the graph, and no label is repeated.

• X is the collection of labels of infinite paths through the edge-
labeled graph in Figure 1.1 (right). Labels are given to the arrows
of the graph, and labels can be repeated (different arrows with the
same label can occur).

10

1

0

0

Figure 1.1. Fibonacci transition graphs: vertex-labeled and edge-labeled.

Example 1.4. Xeven ⊂ {0, 1}N is the collection of infinite sequences in which
the 1’s appear only in blocks of even length, and also 1111 · · · ∈ X. We call
Xeven the even shift. Similarly, the odd shift Xodd is the collection of
infinite sequences in which the 0’s appear only in blocks of odd length, and
also 0000 · · · ∈ X, see Figure 1.2.

Example 1.5. Let S be a non-empty subset of N. Let X ⊂ {0, 1}Z be the
collection of sequences in which the appearance of two consecutive 1’s occur
always s positions apart for some s ∈ S. Hence, sequences in X have the
form

x = . . . 10s−1−110s0−110s1−110s2−11 . . .

where si ∈ S for each i ∈ Z. This space is called the S-gap shift, see
Section 3.7.

4Warning: there is also a Fibonacci substitution shift = Fibonacci Sturmian shift (see Ex-
ample 4.3), which is different from this one.
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Figure 1.2. Edge-labeled graphs for Xodd, Xeven and Xodd ∩Xeven.

Example 1.6. The Thue-Morse substitution5 is defined by

χTM :

{

0 → 01

1 → 10

and extended on longer words by concatenation. It has two fixed points

ρ0 = 01 10 1001 10010110 1001011001101001 . . .

ρ1 = 10 01 0110 01101001 0110100110010110 . . .

These sequences make their appearance in many settings in combinatorics
and elsewhere, cf. [19,541]. For instance, the n-th entry of ρ0 (where we start
counting at n = 0) is the parity of the number of 1’s in the binary expansion
of n. The Thue-Morse sequence ρi can be defined by the relation ρi0 = i,
ρi2n = ρin and ρi2n+1 = 1− ρin. Also, if we have a sequence of objects (Pk)k≥1

of decreasing quality (e.g. rugby players) which we want to divide over two
teams T0 and T1, so that the teams are as close in strength as possible,
then we assign Pk to team Ti if i is the k-th digit of ρ0 (or equivalently, of
ρ1). This is the so-called Prouhet-Tarry-Escott problem [91, page 85-96].
The sequences ρ0 and ρ1 have also been proved to be binary expansions of
transcendental numbers:

∑

n≥1 ρ
0
n2

−n = 1 −
∑

n≥1 ρ
1
n are transcendental,

see e.g. [20, Theorem 13.4.2].

Example 1.7. The alphabet A consists of brackets (, ), [, ] and the allowed
words are those (that can be extended to words) consisting of brackets that
are properly paired and unlinked. So [ ( [ ] ) ] and ( ( ) [ ] ) belong to L(X),
but [ ( ] and ( [ ) ] do not. This example is called the Dyck shift, see
Section 3.10.

5after the Norwegian mathematician Axel Thue (1863-1922) and the American Marston
Morse (1892-1977), but the corresponding sequence was used before by the French mathematician
Eugène Prouhet (1817-1867), a student of Sturm.
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1.2. Word-Complexity

Definition 1.8. Given a subshift X, the collection

L(X) = {words of any finite length in X}
is called the language of X. We use the notation Ln(X) for all the words
in the language of length n.

Definition 1.9. The function p := pX : N → N defined by p(n) = #Ln(X),
is called the word-complexity of X.

Example 1.10. For the Fibonacci SFT of Example 1.3, let Fn = #{w ∈
Ln(X) : wn = 0}. Then F1 = 1, F2 = 2, and Fn+1 = Fn + Fn−1 for n ≥ 3
because Fn is the cardinality in n + 1-words ending in 00 and Fn−1 is the
cardinality in n+1-words ending in 010. Therefore the Fn’s are the Fibonacci
numbers. The same argument gives p(1) = 2 = F2 and p(n) = Fn + Fn−1 =
Fn+1 for n ≥ 2.

1.2.1. Sublinear and Polynomial Complexity. We start with some ter-
minology and a useful proposition.

Definition 1.11. We call a word u ∈ Ln(X) over the alphabet A = {0, 1}
• left-special if both 0u and 1u belong to L(X);

• right-special if both u0 and u1 belong to L(X);

• bi-special if u is both left-special and right-special.

Note, however, that there are different types of bi-special words u depending
on how many of the words 0u0, 0u1, 1u0 and 1u1 are allowed. If only one
choice of 0u or 1u is right-special, and only one choice of u0 and u1 is left-
special, then u is a regular bi-special word. For larger alphabets, the
definition is analogous and there naturally are more types of left/right/bi-
special words.

Clearly

p(n+ 1)− p(n) = #{left-special words of length n}
= #{right-special words of length n}.

The following result goes back to Morse & Hedlund [412].

Proposition 1.12. If the word-complexity of a subshift (X,σ) satisfies
p(n) ≤ n for some n, then (X,σ) is periodic.

Proof. If p(1) = 1, then X = {a∞} is obviously periodic. So assume p(1) ≥
2. Since p is non-decreasing, the assumption of this proposition implies that
there is a minimal n such that p(n) = p(n + 1) = n. Hence there are no
right-special words of length n. Start with a word u ∈ Ln(X); there is only
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one way to extend it to the right by one letter, say to ua. Then the n-suffix of
ua can also be extended to the right by one letter in only one way. Continue
this way, until after at most p(n) = n steps, we end up with suffix u again.
Therefore X contains only (shifts of) this word periodically repeated. �

This proposition shows that the minimal complexity of interest is p(n) =
n + 1, because if p(n) ≤ n for some n, then X consists of a single periodic
orbit. We say that (X,σ) is of sublinear complexity if there is a constant C
such that p(n) ≤ Cn. Sturmian sequences (see Section 4.3) have p(n) = n+1;
in fact all recurrent words with this word-complexity are Sturmian. There
are further possibilities for non-recurrent subshifts. The sequences

x = . . . 000.10000 . . . and y = 00001111.00000 . . .

both have p(n) = n+1. They are not uniformly recurrent, but asymptotically
fixed for n → ±∞. Ormes & Pavlov [422, Theorem 1.2 & 1.3] showed
that for non-recurrent shifts (X,σ) that are not asymptotically periodic in
both directions, lim infn p(n)/n ≥ 3

2 , and that this bound is sharp, as is
demonstrated by

z = 0000.10n010n110n210n31 . . .

for a carefully chosen increasing sequence of gaps (ni)i≥1. In fact, given any
non-decreasing function g : N → N that tends to infinity, there is x ∈ X
such that p{x}(n) <

3
2n+ g(n). In further detail, if a transitive6 shift (X,σ)

with a recurrent point, contains m minimal subsystems, of which m∞ are
infinite, then

lim sup
n→∞

pX(n)− (m+m∞ +1)n = ∞, lim inf
n→∞

pX(n)− (m+m∞)n = ∞,

and these bounds are sharp. The second estimate holds also without the
existence of a recurrent point. See [227], specifically Theorem 1.2 and 1.3.

Symbolic spaces associated with interval exchanges transformations on
k intervals have p(n) = (d − 1)n + 1, see Proposition 4.80. The Chacon
substitution shift and primitive Chacon substitution shift (see Example 1.27)
have word-complexity p(n) = 2n−1 (for n ≥ 2) and p(n) = 2n+1, see [240].
For many subshifts, pX(n)/n is bounded in n, but hard to compute exactly;
often limn p(n)/n doesn’t exist. For instance, the word-complexity of the

Thue-Morse shift (i.e., the closure {σn(ρTM) : n ∈ N0} of Example 1.6) is

(1.1) p(n) =

{

3 · 2m + 4r if 0 ≤ r < 2m−1,

4 · 2m + 2r if 2m−1 ≤ r < 2m,

where n = 2m + r + 1, see [111, 394]. In [125], the word-complexity of
certain (Fibonacci-like) unimodal restrictions to the critical ω-limit set are
computed.

6see Definition 1.18 below
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The following curious result is due to Heynis, see [146,302].

Proposition 1.13. If limn pX(n)/n exists and is finite, then it has to be an
integer.

All substitution shifts, in fact all linearly recurrent shifts have sublinear
complexity, see Theorem 4.4.

The polynomial growth rate is defined as r = limn
log p(n)
logn . Naturally,

linear complexity implies r = 1, but every r ∈ {0} ∪ [1,∞] is possible.
Subshifts with polynomial growth rate r > 1 are less studied, but for example
symbolic spaces for polygonal billiards on d-dimensional billiard tables can
have polynomial growth rate r = d.

1.2.2. Exponential Complexity. Anticipating the definition for general
dynamical systems in Section 2.4, for subshifts, the topological entropy is
the exponential growth rate of the word-complexity:

(1.2) htop(σ) = lim
n→∞

1

n
log pX(n).

To show that the limit in (1.2) exists, we need one more notion and one
well-known lemma.

Definition 1.14. We call a real-valued sequence (an)n≥1 subadditive if

am+n ≤ am + an for all m,n ≥ 1.

Analogously, (an)n≥1 superadditive if am+n ≥ am + an for all m,n ∈ N.

Lemma 1.15 (Fekete’s Subadditive Lemma). If (an)n≥1 is subadditive, then
limn

an
n

= infr≥1
ar
r
. Analogously, if (an)n≥1 is superadditive, then limn

an
n

=
supr≥1

ar
r
.

Proof. Every integer n can be written as n = i · r + j for 0 ≤ j < r.
Therefore

lim sup
n→∞

an
n

= lim sup
i→∞

ai·r+j

i · r + j
≤ lim sup

i→∞

iar + aj
i · r + j

=
ar
r
.

This holds for all r ∈ N, so we obtain

inf
r∈N

ar
r

≤ lim inf
n→∞

an
n

≤ lim sup
n→∞

an
n

≤ inf
r∈N

ar
r
,

as required. The proof for superadditive sequences goes likewise. In this
case, the limit can be infinite, e.g. if an = log n!. �

Remark 1.16. A positive sequence (an)n∈N is submultiplicative if am+n ≤
aman (and supermultiplicative if am+n ≥ aman). By taking logarithms,
we can turn a sub/supermultiplicative sequence into a sub/superadditive
one, and this suffices for most purposes.
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We devote separate chapters to subshifts of positive and subshifts of zero
entropy, because they tend to have different topological properties such as
topological mixing, existence and number of periodic orbits, shadowing, see
Section 2. The maximal entropy of a subshift on N letters is logN , and
this is achieved by the full shift ({0, . . . , N − 1}N, σ). One can ask whether
all intermediate values between 0 and logN can be achieved as topological
entropy for some subshift. As we shall see later, this is not true for the
class of subshift of finite type or the sofic shifts, because the entropy is then
equal to the logarithm of the leading eigenvalue of some integer matrix, so
logarithms of algebraic numbers, and in fact Perron numbers, see [385] and
(the text below) Definition 8.4.

On the other hand, the topological entropy of β-shifts (Xβ , σ) can take
any non-negative value ≥ 0, because htop(Xβ) = log β. Also withing the class
of gap shift you can achieve every value of the entropy, as can be derived
from Theorem 3.113. Some specific constructions of subshifts of a chosen
entropy can be found among spacing shifts, see [177,368] and Section 3.8.

Remark 1.17. For many subshifts in AN or Z, the topological entropy can

be computed exactly, but not so for subshift in AZd

, i.e., cellular automata.
Even for the simplest direct generalization of the Fibonacci SFT, namely 0-1-
patterns on Z2 where no two 1’s occur directly next to each other (horizontal
or vertically), the entropy limm,n→∞ 1

mn
log px(m,n) is unknown. There are

however numerical approximations (for example, for this example, the en-
tropy equals 0.5878116 . . . which these digits certainly correct, see [248])
and characterizations of which values can occur, see e.g. [256,257,282,304,
305,387].

1.3. Transitive and Synchronized Subshifts

The following definition expresses that all parts of a subshift connect to each
other:

Definition 1.18. A subshift X is transitive or irreducible if for every
u,w ∈ L(X), there is v ∈ L(X) such that uvw ∈ L(X).

This definition does not extend to subwords. For instance, if u = w
arbitrary, then uvu ∈ L(X), but it doesn’t follow that uvuvu ∈ L(X). So to
find periodic sequences in X, we need a stronger property than transitivity.

Definition 1.19. A subshift (X,σ) is called synchronized if it is transi-
tive, and there is a word v ∈ L(X) (called (intrinsically) synchronizing
word7) such that whenever uv, vw ∈ L(X) also uvw ∈ L(X). In other
words, the appearance of v cancels the influence of the past.

7Kitchens in [352] calls it a magic Markov word.
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Theorem 1.20. A synchronized shift (X,σ) has a dense set of periodic
points. If X is not periodic itself, then the entropy htop(X,σ) > 0.

Proof. Let v be a synchronizing word and let x ∈ L(X) be arbitrary. Since
a synchronized X is, by definition, transitive, there are words u,w ∈ L(X)
such that xuv ∈ L(X) and vwx ∈ L(X). Now the infinite periodic word
(xuvw)∞ belongs to X. Since x ∈ L(X) was arbitrary, denseness of periodic
words follows.

Next use transitivity again to find distinct words u, u′, v ∈ L(X) such
that vuv, vu′v ∈ L(X). Let X ′ be the subshift constructed by free concate-
nations of vu and vu′; clearly X ′ is a subshift of X, and htop(X

′, σ) > 0.
More precisely, Theorem 8.71 implies that htop(X

′, σ) = log λ for the positive

solution of the equation λ−(|v|+|u|) + λ−(|v|+|u′|) = 1. Since this λ > n
√
2 for

n = max{|v|+ |u|, |v|+ |u′|}, we get htop(X,σ) ≥ log λ ≥ 1
n
log 2 > 0. �

Example 1.21. The Fibonacci SFT (see Example 1.3) has synchronizing
word 0. In this case, every 1 is preceded and succeeded by a 0. The above
proof gives in this case that (X,σ) is conjugate to the S-gap shift with gap

sizes 1 and 2. Hence htop(X,σ) = log λ where λ−1 + λ−2 = 1, so λ = 1+
√
5

2 .
This is in agreement with Example 1.10.

1.4. Sliding Block Codes

Definition 1.22 (Sliding Block Code). A map π : AZ → ÃZ is called a
sliding block code (also called local rule of window size 2N +1 if there

is a function f : A2N+1 → Ã such that π(x)i = f(xi−N · · ·xi+N ).

In other words, we have a window8 of width 2N +1 put on the sequence
x. If it is centered at position i, then the recoded word y = π(x) will have at
position i the f -image of what is visible in the window. After that we slide
the window to the next position and repeat.

Theorem 1.23 (Curtis–Hedlund–Lyndon9). Let X and Y be subshifts over

finite alphabets A and Ã respectively. A continuous map π : X → Y com-
mutes with the shift (i.e., σ ◦ π = π ◦ σ) if and only if π is a sliding block
code.

If π : X → Y is a homeomorphism, then we call (X,σ) and (Y, σ)
conjugate.

8Sometime the window can have memory and anticipation of different lengths, so the window
would be [−m,n], but calling their maximum N covers all cases.

9Curtis and Lyndon were working for the military at the time, so their work was “classified”,
and the paper was published under Hedlund’s name only, [299].
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Proof. First assume that π is continuous and commutes with the shift. For
each a ∈ Ã, the cylinder [a] = {y ∈ Y : y0 = a} is clopen, so Va := π−1([a]) is
clopen too. Since Va is open, it can be written as the union of cylinders, and
since Va is closed (and hence compact) it can be written as the finite union
of cylinders: Va = ∪ra

i=1Ua,i. Let N be so large that every Ua,i is determined
by the symbols x−N · · ·xN . This makes 2N +1 a sufficient window size and
there is a function f : A2N+1 → Ã such that π(x)0 = f(x−N · · ·xN ). By
shift-invariance, π(x)i = f(xi−N · · ·xi+N ) for all i ∈ Z.

Conversely, assume that π is a sliding block code of window size 2N +1.
Take ε = 2−M > 0 arbitrary, and δ = ε2−N . If d(x, y) < δ, then xi = yi for
|i| ≤ M + N . By the construction of the sliding block code, π(x)i = π(y)i
for all |i| ≤ M . Therefore d(π(x), π(y)) < ε, so π is continuous (in fact
uniformly continuous). �

Exercise 1.24. Give the sliding block code between the Fibonacci SFT and
the even subshift (see Examples 1.3 and 1.4).

Exercise 1.25. If ψ : X → Y is an onto sliding block code which is k-to-one
for some fixed k, show that htop(X,σ) = htop(Y, σ).

Corollary 1.26. If (X,σ) and (Y, σ) are conjugate shifts, then there is N
such that pX(k −N) ≤ pY (k) ≤ pX(k +N) for all k > N .

Proof. Let 2N + 1 be the maximal window size among the sliding block
codes from X to Y and from Y to X. Then every k-word in Y is obtained
from an N + k word in X, so pY (k) ≤ pX(N + k). Replacing the role of X
and Y gives the other inequality. �

Example 1.27. The following substitutions (see Section 4.2) are called the
Chacon substitution and primitive Chacon substitution

(1.3) χchac :

{

0 → 0010

1 → 1
and χChac :











0 → 0021

1 → 021

2 → 21

,

with fixed points

ρchac = 0010 0010 1 0010 0010001010 1 0010 . . .

ρChac = 0021 0021 21 021 0021002121021 . . .

They can be transformed into each other using the sliding block code

f :











00a→ 0

10a→ 1

1 → 0

a ∈ {0, 1} and f−1 :











0 → 0

1 → 0

2 → 1



12 1. First Examples and General Properties of Subshifts

and this extends to the shift orbit closures

Xchac = {σn(ρchac) : n ≥ 0} and XChac = {σn(ρChac)) : n ≥ 0}.
Therefore, these substitution shifts are topologically conjugate, although the
word complexities are different: pXchac

(1) = 2, pXchac
(n) = 2n− 1 for n ≥ 2

and pXChac
(n) = 2n+ 1 for n ≥ 1, see [240].

00

00

01

10

11 11

Figure 1.3. The edge-labeled transition graph of the 2-block even shift.

Each subshift (X,σ) over an alphabet A can be described as an ℓ-block

shift, where the alphabet Ã ⊂ Aℓ are the words in Lℓ(X), and a, b ∈ Ã can
only follow each other if the ℓ− 1-suffix of a coincides with the ℓ− 1-prefix
of b. For instance, if (Xeven, σ) is the even shift, then Ã = {00, 01, 10, 11}
and the edge-labeled transition graph is given in Figure 1.3. Note that for
the coding of paths, we use only the first letters of the codes at the edges.

Taking a block shift generally doesn’t change the nature of the shift (SFTs
remain SFTs, sofic shifts remain sofic, substitution shifts remain substitution
shifts, see Section 6.3.2). Block shifts can be used the shrink the window
size of sliding block codes, see [386, Proposition 1.5.12].

Proposition 1.28. If π is a sliding block code between X and Y of window
size 2N +1, then there is a sliding block code between the 2N +1 block shift
X̃ of X and Y .

Proof. We do the proof for invertible shifts; the one-sided shifts works as
well, but then we cannot allow a memory in the sliding block code, only
anticipation. The letters of the 2N+1-block shift X̃ correspond exactly with
the possible 2N + 1-words on which π is defined. Now define π̃ = σN ◦ π,
where the power of the shift is required to move exactly to the middle of the
window. �

1.5. Word-Frequencies and Shift-Invariant Measures

In addition to the number of words, we can also study the frequency of
words w appearing inside infinite sequences:

(1.4) fw(x) = lim
n→∞

1

n
#{0 ≤ i < n : xi · · ·xi+|w|−1 = w}.
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The question whether the limit exists and to what extent it depends on x is
answered by Birkhoff’s Ergodic Theorem 6.13. For this we need a measure
µ that assigns a number to every cylinder set, according to the rules:

(i) 0 ≤ µ([w]) ≤ 1 for every cylinder [w];

(ii) µ(∅) = 0, µ(X) = 1;

(iii) µ(
⋃

i

[wi]) =
∑

i

µ([wi]) for all disjoint cylinders [w1], [w2], . . .

The Kolmogorov Extension Theorem implies that µ can be defined uniquely
for every set in the σ-algebra B generated by the cylinder sets. Thus, if x ∈ X
is such that fw(x) exists for every w ∈ L(X), then there is a shift-invariant
probability measure µ such that µ([w]) = fw(x) for all w ∈ L(X).

Remark 1.29. The Kolmogorov Extension Theorem (see e.g. [54, Sec-
tion 21.10]) is about extending probability measures µn on finite Carte-
sian products Xn to a measure on the infinite product X∞. That is, if
µn+1(A×X) = µn(A) for every n ∈ N and µn-measurable set A ⊂ Xn, then
there is a unique probability measure µ on Xn such that µ(A×X∞) = µn(A)
for every n ∈ N and µn-measurable set A ⊂ Xn.

This carries over to indicator sets. Linear combinations of sets 1A with
A ⊂ Xn, n ∈ N, lie dense in L1(µ), i.e., for every ψ ∈ L1(µ) and ε > 0
there is N and are finitely many sets Ak ⊂ XN and ak ∈ R such that
∫

X∞ |ψ −
∑

k ak1Ak
| dµ < ε.

Definition 1.30. A measure µ on a subshift (X,σ) is called invariant or
shift-invariant if µ(B) = µ(σ−1B) for all B ∈ B.

A measure is called ergodic if σ−1(A) = A mod µ for some A ∈ B
implies that µ(A) = 0 or µ(Ac) = 0. That is, the only shift-invariant sets
are nullsets or the whole space up to a nullset.

Birkhoff’s Ergodic Theorem 6.13 implies that if µ is an ergodic shift-
invariant probability measure on (X,σ), then for µ-a.e. x ∈ X, fw(x) =
µ([w]) for al w ∈ L(X). However, if fw(x) exists for every w ∈ L(X), the
associated measure need not be ergodic. For example, the sequence

x = 1001110000111110000001111111 · · · 0n1n+1 . . .

is associated to a combination of Dirac measures 1
2(δ0∞ + δ1∞), and this

measure is clearly not ergodic. Regardless of whether µ is ergodic or not, we
call it a generic measure if there is a point x ∈ X that is typical for it,
i.e., fw(x) = µ([w]) for all w ∈ L(X).

Definition 1.31. Let A = {1, 2, . . . , d} and X = AN or Z be the full shift
space. Let p = (p1, . . . , pd) be a probability vector, i.e., pi ≥ 0 and p1+ · · ·+
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pd = 1. The product measure that assigns to every cylinder set

µp([xk · · ·xl]) = pxk
pxk+1

· · · pxl

is called the p-Bernoulli measure. The measure can be extended to the
Borel σ-algebra by means of the Kolmogorov Extension Theorem. Each
p-Bernoulli measure is shift-invariant.

Bernoulli measures10 are a basic tool in probability theory. For example,
encode a sequence of coin-flips by, say, xi = 0 if the i-th gives a “head”, and
xi = 1 if the i-th gives a “tail”. This gives a sequences x ∈ {0, 1}N. If the
coin has a bias, say “head” come up with probability p > 1

2 and “tail” with

probability q = 1− p < 1
2 , then the probability of a word can be computed

by multiplying probabilities, e.g. P(x1x2x3x4 = 0010) = p3q.

Definition 1.32. A subshift (X,σ) is uniquely ergodic if it admits only
one invariant probability measure. If (X,σ) is both uniquely ergodic and
minimal, it is called strictly ergodic. (This should not be confused with
intrinsically ergodic which means that there is a unique measure of max-
imal entropy, see Definition 6.69.)

The full shift is obviously not uniquely ergodic; it has for instance a
Bernoulli measure for every probability vector p. Neither are SFTs, sofic
shifts or β-shifts (which are in fact, intrinsically ergodic). The Thue-Morse
shift on the other hand is uniquely ergodic. Clearly, unique ergodicity implies
intrinsic ergodicity, but not the other way around. It follows from Oxtoby’s
Theorem 6.20 that a recurrent subshift (X,σ) is uniquely ergodic if and only
if fw(x) exists and is the same for every x ∈ X. In this case, the convergence
in the limit (1.4) is uniform in x.

1.6. Symbolic Itineraries

An important use of symbol sequences is as representations of trajectories
of dynamical systems (see Section 2.1 for an introduction into dynamical
systems). It was probably Hadamard who first used this idea in his studies
of geodesic flows [289]. Over 40 years later, Morse & Hedlund’s [412] wrote
the first monograph on symbolic dynamics. If T : X → X is some map on
a topological space, and denote the n-fold compositions by Tn = T ◦ · · · ◦ T
(and T−n is the n-fold composition of T inv if T is invertible). Symbolic
dynamics emerges from the dynamical system (X,T ) by coding the T -orbits
of the points x ∈ X. To this end, for a finite or countable alphabet A, we

10Named after Jacob Bernoulli, one of the mathematicians’ family originating from Basel
who wrote the book “Ars conjectandi”, one of the first book on probability theory.
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α

α 1/β 1/2
0 1

Figure 1.4. A circle rotation Rα(x) = x + α (mod 1), a β-

transformation Tβ(x) = βx (mod 1) and the quadratic map f4(x) =
4x(1− x).

let J = {Ja}a∈A be a partition of X. Then to each x ∈ X we assign an
itinerary i(x) ∈ AN0 :

in(x) = a if Tn(x) ∈ Ja.

If T is invertible, then we can extend sequences to AZ. It is clear that
i ◦T (x) = σ ◦ i(x). Therefore, i(X) is σ-invariant and if T : X → X is onto,
then σ(i(X)) = i(X). In general, however, i(X) is not closed, so we need
to take the closure before it can be called a subshift. Using this subshift,
we can often show the abundance of different trajectories (periodic or with
other properties) of the original system (X,T ).

Example 1.33. X is the closure of the collection of symbolic itineraries of
a circle rotation Rα : S1 → S1 over angle α ∈ [0, 1] \Q, see Figure 1.4 (left).
That is, if y ∈ S1 and n ∈ Z, then

i(y)n =

{

0 if Rn(y) ∈ [0, α),

1 if Rn(y) ∈ [α, 1).

Slightly different coding comes from the partition {(0, α], (α, 1]}, but the
closure of i(S1) is the same for both partition. The resulting shift is called
a Sturmian shift, see Definition 4.60.

Example 1.34. Consider the β-transformation Tβ : [0, 1] → [0, 1], Tβ(x) =

βx mod 1, see Figure 1.4 (middle), and i(x)n = k if Tn
β (x) ∈ [ k

n
, k+1

β
). The

closure of i([0, 1]) is called a β-shift, see Section 3.5.

Example 1.35. Let X = [0, 1] and T (x) = f4(x) = 4x(1−x), see Figure 1.4
(right). Let J0 = [0, 12 ] and J1 = (12 , 1]. Then i(X) is not closed, because
there is no x ∈ [0, 1] such that i(x) = 1100000 . . . , while 1100000 · · · =
limxց 1

2

i(x). Naturally, redefining the partition to J0 = [0, 12) and J1 = [12 , 1]
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doesn’t help, because then there is no x ∈ [0, 1] such that i(x) = 0100000 . . . ,
while 0100000 · · · = limxր 1

2

i(x).

Other “solutions” in the literature are:

• Assigning a different symbol (often ∗ or C) to 1
2 . That is, using the

partition J0 = [0, 12), J∗ = {1
2} and J1 = (12 , 1]. This resolves the

“ambiguity” about which symbol to give to 1
2 , but it doesn’t make

the shift space closed.

• Assigning the two symbols to 1
2 , so J0 = [0, 12 ] and J1 = [12 , 1] are

no longer a partition, but have 1
2 in common. Therefore 1

2 will have
two itineraries, and so will every point in the backward orbit of
1
2 . With all these extra itineraries, i(X) becomes closed. But this
doesn’t work in all cases, see Exercise 1.36.

• Taking a quotient space i(X)/∼ where in this case x ∼ y if there
is n ∈ N0 such that

x0 · · ·xn−1 = y0 · · · yn−1 and

{

xnxn+1xn+2xn+3xn+4 · · · = 11000 . . . ,

ynyn+1yn+2yn+3yn+4 · · · = 01000 . . .

or vice versa. This quotient space adopts the quotient topology (so
i(X)/ ∼ is not a Cantor set anymore), and it turns the coding map
i : [0, 1] → {0, 1}N0/∼ into a genuine homeomorphism.

Exercise 1.36. Let a = 3.83187405528332 . . . and T (x) = fa(x) = ax(1 −
x). For this parameter, T 3(12) = 1

2 . Let J ′ = {[0, 12 ], (12 , 1]} and J =

{[0, 12 ], [12 , 1]}, so 1
2 get two symbols. Let Σ′ = i(X) w.r.t. J ′ and Σ = i(X)

w.r.t. J . Show that Σ′ 6= Σ.

From now on, assume that X is a compact metric space without isolated
points. We will now discuss the properties of the coding map i itself. First of
all, for i to be continuous, it is crucial that T |Ja is continuous on each element
Ja ∈ J . But this is not enough: if x is a common boundary of two element
of J then (no matter how you assign the symbol to x in Example 1.35),
for each neighborhood U ∋ x, diam(i(U)) = 1, so continuity fails at x. It is
only by using quotient spaces of i(X) (so changing the topology of i(X)) that
can make i continuous. Normally, we choose to live with the discontinuity,
because it affects only few points:

Lemma 1.37. Let ∂J denote the collection of common boundary points of
different elements in J . If orb(x) ∩ ∂J = ∅ for all J ∈ J , then the coding
map i : X → AN0 or AZ is continuous at x.

Proof. We carry out the proof for invertible maps. Let ε > 0 be arbitrary
and fix N ∈ N such that 2−N < ε. For each n ∈ Z with |n| ≤ N , let
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Un ∋ Tn(x) be such a small neighborhood that it is contained in a single
partition element Jin(x). Since orb(x) ∩ ∂J = ∅, this is possible. Then

U :=
⋂

|n|≤N T−n(Un) is an open neighborhood of x and in(y) = in(x) for

all |n| ≤ N and y ∈ U . Therefore diam(i(U)) ≤ 2−N < ε, and continuity at
x follows. �

Definition 1.38. A transformation T : X → X of a metric space (X, d) is
called expansive if there exists δ > 0 such that for all distinct x, y ∈ X,
there is n ≥ 0 (or n ∈ Z if T is invertible) such that d(Tn(x), Tn(y)) > δ.
We call δ the expansivity constant.

Every subshift (X,σ) is expansive. Indeed, if x 6= y, then there is n ∈ Z

such that xn 6= yn, so d(σn(x), σn(y)) = 1. This makes every δ ∈ (0, 1) an
expansivity constant.

Lemma 1.39. Suppose that T is a continuous expansive map and injective
on each Ja ∈ J . If the expansivity constant δ > supa∈A diam(Ja), then the
coding map i : X → AN0 or Z is injective.

Proof. Suppose that there are x 6= y ∈ X such that i(x) = i(y). Since T |Ja
is injective for each a ∈ A, Tn(x) 6= Tn(y) for all n ≥ 0. Thus, there is
n ∈ Z such that d(Tn(x), Tn(y)) > δ, so, by assumption, they cannot lie in
the same element of J . Hence x and y cannot have the same itinerary after
all. �

To obtain injectivity of the coding map, it often suffices that T is ex-
panding on each partition element Ja. Expanding (and expansion) should
not be confused with expansive (and expansivity) of Definition 1.38.

Definition 1.40. Let T : X → Y be a map between metric spaces. We call
T expanding if there is ρ > 1 such that dY (T (x), T (y)) ≥ ρdX(x, y) for
all x, y ∈ X and locally expanding there are ε > 0 and ρ > 1 such that
d(T (x), T (y)) ≥ ρd(x, y) for all x, y ∈ Y with d(x, y) < ε.

Proposition 1.41 (Gottschalk & Hedlund [278]). Let T : X → X be a
homeomorphism on a compact metric space. If T is locally expanding, then
X is finite.

Proof. Let ε > 0 and ρ > 1 be as in Definition 1.40. Since T−1 is con-
tinuous and X is compact, there is a uniform δ > 0 such that d(x, y) < δ
implies d(T−1(x), T−1(y)) < ε. Let {Ui}Ni=1 be a finite open cover of X
such that diam(Ui) < δ. Then {T−1(Ui)}Ni=1 is an open cover of X, and
diamT−1(Ui) < ε, so by local expansion, diamT−1(Ui) < diam(Ui)/ρ ≤ δ/ρ.
Repeating this argument, we find that {T−n(Ui)}Ni=1 is a finite open cover
of X with diam(T−n(Ui)) < δρ−n. Since n is arbitrary, #X ≤ N . �
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Example 1.42. If X = Y is compact, then it carries no expanding map
(non-compact examples exist, e.g. T : R → R, x 7→ 2x). Local expanding-
ness is less restrictive:

Let T : S1 → S1, x 7→ 2x mod 1, be the doubling map, and J0 = (14 ,
3
4)

and J1 = S1 \J0. Clearly T ′(x) = 2 for all x ∈ S1, but T is not expanding on
the whole of S1, because for instance d(T (14), T (

3
4)) = 0 < 1

2 = d(14 ,
3
4). More

importantly, T is not expanding on J0 or J1 either; for example d(T (14 +

ε), T (34 − ε)) = 4ε < 1
2 − 2ε = d(14 + ε, 34 − ε) for each ε ∈ (0, 1

12). The
corresponding coding map is not injective. The way to see this by noting
that the involution S(x) = 1 − x commutes with T and also preserves each
Ja. It follows that i(x) = i(S(x)) for all x ∈ S1, and only x = 0 and x = 1

2
have unique itineraries.

In fact, if Jb
0 = (b, b + 1

2) and Jb
1 = S1 \ Jb

0 for b ∈ [0, 12), then i(x) =

i(S(x)) whenever orb(x) avoids the symmetric difference Jb
0△S(Jb

0) = (b, 12−
b)∪ (b+ 1

2 , 1− b). If b > 1
5 +

1
17 , then there is a Cantor set a points for which

i(x) = i(S(x)).

Also if x 6= S(y), this still doesn’t guarantee that i(x) 6= i(y) for the
itinerary map i w.r.t {Jb

0 , J
b
1}. The reason for this is that the quotient space

S1/ ∼ for x ∼ y if i(x) = i(y) is a topological “pinched disk” model for
the Julia set Jc of fc : z 7→ z2 + c for some specific c, namely the landing
point of the external parameter ray with angle 2b, see [120,344,438] and
also Section 3.6.5, in particular Figure 3.15 for an illustration of this pinched
disk model. Injectivity of i is equivalent to S/∼ being a topological circle,
which means that Jc is the boundary of a Siegel disk. This happens if c lies
on the main cardioid of the Mandelbrot set.


