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Most of the subshifts of positive entropy are symbolic version of positive
entropy dynamical systems of manifolds, for example dynamical system pos-
sessing a Markov partition, β-transformations or unimodal interval maps.
Symbolically these correspond to β-shifts, kneading theory and subshifts of
finite type (SFT) respectively, and the entropy is given by the exponential
growth-rate of periodic points. We discuss also some subshifts that are not in
first instance symbolic versions of other dynamical systems, such as density
shifts, coded shifts, gap shifts and spacing shifts, and in some cases (such as
power-free shift), the entropy is not related to periodic sequences at all.

3.1. Subshifts of Finite Type

Subshifts of finite type are the simplest and most frequently used subshifts
in applications. They emerge naturally in hyperbolic dynamical systems
such as toral automorphisms, Markov partitions of Anosov diffeomorphisms,
Axiom A attractors (including Smale’s horseshoe), but also in topological
Markov chains.

3.1.1. Definition of SFTs and Transition Matrices and Graphs.

Definition 3.1. A subshift of finite type (SFT) is a subshift consisting
of all strings avoiding a finite list of forbidden words as subwords.

For example, the Fibonacci SFT has 11 as forbidden word. Naturally,
then also 110 and 111 are forbidden, but we take only the smallest collection
of forbidden words. If M + 1 is the length of the longest forbidden word,
then this SFT is an M-step SFT, or an SFT with memory M . Indeed,
an M -step SFT has the property that if uv ∈ L(X) and vw ∈ L(X), and
|v| ≥ M , then uvw ∈ L(X) as well. The following property is therefore
immediate:

Lemma 3.2. Every irreducible SFT is synchronized; in fact, every word of
length M (the memory of the SFT) is synchronizing.

Lemma 3.3. Every SFT (X,σ) on a finite alphabet can be recoded such that
the list of forbidden words consists of 2-words only.

Proof. Assume that (X,σ) is a subshift over the alphabet A and the longest

forbidden word has length M + 1 ≥ 2. Take a new alphabet Ã = AM ,
say a1, . . . , an are its letters. Recode every x ∈ X using a sliding block
code π, where for each index i, π(x)i = aj if aj is the symbol used for
xixi+1 . . . xi+M−1. Effectively, this is replacing X by its M -block code. Then
every M +1-word is uniquely coded by a 2-word in the new alphabet Ã, and
vice versa, every a1a2 such that the M -suffix of π−1(a1) equals the M -prefix
of π−1(a2) encodes a unique M + 1-word in A∗. Now we forbid a 2-word
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a1a2 in Ã2 if π−1(a1a2) contains a forbidden word of X. Since B is finite,
and therefore A is finite, this leads to a finite list of forbidden 2-words in the
recoded subshift. �

Example 3.4. Let X be the SFT with forbidden words 11 and 101, so
M = 2. We recode using the alphabet a = 00, b = 01, c = 10 and d = 11.
Draw the vertex-labeled transition graph, see Figure 3.1; labels at the arrows
indicate with word in {0, 1}3 they stand for. For example, the edge a → b
labeled 001 has prefix a = 00 and suffix b = 01. Each arrow containing a
forbidden word is dashed, and then removed in the right panel of Figure 3.1.
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Figure 3.1. The recoding of the SFT with forbidden words 11 and 101.

Corollary 3.5. Every SFT (X,σ) on a finite alphabet A can be represented
by a finite graph G with vertices labeled by the letters in A and arrows
b1 → b2 only if π−1(b1b2) contains no forbidden word of X.

Definition 3.6. The directed graph G constructed in the previous corollary
is called the transition graph of the SFT. The matrix A = (aij)i,j∈A with
ai,j = #{arrows i→ j in G} is its transition matrix. The graph is vertex-
labeled, which means that each vertex is assigned symbol in the alphabet.
We will stipulate throughout this book that the vertex-labels are unique (i.e.,
no two distinct vertices have the same label), although this assumption is
not entirely uniform in the literature.

Example 3.7. Let T : [0, 1] → [0, 1] be the piecewise monotone map,
i.e., there is a finite partition {Ji}i∈A of [0, 1] into intervals such that T |Ji
is continuous and monotone for each i. Assume also that for each i, T (Ji)
is the closure of the union of Jk’s. In this case we call {Ji}i∈A a Markov
partition. Write

aij =

{

1 if T (Ji) ⊃ J◦
j ,

0 if T (Ji) ∩ J◦
j = ∅.

Then the resulting matrix A = (ai,j)i,j∈A is the transition matrix for the
subshift obtained by taking the closure of the collection of itineraries {i(x) :
x ∈ [0, 1]}. This yields a one-sided shift.
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J1 J2

T (x) =







γ(x+ 2−γ
γ ) if x ∈ J1 := [0, γ−1

γ ],

γ(1− x) if x ∈ J2 := [γ−1
γ , 1],

γ =
√
5+1
2

Figure 3.2. The tent map with slope equal to the golden mean

The example in Figure 3.2 produces the transition matrix A =
(
0 1
1 1

)
, so

the corresponding subshift is the Fibonacci SFT, see Example 1.3. It should
not come as a surprise that the leading eigenvalue of A is exactly the slope
of T : both equal to ehtop(T ) = ehtop(σ) = γ, see Section 3.1.2.

For the bi-infinite Fibonacci SFT, we can look at a toral automorphism.

Definition 3.8. A toral automorphism T : Td → Td is an invertible
linear map on the (d-dimensional) torus Td. Each such T is of the form
TM (x) =Mx mod 1, where

• M is an integer matrix with det(M) = ±1 (i.e., M is unimodular);

• the eigenvalues of M are not on the unit circle; this property is
called hyperbolicity; for toral automorphisms, this is equivalent
to Td being a hyperbolic set in terms of Definition 2.79.

The map TM has a Markov partition1, that is a partition {Ji}i∈A for
sets such that

(1) The Ji have disjoint interiors and ∪iJi = Td;

(2) If TM (J◦
i )∩J◦

j 6= ∅, then TM (Ji) stretches across J◦
j in the unstable

direction (i.e., the direction spanned by the unstable eigenspaces of
M).

(3) If T−1
A (J◦

i )∩J◦
j 6= ∅, then T−1

A (Ji) stretches across J◦
j in the stable

direction (i.e., the direction spanned by the stable eigenspaces of
M).

Every hyperbolic toral automorphism has a Markov partition, see [96],
but in general they are fiendishly difficult to find explicitly, especially in
dimension ≥ 3 where the boundaries of the Ji might have to be fractal, see
[100]. Therefore we confine ourselves to the simpler case of M =

(
1 1
1 0

)
; it

1The construction of Markov partitions for toral automorphisms on T2 goes back to Berg
[56] and Adler & Weiss [10], extended to more general settings in [95,96,255,496] among others.
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Figure 3.3. The Markov partition for TM : T2
→ T2; the catmap is T 2

M .

has Markov partition of three rectangles Ji for i = 1, 2, 3 can be constructed,
see Figure 3.3. The corresponding transition matrix is

A = (ai,j) =





0 1 1
1 0 1
0 1 0



 where aij =

{

1 if TM (J◦
i ) ∩ Jj 6= ∅,

0 if TM (J◦
i ) ∩ Jj = ∅.

The characteristic polynomial of A is

det(A− λI) = −λ3 + 2λ+ 1

= −(λ+ 1)(λ2 − λ− 1) = −(λ+ 1) det(M − λI).

so A has the eigenvalues of M (no coincidence!), together with λ = −1.

Example 3.9. The most “famous” toral automorphism is Arnol’d’s catmap,

and it has the matrix
(
2 1
1 1

)
=
(
1 1
1 0

)2
, see Figure 3.3 (right). It is called

catmap because Arnol’d used this example, including the drawing of a cat’s
head, in his book(s) [29] to illustrate the nature of hyperbolic maps.

Exercise 3.10. Show that if x ∈ Td has only rational coordinates, then
x is periodic under a toral automorphism. Conclude that, if the pixels in
Figure 3.3 have rational coordinates (such as the dyadic coordinates that
computers use), then the cat will return intact after a finite number of iter-
ates.

The following characterization for shadowing subshifts is due to Walters
[532] (see also [369, Theorem 3.33]).

Theorem 3.11. A subshift (X,σ) has the shadowing property if and only if
it is a subshift of finite type.

Proof. We give the proof for X ⊂ AN0 only; the two-sided case follows in a
similar way.
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⇐: Let (X,σ) be an SFT of memory M (see below Definition 3.1) so M +1
is the length of the longest forbidden word. Let ε > 0 be arbitrary and
choose m ≥M +1 so small that 2−m < ε. Take δ = 22−m. We need to show
that every δ-pseudo-orbit (xn)n≥0 ⊂ X, that is,

σ(xn)0 . . . σ(x
n)m−3 = xn1 . . . x

n
m−2 = xn+1

0 . . . xn+1
m−3

for every n, there is y ∈ X that ε-shadows (xn)n≥0. To this end, set yn = xn0
for each n ≥ 0. Then for 0 ≤ i < m, we have

yn+i = xn+i
0 = xn+i−1

1 = xn+i−2
2 = · · · = xni ,

so yn . . . yn+m−1 = xn0 . . . x
n
m−1 ∈ L(X). Since X is an SFT, y ∈ X and

d(σn(y), xn) < ε by construction.

⇒: Let (X,σ) be a subshift with the shadowing property, so in particular, for
ε = 1, there exists δ > 0 such that every δ-pseudo-orbit in X is ε-shadowed
in X. Take N ∈ N such that 22−N < δ, and let y ∈ AN0 be such that
yn . . . yn+N−1 ∈ L(X) for each n. Then there exists a sequence (xn)n≥0 such
that xn0 . . . x

n
N−1 = yn . . . yn+N−1 for each n ≥ 0. Therefore

σ(xn)0 . . . σ(x
n)N−2 = xn1 . . . x

n
N−1 = yn+1 . . . yn+N−1 = xn+1

0 . . . xn+1
N−2

and d(σ(xn), xn+1) ≤ 2−N+2 < δ. Hence (xn)n≥0 is a δ-pseudo-orbit, which
can be ε-shadowed by some z ∈ X. But then zn = xn0 = yn for every n ≥ 0,
so z = y ∈ X. Since y was arbitrary, up to the condition that each of its
N -blocks belongs to L(X), it follows that the only restriction of X involves
forbidden blocks of length ≤ N . Therefore X is an SFT. �

3.1.2. Topological Entropy of SFTs.

Definition 3.12. A non-negative N × N matrix A = (aij)i,j∈A is called

irreducible if for every i, j ∈ A there is k such that Ak has (i, j)-entry

a
(k)
ij > 0. For index i, set per(i) = gcd(k > 1 : a

(k)
ii > 0). If A is irreducible,

then per(i) is the same for every i, and we call it the period of A. We call
A aperiodic if its period is 1. The matrix is called primitive if there is

k ∈ N such that a
(k)
ij > 0 for all i, j ∈ A.

Exercise 3.13. Show that if A is aperiodic and irreducible, then A is prim-
itive, but irreducibility or aperiodicity alone doesn’t imply primitivity. Con-
versely, if A is primitive, then it is also aperiodic and irreducible. If A is
irreducible, show that per(i) is indeed independent of i.

Theorem 3.14. The topological entropy of an irreducible SFT equals log λ
where λ is the leading eigenvalue of the transition matrix.

Proof. Let An = (a
(n)
ij )i,j∈A be the n-th power of the transition matrix

A. Every word in Ln(X) corresponds to an n-path in the transition graph,
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and the number of n-paths from i to j is given by p
(n)
ij . From the Perron-

Frobenius Theorem 8.57 we can derive that there is C > 0 such that for all
n ∈ N there are i, j ∈ A such that

(3.1) C−1λn ≤ a
(n)
ij ≤ Cλn.

It follows that C−1λn ≤ p(n) ≤ (#A)2Cλn and limn
1
n log p(n) = log λ.

If A is periodic (so with the irreducibility assumption already made, A is
primitive), then (3.1) holds for every i, j ∈ A. Also λ > 1 unless A = (1). �

Proposition 3.15. If (Y, σ) is a factor of (X,σ), then htop(Y, σ) ≤ htop(X,σ).
If (X,σ) and (Y, σ) are conjugate, then htop(X,σ) = htop(Y, σ).

The result also holds in general, i.e., not just in the context of subshifts,
see Corollary 2.51, but using the word-complexity and sliding block codes,
the proof is particularly straightforward here.

Proof. Let ψ : X → Y be the factor map. Since it is continuous, it is a
sliding block code by Theorem 1.23, say of window length 2N +1. Therefore
the word complexities relate as pY (n) ≤ pX(n+ 2N), and hence

lim sup
n→∞

1

n
log pY (n) ≤ lim sup

n→∞

1

n
log pX(n+ 2N)

= lim sup
n→∞

n+ 2N

n

1

n+ 2N
log pX(n+ 2N)

= lim sup
n→∞

1

n+ 2N
log pX(n+ 2N).

This proves the first statement. Using this in both directions, we find
htop(X,σ) = htop(Y, σ). �

As shown by Parry [432], see Theorem 6.66, irreducible SFTs are intrin-
sically ergodic. This follows also from Theorem 3.48 and Proposition 3.41.
Weiss [536] showed that factors of irreducible SFTs are intrinsically ergodic
as well.

3.1.3. Vertex-Splitting and Conjugacies between SFTs: It is natural
to ask which SFTs are conjugate to each other. We have seen that having
equal topological entropy is a necessary condition for this, but it is not
sufficient. The conjugacy problem for SFTs was solved by Williams and in
this section we discuss the ingredients required for this result. Complete
details can be found in [352,386].

We know that an SFT (X,σ) has a graph representation (as vertex-
labeled subshift or edge-labeled subshift, and certainly not unique). The
following operation on the graph G, called vertex splitting, produces a
related subshift.
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v′v2

v′′v1

v′v
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v′v2

v′′v1

Figure 3.4. Insplit graph Original G Outsplit graph

Let G = (V,E) where V is the vertex set and E the edge set. For each
v ∈ V , let Ev ⊂ E be the set of edges starting in v and Ev ⊂ E be the set
of edges terminating in v.

Definition 3.16. Let G = (V,E), and assume that #Ev ≥ 2. An elemen-

tary insplit graph Ĝ = (V̂ , Ê) is obtained by

• doubling one vertex v ∈ V into two vertices v1, v2 ∈ V̂ ;

• replacing each e = (v → w) ∈ Ev for w 6= v by an edge ê1 = (v1 →
w) and ê2 = (v2 → w);

• replacing each e = (w → v) ∈ Ev for w 6= v by a single edge
ê1 = (w → v1) or an edge ê2 = (w → v2) (but make sure that v1
and v2 both have incoming edges);

• replacing each loop (v → v) by two edges (v1 → vi), (v2 → vi) ∈ Ê
(so one of them is a loop) where i ∈ {1, 2}.

An insplit graph is then obtained by successive elementary insplits.

(Elementary) outsplit graphs are defined similarly, interchanging the
roles of Ev and Ev.

Definition 3.17. Let G = (V,E), and assume that #Ev ≥ 2. An elemen-

tary outsplit graph Ĝ = (V̂ , Ê) is obtained by

• doubling one vertex v ∈ V into two vertices v1, v2 ∈ V̂ ;

• replacing each e = (v → w) ∈ Ev for w 6= v by a single edge
ê = (v1 → w) or ê = (v2 → w) (but make sure that v1 and v2 both
have outgoing edges);

• replacing each e = (w → v) ∈ Ev for w 6= v by an edge ê = (w →
v1) and an edge ê = (w → v2);

• replacing each loop (v → v) by two edges (vi → v1), (vi → v2) ∈ Ê
(so one of them is a loop) where i ∈ {1, 2}.

An outsplit graph is then obtained by successive elementary outsplits.
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If every e ∈ E had a unique label, then we will also give each ê ∈ Ê a
unique label.

Proposition 3.18. Let Ĝ be an in- or outsplit graph obtained from G. Then
the edge-labeled subshift X̂ of Ĝ and the edge-labeled subshift X of G are
mutually semi-conjugate to each other.

Proof. We give the proof for an elementary outsplit Ĝ; the general outsplit
and (elementary) insplit graph follow similarly. By Theorem 1.23, it suffices

to give sliding block code representations for π : X̂ → X and π̂ : X → X̂.

• The factor map π : X̂ → X is simple. If ê ∈ Ê replaces e ∈ E, then
f(ê) = e and π(x)i = f(xi).

• Each 2-word ee′ ∈ L(X) uniquely determines the first edge ê of

the 2-path in Ĝ that replaces the 2-path in G coded by ee′. Set
f̂(e, e′) = ê and π̂(x)i = f̂(xi, xi+1).

This concludes the proof. In general, mutual semi-conjugacy is not enough
to conclude conjugacy (it is not given that π̂ = π−1), but in this situation,
conjugacy holds, see Theorem 3.24. �

Now let Ĝ = (V̂ , Ê) be an outsplit graph of G = (V,E) with transition

matrices Â and A respectively. Assume that N̂ = #V̂ and N = #V . Then
there is an N × N̂ -matrix D = (dv,v̂)v∈V,v̂∈V̂ where dv,v̂ = 1 if v̂ replaces v.

(Thus D is a sort of rectangular diagonal matrix.)

There also is an N̂×N -matrix C = (cv̂,v)v̂∈V̂ ,v∈V where cv̂,v is the number

of edges e ∈ Ev that replace an edge ê ∈ Êv̂.

Proposition 3.19. With the above notation,

DC = A and CD = Â.

Sketch of proof. Prove it first for an elementary outsplit, and then com-
pose elementary outsplits to a general outsplit. For the first step, we compute
the elementary outsplit for the example of Figure 3.4.

A =





1 1 1
0 1 1
1 0 0



 and Â =







0 0 0 1
1 1 1 0
0 0 1 1
1 1 0 0






.

Also

D =





1 1 0 0
0 0 1 0
0 0 0 1



 and C =







0 0 1
1 1 0
0 1 1
1 0 0






.

Matrix multiplications confirms that DC = A and CD = Â. �
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Exercise 3.20. Do the same for the elementary insplit graph in the example
of Figure 3.4.

Definition 3.21. Two matrices A and Â are strongly shift equivalent
(of lag ℓ) (denoted as A ≈ Â) if there are (rectangular) matrices Di, Ci and
Ai, 1 ≤ i ≤ ℓ over N0 such that

(3.2) A = A0, Ai−1 = DiCi, CiDi = Ai, i = 1, . . . , ℓ, Aℓ = Â.

Remark 3.22. One important restriction of this definition is that the con-
jugating matrices must have non-negative integer entries. Even if a square
matrix has determinant ±1, its inverse may still have negative integers among
its entries. For example

A =

(
4 1
1 0

)

and Â =

(
3 2
2 1

)

are similar via
(
1 1
1 −1

)
A = Â

(
1 1
1 −1

)
. From this, we can easily compute that

the traces tr(An) = tr(Ân) for all n ∈ Z, so A and Â share ζ-functions

ζA(t) := exp(
∑∞

n=0 tr(A
n)). However, A and Â are not (strongly) shift

equivalent. This is Williams’ [539, Example 3] counter-example to Bowen’s
question whether sharing ζ-functions for SFTs suffices to conclude conjugacy.

Exercise 3.23. Show that strong shift equivalence ≈ is indeed an equiv-
alence relation between nonnegative square matrices. Show that A ≈ Â
implies that A and Â have the same leading eigenvalue λ = λ̂.

Strongly shift equivalence between matrices A and Â means, in effect,
that their associated graphs G and Ĝ can be transformed into each other by a
sequence of elementary vertex-splittings and their inverses (vertex-mergers).
Conjugacy between SFTs can always be reduced to vertex-splittings and
vertex-mergers, as shown in Williams’ Theorem [539] from 1973. The full
proof is in [352, Chapter 2] and [386, Chapter 7, specifically Theorem 7.2.7].

Theorem 3.24. Two SFTs are conjugate if and only if their transition ma-
trices are strongly shift equivalent.

Strong shift equivalence A ≈ Â may be a complete invariant for conju-
gacy between edge-labeled SFTs XA and XÂ. In practice it is difficult to

check if A ≈ Â. Even if A and Â have the same characteristic polynomial,
they need not be strongly shift equivalent. The following weaker notion may
help:

Definition 3.25. Two matrices A and Â are shift equivalent (of lag ℓ)

(denoted as A ∼ℓ Â) if there are matrices C,D over N0 such that

(3.3) Aℓ = CD, Âℓ = DC and AC = CÂ, ÂD = DA.

Said differently, the following diagram commutes:
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Zn Zn Zn
A

Zn
Aℓ−1 A

Zn̂ Zn̂ Zn̂
Â Âℓ

CD CD D

Shift equivalence means that the ℓ-th powers Aℓ and Âℓ are strong shift
equivalent (with lag 1). Shift equivalence is easier to verify than strong shift
equivalence, although verification can still be very complicated. But, and
this is Williams’ Conjecture, it is still not fully2 known if it is a complete
invariant, see [386, Section 7.3] and [102, Problem 19.1]. If A 6∼ Â, then XA

and XÂ cannot be conjugate, but if A ∼ Â, this is insufficient to conclude
that (XA, σ) and (XÂ, σ) are conjugate.

Exercise 3.26. Show that (i) A ∼ℓ Â implies A ∼k Â for all k ≥ ℓ, (ii)
shift equivalence ≈ is an equivalence relation between nonnegative square
matrices, and (iii) strong shift equivalence implies shift equivalence, with
the same value of ℓ.

Shift equivalence matrices have the same ζ-function, and many other
properties coincide too.

Lemma 3.27. If A and Â are shift equivalent (of lag ℓ), then they have the
same nonzero eigenvalues (so also htop(XA, σ) = htop(XÂ, σ)).

Proof. We have AnC = CÂn and DAn = ÂnD for all n ≥ 0. By linearity,
q(A) · C = C · q(Â) and D · q(Â) = q(A)D for every polynomial. If q
is the characteristic polynomial of A (so q(A) = 0 by the Cayley-Hamilton

Theorem), then 0 = D ·q(A) ·C = Âℓ ·q(Â). Thus Â has no other eigenvalues
that those of A, possibly plus 0. On the other hand, if q is the characteristic
polynomial of Â, then 0 = C · q(Â) ·D = q(A) ·Aℓ, so A has the eigenvalues

of Â, with the possible exception of 0.

Since htop(XA, σ) = log λA for the leading eigenvalue λA of A, the en-
tropies are the same too. �

In order to say what can be proved with shift equivalence, we define SFTs
(XA, σ) and (XÂ, σ) to be eventually conjugate if the n-block shifts are
conjugate for all sufficiently large n. Then, see [386, Theorem 7.5.15]:

2Kim & Roush [351] gave a negative answer, but only for reducible matrices.
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Theorem 3.28. Two SFTs (XA, σ) and (XÂ, σ) are eventually conjugate if

and only if A and Â are shift equivalent.

There remain many open (classification) problems in SFT, as well as in
sofic and other subshifts. The survey of Boyle [102] contains a long list of
open problems, many of which remain open to today.

3.2. Sofic Shifts

Sofic shifts are shifts that can be described by finite of edge-labeled (rather
than vertex-labeled as needed for SFT) transition graphs. The word sofic
was coined by Benji Weiss; it comes from the Hebrew word for “finite”. Much
of this section can be found in concise form in [352, Section 6.1].

Definition 3.29. A subshift (X,σ) is called sofic if it is the space of paths
in an edge-labeled graph. Other than with the vertex-labeling, in this edge-
labeling, more than one edge is allowed to have the same symbol.

Lemma 3.30. Every SFT is sofic.

Proof. Assume that the SFT has memory M . Let G be the vertex-labeled
M -block transition graph of the SFT i.e., each a1 . . . aM ∈ LM (X) is the
label of a unique vertex. We have an edge a1 . . . aM → b1 . . . bM if and
only if a1 . . . aMbM = a1b1 . . . bM ∈ LM+1(X), and then this M + 1-word
is also the label of the edge. Since each infinite vertex-labeled path is in
one-to-one correspondence with an infinite edge-labeled path is in one-to-
one correspondence with an infinite word in X, we have represented X as a
sofic shift. �

Remark 3.31. Not every sofic shift is an SFT. For example the even shift
(Example 1.4) has an infinite collection of forbidden words, but it cannot be
described by a finite collection of forbidden words. Sofic shifts that are not
of finite type are called strictly sofic.

The following theorem shows that we can equally define the sofic subshifts
as those that are a factor of a subshift of finite type.

Theorem 3.32. A subshift X is generated by an edge-labeled graph if and
only if it is the factor of an SFT.

Proof. ⇒: Let G be the edge-labeled graph of X, with edges labeled in
alphabet A. Relabel G in a new alphabet A′ such that every edge has a
distinct label. Call the new edge-labeled graph G′. Due to the injective
edge-labeling, the edge-subshift X ′ generated by G′ is isomorphic to an SFT.
For this, we can take the dual graph in which the edges of G′ are the vertices,
and a → b if an only if a labels the incoming edge and b the outgoing edge
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of the same vertex in G′. Now π : X ′ → X is given by π(x)i = a if a is
the label in G of the same edge that is labeled xi in G′. This π is clearly a
sliding block code, so by Theorem 1.23, π is continuous and commutes with
the shift.

⇐: If X is a factor of an SFT , then the factor map is a sliding block code
by Theorem 1.23, say of window size 2N + 1: π(x)i = f(xi−N , . . . , xi+N ).
Represent the SFT by an edge-labeled graph G′ where the labels are the
2N + 1-words w ∈ L2N+1(X). These are all distinct. The factor map turns
G′ into an edge-labeled graph G with labels f(w). Therefore X is sofic. �

Corollary 3.33. Every factor of a sofic shift is again a sofic shift. Every
shift conjugate to a sofic shift is again sofic.

In fact, a sofic shift with an irreducible transition matrix are always
transitive, has a dense set of periodic points, and is mixing if and only if it
is totally transitive, see [45, Theorem 3.3].

3.2.1. Follower sets. A further characterizations of sofic shifts relies on
the following notion.

Definition 3.34. Given a subshift X and a word v ∈ L(X), the follower
set F(v) is the collection of words w ∈ L(X) such that vw ∈ L(X).

Example 3.35. Let Xeven be the even shift from Example 1.4. Then F(0) =
L(Xeven) because a 0 casts no restrictions on the follower set. Also F(011) =
L(Xeven), but F(01) = 1L(X) = {1w : w ∈ L(X)}. Although each follower
set is infinite, there are only these two distinct follower sets. Indeed, F(v0) =
F(0) for every v ∈ L(X), and F(v0111) = F(v01), F(v01111) = F(v011),
etc. The follower set F(1) is not properly defined, but we can ignore this.

The following theorem, appearing in [536], is in fact a consequence of
the Myhill-Nerode Theorem [415,417].

Theorem 3.36. A subshift (X,σ) is sofic if and only if the collection of its
follower sets is finite.

Proof. First assume that the collection V = {F(v) : v ∈ L(X)} is finite.
We will build an edge-labeled graph representation G of X as follows:

(1) Let V be the vertices of G.

(2) If a ∈ A and w ∈ L(X), then F(wa) ∈ V ; draw an edge F(w) →
F(wa), and label it with the symbol a. (Although there are infin-
itely many w ∈ L(X), there are only finitely many follower sets,
and we need not repeat arrows between the same vertices with the
same label.)
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The resulting edge-labeled graph G represents X.

Conversely, assume that X is sofic, with edge-labeled graph representa-
tion G. For every w ∈ L(X), consider the collection of paths in G representing
w, and let T (w) be the collection of terminal vertices of these paths. Then
F(w) is the collection of infinite paths starting at a vertex in T (w). Since
G is finite, and there are only finitely many subsets of its vertex set, the
collection of follower sets is finite. �

Definition 3.37. An edge-labeled transition graph G is right-resolving if
for each vertex v ∈ G, the outgoing arrows all have different labels. It is
called follower-separated if for each vertex v ∈ G, the follower set (i.e.,
the set of labeled words associated to paths starting in v) is different from
the follower set of every other vertex.

Every sofic shift has a right-resolving follower-separated graph represen-
tation and if we minimize the number of vertices in such graph, there is only
one such graph with these properties. In fact, the follower set representation
G constructed in the first half of the proof of Theorem 3.36 is both right-
resolving, follower-separated and of smallest size. The latter two properties
follow by the choice of V . To see the former, assume that v ∈ V and v → w
and v → w′ have the same label a. This implies that

F(w) = {x : ax ∈ F(v)} = F(w′),

so w = w′.

Corollary 3.38. Every transitive sofic shift X is synchronized, and (unless
it is a single periodic orbit) has positive entropy. In fact, htop(X) = log λA,
where λA is the leading eigenvalue of the transition graph of the minimal
right-resolving representation of X.

Proof. Let edge-labeled graph G be the right-resolving follower-separated
representation of X. Pick any word u ∈ L(X) and let T (u) be the collection
of terminal vertices of paths in G representing u. If T (u) consists of one
vertex v ∈ V , then every paths containing u goes through v, and there is a
unique follower set F(u), namely the collection of words representing paths
starting in v. In particular, u is a synchronizing word.

If #T (u) > 1, then we show that we can extend u to the right so that
it becomes a synchronizing word. Suppose that v 6= v′ ∈ T (u). Since G is
follower-separated, there is u1 ∈ L(X) such that u1 ∈ F(v) but u1 /∈ F(v′)
(or vice versa, the argument is the same). Extend u to uu1. Because G is
right-resolving, u1 can only represent a single path starting at any single
vertex. Therefore #T (uu1) ≤ #T (u). But since u1 /∈ F(v′), we have in
fact #T (uu1) < #T (u). Continue this way, extending uu1 until eventually
#T (uu1 . . . uN ) = 1. Then uu1 . . . uN is synchronizing. (In fact, what we
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proved here is that every u ∈ L(X) can be extended on the right to a
synchronizing word.)

The positive entropy follows from Theorem 1.20 or Corollary 3.47. In
fact, since G is right-resolving, there is an at most #V -to-one correspondence
between n-paths starting in G and words in Ln(X). Therefore #{n-paths} ≤
pX(n) ≤ #V ·#{n-paths}, and we can use Theorem 3.14. �

Remark 3.39. Irreducible sofic shifts are intrinsically ergodic, see [536] and
Theorem 3.48.

3.3. Coded Subshifts

Rather than forbid words to appear, as one does in SFTs, we can prescribe
which words need to be used, and then these words can be concatenated
freely. This type of subshift was first described by Blanchard & Hansel [80].

Definition 3.40. A coded subshift (XC , σ) is the closure of the collection
of free concatenations of a finite or countable collection C.

Of course, this doesn’t mean that concatenations of words in C are the
only words in the language L(X). For example, if C = {10, 01}, then 00 ∈
L(X) \ C∗.

Proposition 3.41. Every transitive SFT is a coded shift.

For example, the Fibonacci SFT of Example 1.3 and the even shift of
Example 1.4 are both coded subshift, with sets of code words C = {0, 01}
and C = {0, 01}, respectively. On the other hand, the SFT (XA, σ) on the

alphabet {0, 1} with transition matrix A =

(
1 1
0 1

)

is not transitive, and

also not a coded shift, because no code word containing 01 can every be
used twice in a concatenation.

Proof. Rewrite the SFT to an SFT with memory M = 1, i.e., all forbidden
words have length ≤ 2. Let G be the transition graph; since the SFT is
transitive, G is strongly connected. Fix vertices a, b such that the arrow a→ b
occurs in G. Now let S contain the codes of all finite paths b → · · · → a;
these can be freely concatenated. �

Remark 3.42. Naturally, the set C of codes may not be the most economical,
but the idea of the proof of Proposition 3.41 is quite general. It can also be
used to show that sofic and synchronized subshifts are coded. Therefore we
have the inclusion.

SFTs ⊂ sofic shifts ⊂ synchronized subshifts ⊂ coded subshifts.
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All these inclusions are strict. For instance, Dyck shifts are coded but
not synchronized, see Section 3.10. Coded shifts are always transitive, but
not always totally transitive; indeed, if the lengths of all code words is a
multiple of N ≥ 2, then σN can easily be non-transitive (but not necessarily,
see [177, Theorem 4.1]). Totally transitive coded subshifts are always weak-
mixing (since they have a dense set of periodic orbit, see [316, Corollary
3.6]), and also topologically mixing, see [177, Theorem 2.2]. Thus for coded
systems, these three notions coincide.

It is useful to make some distinction between sequences that are the
concatenations of “short” words

(3.4) VC = {x ∈ AZ : ∃ (sk)k∈Z ⊂ Z such that xsk . . . xsk+1−1 ∈ C},
and sequences for which every finite subwords appear as subwords of “long”
words in C:

(3.5) UC = {x ∈ AZ : ∀ k ∈ N, x−k . . . xk is a subword of some word in C}.
We have XC = VC ⊃ UC .

Example 3.43. The odd shift Xodd (recall from Example 1.4 that in this
subshift, blocks of 0s have odd lengths) is a coded shift with collection of
code words

C = {1, 10, 1000, 10000, . . . , 102n−1, . . . }.
The sequence . . . 010101010 . . . belongs to VC but not to UC . On the other
hand, . . . 000000 . . . belongs to UC but not to VC . The sequence . . . 0001000 . . .
belongs to neither, but lies in the closure VC (but not in UC , in fact UC =
UC = {0∞}).

One can view coded shifts by means of (infinite) edge-labeled transition
graphs GC , with a central vertex v0 from which loops of length ℓ emerge.
Here

qℓ = #Cℓ for Cℓ := {C ∈ C : |C| = ℓ}.
The theory of infinite Markov graphs, as summarized in Section 8.7, should
then be applicable. In particular, lim supℓ

1
ℓ log qℓ = hG(G) is the Gure-

vich entropy, see Definition 8.62. According to Theorem 8.71, unless GC is
transient, the topological entropy ought to be the leading root of

(3.6) F (h) :=
∑

ℓ

qℓe
−ℓh = 1.

This is indeed true in many cases, see e.g. Examples 3.43 (see Exercise 3.114)
and Example 3.49 below, but there are two problems.

First, the space of paths on GC can multiply code the points in XC ,
leading to an overestimate of the entropy. We call x ∈ XC recognizable
or uniquely decipherable if the sequence (sk) in (3.4) is unique. The
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collection of code words C has the unique decomposition property if
every finite word w ∈ L(XC) can be decomposed in at most one way into
words of C.

Example 3.44. Let C = {0, 10, 100}, then XC is the Fibonacci SFT, but
clearly the word 100 is superfluous here, since it is the concatenation of
the first two. Thus XC is neither uniquely decipherable nor has the unique
decomposition property The entropy is not the logarithm of the silver mean
as (3.6) would suggest, but truly the logarithm of the golden mean.

Let C = {1010, 0100}. Then XC doesn’t have the unique decomposition
property because

0100
︸︷︷︸

10
︸︷︷︸

= 010
︸ ︷︷ ︸

010
︸ ︷︷ ︸

.

However, if this word is extended by one symbol (either on the left or on
the right), then the decomposition is unique. Therefore XC is uniquely de-
cipherable.

Let C = {10, 00, 01}. In this case, every word containing 11 is uniquely
decipherable, and all other words can be deciphered in exactly two ways, e.g.

· · · 01
︸︷︷︸

00
︸︷︷︸

00
︸︷︷︸

10
︸︷︷︸

10
︸︷︷︸

01
︸︷︷︸

0 · · · = · · · 0 10
︸︷︷︸

00
︸︷︷︸

01
︸︷︷︸

01
︸︷︷︸

00
︸︷︷︸

10
︸︷︷︸

· · ·

Formula (3.6) suggests that the topological entropy htop(σ) = 1
2 log 3, and

this is indeed true.

v0
0

1

1

0

0 0

v0
0

1

2

3

4 5

Figure 3.5. The edge-labeled transition graphs of XC and XC̃ .

We see this by considering XC̃ for C̃ = {01, 23, 45}. These have isomor-
phic transition graphs (with isomorphic path spaces), see Figure 3.5, but the
latter is clearly uniquely decipherable with entropy 1

2 log 3. Since (XC , σ) is
a factor of (XC̃ , σ) via the sliding block-code π : 0 → 0, 1 → 1, 2 → 1, 3 →
0, 4 → 0, 5 → 0. Since π : XC → XC̃ is at most 2-to-1, π doesn’t decrease
entropy.

The second problem is that there may not be a good correspondence
between the number of loops of length ℓ and the number of subwords of
length ℓ. The solution of (3.6) can then underestimate the true value of the
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entropy, and indeed hG(G) ≤ htop(XC). A crude example of this is

C = {01, 00011011, 000001010011100101110111, . . . },

i.e., the n-th code word is a concatenation of all words in {0, 1}∗ of length
n. Then qℓ = 1 if ℓ = n2n and qℓ = 0 otherwise. Since every word appears
in XC , the true entropy is htop(XC) = log 2, but (3.6) yields

e−2h+e−8h+e−24h+e−128h+· · · = 1, which gives h = log 1.1809 · · · < log 2.

Hence, knowing the numbers qℓ of length ℓ code words is insufficient
to decide on the entropy. Pavlov [436] suggests to use the n-subwords Wn

inside code words instead. The exponential growth-rate of their number is
limn

1
n log#Wn = h(UC).

Theorem 3.45. [436, Theorems 1.7 and 1.8] Recall from (3.6) that F (h) =
∑

ℓ qℓe
−ℓh.

(i) If h > h(UC) and F (h) < 1, then htop(XC) ≤ h.

(ii) Conversely, if F (h) > 1 and C has the unique decomposition prop-
erty, then htop(XC) > h.

Proof. (i) Let Pren and Sufn denote the length n prefixes and suffixes of
code words C ∈ C. Note that Pren ∪ Sufn ⊂ Wn. Every word in L(XC)
can be written as concatenation of the one suffix, some code words and one
prefix, and therefore

Ln(XC) =Wn ∪
n⋃

k=2

⋃

n1+···+nk=n

ni ≥ 1

Sufn1
Cn2

. . . Cnk−1
Prenk

,

where the inner union really runs over the concatenations of all words in the
indicated sets. Note that if the concatenation starts with a full code word,
then this counts as a suffix, and similarly if the concatenation ends with a
full code. Therefore it is justified to assume that ni ≥ 1 for each i.

This gives

#Ln(XC) ≤ #Wn +

n∑

k=2

∑

n1+···+nk=n

ni ≥ 1

#Sufn1
· qn2

· · · qnk−1
·#Prenk

.

Since limn
1
n log#Wn = h(UC), our assumption h > h(UC) implies that there

is a constant K such that

max{#Prenk
,#Sufnk

} ≤ #Wn ≤ Kenh.
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Therefore, setting m = n1 + nk,

#Ln(XC) ≤ Kenh +

n∑

k=2

∑

n1+···+nk=n

ni≥1

K2e(n1+nk)h
k−1∏

j=2

qnj

= enh






K +K2

n∑

m=0

n−m∑

k=2

∑

n2+···+nk−1=n−m

ni ≥ 1

k−1∏

j=2

qnje
−njh






,

where the empty product counts as 1. All the terms in the last sum are part

of the expansion of F (h))k−2 =
(
∑∞

j=1 qje
−jh
)k−2

. By the assumption that

F (h) < 1, we obtain

#Ln(XC) ≤ enh

(

K + (n+ 1)K2
n∑

k=2

F (h)k−2

)

≤ enh
(

K +
(n+ 1)K2

1− F (h)

)

.

Taking logarithms, dividing by n and taking the limit n→ ∞ gives htop(XC) ≤
h.

(ii) If F (h) > 1, then for all t ∈ N sufficiently large, St :=
∑t

j=1 qje
−jh > 1.

For k ∈ N, we have the expansion

Sk
t =





t∑

j=1

qje
−jh





k

=
tk∑

n=k

e−nh
∑

n2+···+nk−1=n

ni ≥ 1

k∏

j=1

qnj .

Choose n = Nk such that the second sum is maximized. Obviously t ≤ Nk ≤
tk. Then

Sk
t ≤ tke−Nkh

∑

n2+···+nk−1=Nk
ni ≥ 1

k∏

j=1

qnj .

For every choice n1, . . . , nk with
∑k

i=1 ni = Nk, the concatenation of words
from Cni belongs to L(XC). Also, by the unique decomposition property,
every different choice of such concatenation gives a different word in L(XC).
Therefore

#LNk
(XC) ≥

∑

n2+···+nk−1=Nk
ni ≥ 1

k∏

j=1

qnj ≥
eNkhS

Nk/t
t

tk
.

Next take logarithms, divide by Nk and let Nk → ∞ to obtain htop(XC) ≥
h + 1

t logSt. But since F (h) ≥ St > 1 for all sufficiently large t, we get
htop(XC) > h as required. �
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We can now state the consequence for the entropy of coded shifts, para-
phrasing results of Pavlov [436, Theorems 1.1-1.3].

Corollary 3.46. Let h(UC) = limn
1
n log pUC

(n) be the exponential growth-

rate of words in UC , and recall the function F (h) =
∑

ℓ≥1 qℓe
−hℓ from (3.6).

(a) Assume that XC has unique decomposition property. If F (h(UC)) ≥
1 then F (htop(XC , σ)) = 1. In fact, h = htop(XC) is the only solution
of F (h) = 1.

(b) If F (h(UC)) < 1 then htop(XC , σ) = h(UC).

Also htop(XC , σ) = h(UC) if and only if F (h(UC)) ≤ 1.

Proof. The map h 7→ F (h) has a critical value hc such that F (h) = ∞ for
h < hc and F (h) <∞ is strictly decreasing for h > hc. At h = hc, F (h) can
be finite or infinite.

(a) If 1 < F (h(UC)) is finite, then hc ≤ h(UC), as there is a unique h1 > h(UC)
such that F (h1) = 1. Theorem 3.45 gives that htop(XC) = h1.

(b) If F (h(UC)) < 1, then by Theorem 3.45(i) we have htop(XC) < h(UC)+ ε
for every ε > 0. Since XC ⊃ UC , we have htop(XC) ≥ h(UC), so htop(XC) =
h(UC) follows.

Combining (a) and (b) shows that htop(XC) = h(UC) if and only if F (h(UC)) ≤
1. �

Corollary 3.47. Every non-periodic coded shift (XC , σ) has positive en-
tropy.

Proof. If C is a single word, then XC is periodic. Let C,C ′ ∈ C be the two
shortest words in C. Then by Theorem 8.71, the entropy htop(XC , σ) ≥ log x,

where x is the largest solution to the equation x−|C| + x−|C′| = 1. Clearly
x > 1. �

The classification also has an analogue for the intrinsic ergodicity of
coded shifts. This was studied in several papers by Climenhaga, Thompson
and Pavlov, see [155, Theorem B] and [436]. For countable directed graphs,
intrinsic ergodicity is equivalent to positive recurrence, see Theorem 8.66.
The results for coded shifts are parallel, except that h(UC) plays the role of
lim supℓ

1
ℓ log qℓ in the case that the graph G is formed by a single vertex v0

from which qℓ loops of length ℓ emerge.

That is, if F (h(UC)) > 1, then there is a unique measure of maximal
entropy µ, and supp(µ) = XC . If F (h(UC)) < 1, then all invariant measures
(if there are any) are of maximal entropy µ, and µ(UC) = 1. The case
F (h(UC)) = 1 is a mixture of the two: there may be one or multiple measures
of maximal entropy.
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Theorem 3.48. Let (X,σ) be a coded shift with qℓ = #{c ∈ C : |c| = ℓ}.
(1) If lim supℓ

1
ℓ log qℓ < htop(XC , σ), then (X,σ) is intrinsically ergodic.

(2) If lim supℓ
1
ℓ log qℓ = 0, then every factor of (X,σ) is intrinsically

ergodic.

Example 3.49. The next example, taken from [436, Example 5.3 and
5.4] shows that in certain cases the theory of countable directed graph
does apply to coded shifts. Important for this seems to be that qℓ ≈
#{subwords of the code words from Cℓ}.

For the alphabet A = {0, 1, . . . , d} and some function τ : N → N, take
the set of code words

C = {a1a2 . . . an0τ(n) : ai ∈ {1, . . . , d}, n ≥ 2}.
Hence UC = {0, . . . , d}Z, whence h(UC) = log d, and

F (h(UC)) =
∞∑

ℓ=1

qℓd
−ℓ =

∞∑

n=2

dn · e−(n+τ(n)) log d =
∑

n≥2

d−τ(n).

If d = 2 and τ(n) = n, then F (h(UC)) = 1, so htop(XC) = h(UC) = log 2. In
fact, this is a situation (see [436, Proposition 5.1]) where one can equally well
work with the transition graph G, and the Gurevich entropy hG(G) = log 2.
Since also

d

dh
F (h)|h=hG(G) =

∑

n≥2

(n+ τ(n))d−τ(n)−1 =
∞∑

n=2

n2−n <∞,

the graph G is positively recurrent. Thus there is a unique measure of max-
imal entropy, and it is supported on the whole of XC .

If d = 4 and τ(n) = ⌊log2 n⌋, then

F (h(UC)) =
∑

n≥2

d−τ(n) =
∑

n≥2

4−⌊log2 n⌋ =
∞∑

k=1

2k+1−1∑

n=2k

4−k =

∞∑

k=1

2k 4−k = 1.

Again, htop(XC) = h(UC) = hG(G), and

d

dh
F (h)|h=hG(G) =

∑

n≥2

(n+ τ(n))d−τ(n)−1 ≥ 1

4

∞∑

n=2

n4−⌊log2 n⌋

≥ 1

4

∞∑

k=1

2k+1−1∑

n=2k

2k4−k =
1

4

∞∑

k=1

1 = ∞.

Therefore G is null recurrent, and the measure of maximal entropy is sup-
ported on UC . In fact, it is the (14 ,

1
4 ,

1
4 ,

1
4)-Bernoulli measure on {1, 2, 3, 4}Z,

giving no weight to the symbol 0.
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3.4. Hereditary and Density Shifts

The natural order on the alphabet A = {0, . . . , N − 1} can be used to create
shift-invariant rules.

Definition 3.50. A collectionX ⊂ AN or Z is hereditary if whenever x ∈ X
and y ≤her x (meaning that yn ≤ xn for all n), then also y ∈ X.

Hereditary shifts first appeared in [346, page 882]. It is clear that this
rule is shift-invariant, but it is not necessarily closed under taking limits.
For example, the collection

(3.7) X = {x ∈ {0, 1}N : xi = 0 infinitely often}
is hereditary, but contains the sequence 1∞ in its closure. Therefore, some
authors [370] make the distinction between hereditary shift and subordi-
nate shift, the latter being hereditary and closed. We will write hereditary
subshift, meaning it is indeed closed. SFTs are hereditary, if the collection
of forbidden words of length M are exactly the largest in the partial order
≤her on AM . A similar fact holds for sofic shifts.

Lemma 3.51. The hereditary closure of (i.e., smallest hereditary subshift
containing) the sofic shift (X,σ) is sofic.

Proof. Extend the edge-labeled transition graph G of X to G′ so that for

each v
a→ w, there is also v

a′→ w for each letter a′ < a. �

We will see later that also β-shifts (Corollary 3.71) and spacing shifts
are hereditary. Another way to create hereditary subshifts is by stipulating
an upper bound of the frequency of non-zero digits.

Definition 3.52. Let A = {0, 1, . . . , N − 1} be the alphabet. The (upper)
density of the subshift X ⊂ AN or Z is

d̄(X) = sup{d̄(x) : x ∈ X},
where d̄(x) is the upper density (see Definition 8.51) of the set of indices
j such that xj 6= 0, i.e., d̄(x) = lim supk

1
k{0 ≤ j < k : xj 6= 0}. Let

Xδ := {x ∈ AN : d̄(x) ≤ δ}.

It is clear that d̄(Xδ) = δ, but the example of (3.7) shows that the
property that d̄(x) ≤ δ for every x ∈ Xδ is not closed under taking limits.

Remark 3.53. Assume that a collection X ⊂ Xδ shift-invariant and closed.
Then it makes no difference to use Banach density (see Section 8.5) instead
of density. Indeed, if there was a sequence x ∈ X with upper Banach density
δ, then there is a sequence nk such that 1

k#{1 ≤ j ≤ k : xnk+j 6= 0} → δ.

But then 1
k#{1 ≤ j ≤ k : σnk(x)j 6= 0} → δ, and by compactness, we can
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find a subsequence of (nk)k∈N along which σnk(x) converges to y. This y has
upper density δ. Secondly, if we define a measure µ as accumulation point of
1
nk

∑nk−1
j=0 δσj(y) where the sequence (nk)k∈N is such that limk

1
nk
#{0 ≤ j <

nk : yj = 1} = δ, then each µ-typical point satisfies limn
1
n#{0 ≤ j < n :

yj = 1} = δ.

The following entropy estimate is adapted from [370].

Theorem 3.54. A non-periodic hereditary subshift (X,σ) on the alphabet
A = {0, 1, . . . , N − 1} has positive topological entropy. In fact3 htop(X,σ) ≥
d̄(X) log 2 and htop(X,σ) = 0 if d̄(X) > 0.

Proof. Let X be a one-sided hereditary shift (the two-sided case goes sim-
ilarly). Assume that X is not a single periodic orbit, which for hereditary
shifts means X 6= {0∞}. If d̄(X) > 0, then for every ε > 0 there are
x ∈ X and infinitely many integers n such that #{1 ≤ i ≤ n : xi 6= 0} ≥
(d̄(X)− ε)n. Since X is hereditary,

1

n
log p(n) ≥ 1

n
log 2(d̄(X)−ε)n = (d̄(X)− ε) log 2.

But limn
1
n log p(n) exists according to Fekete’s Lemma 1.15, and ε > 0 is

arbitrary, so htop(σ) ≥ d̄(X) log 2. Note that if X, for every ε > 0, contains
sequences x such that #{1 ≤ i ≤ n : xi = N − 1} ≥ d̄(X)− ε, then we find
htop(σ) ≥ d̄(X) logN .

For the converse, assume that d̄(X) = 0, so for every ε > 0 there is n0 such
that for all n ≥ n0,

p(n) ≤
⌈nε⌉
∑

k=0

(
n

k

)

≤ ⌈nε⌉
(

n

⌈nε⌉

)

.

Using Stirling’s formula4, we obtain

1

n
log p(n) ≤ 1

n
log

(
ε
√
nnne−n

(nε)nεe−nε (n(1− ε))n(1−ε)e−n(1−ε)

)

≤ 1

n
log(ε

√
n)− ε log ε− (1− ε) log(1− ε).

Since ε > 0 is arbitrary, it follows that htop(σ) = limn
1
n log p(n) = 0. �

The drawback of Definition 3.52 above is that the collection

Xδ := {x ∈ AN or Z : d̄(x) ≤ δ}
is not closed. For instance xn := 1n0∞ ∈ Xδ for all δ ≥ 0, but limn x

n =
1∞ belongs only to X1. To obtain closedness, we need to impose further

3But this is not a sharp bound, see Example 3.59.
4n! ∼ nne−n

√
2πn
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conditions, of the sort that every n-block (for n sufficiently large) contains
no more than ⌈δn⌉ non-zero symbols. The general approach that we shall
present is due to Stanley [506].

Definition 3.55. Let A = {0, 1, . . . , N − 1} be the alphabet. Given a
function f : N → R, we define the density shift of f as

Xf := {x ∈ AN or Z :

n−1∑

i=0

xk+i ≤ f(n) for all k ∈ N or Z and n ∈ N}.

In particular, if A = {0, 1}, then

Xf := {x ∈ AN or Z : |xk . . . xk+n−1|1 ≤ f(n) for all k ∈ N or Z and n ∈ N}.

Since the condition in the definition is on finite blocks, Xf is closed, and
σ-invariance is clear too. Therefore Xf is a subshift, and it is obviously
hereditary. We could define density shifts on the infinite alphabet A =
{0, 1, 2, . . . }, but as f(1) <∞, we can use only f(1) + 1 symbols anyway.

Example 3.56. The odd shift Xodd from Example 1.4 is not a density shift,
because it is not hereditary. For example, 1011 ∈ L(Xodd) but 1001 /∈
L(Xodd).

Definition 3.57. The canonical function f of a density shift X is the
smallest function such that X = Xf , in the sense that if X = Xf , then
f(n) ≤ f(n) for all n ∈ N.

Theorem 3.58. The canonical function f of a density shift satisfies

(1) f(N) ⊂ N;

(2) f is non-decreasing;

(3) f(m+ n) ≤ f(m) + f(n) (subadditive).

Conversely, every function f satisfying (1)-(3) is the canonical function of
some density shift.

Example 3.59. If f(n) = (n+ 1)/2, then the word 11 is forbidden, but no
other word is (apart from words that contain 11). Thus Xf is the Fibonacci
SFT, and its density d̄(X) = 1/2, achieved by x = 101010 . . . . If we set
f(n) = ⌊(n+ 1)/2⌋, then we get the same shift: Xf = Xf . In fact, f is the
smallest function with this property. This example also shows that the lower
bound of the entropy in Theorem 3.54 is not sharp, because htop(Xf , σ) =

log(12(1 +
√
5)) which is larger than the 1

2 log 2 given by Theorem 3.54.

Proof of Theorem 3.58. For simplicity of exposition, we only consider one-
sided shifts. Define the partial order on X as

(3.8) x �sum y if
n∑

i=1

xi ≤
n∑

i=1

yi for all n ∈ N.
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Let z ∈ X be such that, inductively, for every n ∈ N, xn ∈ A is the largest
symbol such that x1 . . . xn ∈ Ln(X). We claim that x �sum z for all x ∈ X.

We prove the claim by induction on the length n. Clearly x1 ≤ z1. As-
sume by induction that x1 . . . xn �sum z1 . . . zn and let ξn+1 ∈ A be maximal
such that

(3.9) x1 . . . xnξn+1 ∈ L(X).

Set p =
∑n

i=1 zi −
∑n

i=1 xi ≥ 0. If ξn+1 ≤ p, then (3.9) clearly holds. If
ξn+1 > p, then take a = ξn+1 − p ≤ N − 1. For each 1 ≤ r ≤ n, we have

n∑

i=r

zi + a =
n∑

i=1

zi + a−
r−1∑

i=1

zi

≤
n∑

i=1

xi + p+ a−
r−1∑

i=1

xi (by the induction hypothesis)

≤
n∑

i=r

xi + ξn+1 (by the choice of a),

which is an allowed sum in X by the choice of ξn+1. Therefore z1 . . . zna ∈
L(Xf ) and because

∑n
i=1 zi + a =

∑n
i=1 xi + ξn+1, we have

x1 . . . xn+1 �sum x1 . . . xnξn+1 �sum z1 . . . zna �sum z1 . . . zn+1.

This finishes the induction step. It follows that σm(z) �sum z for all m ≥ 0,
i.e., z is shift-maximal with respect to �sum. Define f(n) =

∑n
i=1 zi. Then

clearly f is integer-valued and non-decreasing. Also f(m+ n) =
∑n

i=1 zi +∑n
i=1 σ

m(z)i ≤ f(m) + f(n). Hence (1)-(3) hold.

Conversely, suppose that f satisfies (1)-(3) and set X = Xf . Let z be
the maximal sequence with respect to �sum as before. We will prove by
induction that

(3.10) f(r) =
r∑

i=1

zi for all r ∈ N.

This is clear for n = 1, so assume that (3.10) holds for all 1 ≤ r ≤ n. Set
a = f(n+ 1)− f(n). We must show that z1 . . . zna ∈ L(Xf ) and for this it
suffices to show that

∑n
i=r zi + a ≤ f(n − r + 2) for each 1 ≤ r ≤ n. For

r = 1 this holds by the choice of a. Otherwise

n∑

i=r

zi + a =

n∑

i=1

zi −
r−1∑

i=1

zi + a

= f(n)− f(f(r − 1)) + a (by the induction hypothesis)

= f(n+ 1)− f(r − 1) (by the choice of a)

≤ f(n− r + 2) (by property (3) ).
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This concludes the induction step and the entire proof. �

By Fekete’s Lemma 1.15, limn f(n)/n = infn f(n)/n, so infn f(n)/n =
0 if and only if the density shift (Xf , σ) has zero topological entropy by
Theorem 3.54. Without proof we state ([506, Theorem 2.10]):

Corollary 3.60. If σm(z) �sum z for all m ≥ 0, then z is the maximal
sequence of the density shift Xf for f(n) =

∑n
i=1 zi.

Theorem 3.61. Let Xf be a non-trivial density shift with canonical function
f . The following are equivalent:

(a) (Xf , σ) is topologically transitive.

(b) (Xf , σ) is topologically mixing.

(c) f is unbounded.

Proof. (a) ⇒ (b): Let v, w ∈ L(Xf ) be arbitrary non-empty words. By
topological transitivity, there is u ∈ L(Xf ) such that vuw ∈ L(Xf ) as well.

But then v0kw ∈ L(Xf ) for every k ≥ |u|, proving topological mixing.

(b) ⇒ (a): Trivial.

(a) ⇒ (c): Since 1 ∈ L(Xf ), topological transitivity gives a sequence x ∈ Xf

containing infinitely many 1s. Thus f(n) ≥
∑n

i=1 xi → ∞ as n→ ∞.

(c) ⇒ (a): Let u, v ∈ L(Xf ) be arbitrary non-empty words. Since f is

unbounded, there is n ∈ N such that f(n) ≥
∑|u|

i=1 ui +
∑|v|

i=1 vi. Then
u0nv ∈ L(Xf ). �

In particular, SFTs (X,σ) that are also density shifts are transitive, be-
cause, unless X = {0∞}, there is a non-trivial word v and x ∈ X that
contains v infinitely often as subword. In fact, density SFTs are com-
pletely characterized as those for which the canonical function f satisfies
infn f(n)/n = f(p)/p for some p ∈ N, see [506, Theorem 4.3]. On the other
hand, if f is bounded, then all x ∈ Xf end with 0∞. They can be repre-
sented by a finite edge-labeled transition graph [506, Theorem 2.16], and
also have a finite collection of follower sets. Hence such density shifts are
non-transitive sofic shifts.

Sofic density shifts, in general, are characterized [506, Theorem 6.3] as
those for which the maximal sequence z is eventually periodic (zn = zn+p

for n sufficiently large), or equivalently f(n + p) = f(n) + k (where k =
∑n+p−1

i=n zi and k > 0 if and only if Xf is transitive).

Theorem 3.62. Let Xf be a non-trivial density shift with canonical function
f . The following are equivalent:
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(a) Xf contains a periodic point other than 0∞.

(b) There is λ > 0 such that f(n) ≥ λn for all n ∈ N.

(c) (Xf , σ) is a coded shift.

Proof. (a) ⇒ (b): If 0∞ 6= x = σp(x) ∈ Xf , then
∑n

i=1 xi ≥ n/p, so (b)
holds for λ = 1/p.

(b) ⇒ (c): Define s(u) = ⌈
∑|u|

i=1 uiλ⌉, and let

C := {0s(u) u 0s(u) : u ∈ L(Xf )}
be the collection of code words. The “padding blocks” 0s(u) ensure that the
“core words” u are sufficiently apart that the code words can be concatenated
freely, see [506, Theorem 3.1] for the details. Hence the coded shiftXC ⊂ Xf .
On the other hand, L(Xf ) ⊂ L(XC) so the reverse inclusion Xf ⊂ XC
follows.

(c) ⇒ (a): If u is a non-trivial code word, then u∞ ∈ Xf . �

Since every infinite subshift is expansive (see below Definition 1.38), The-
orems 3.61 and 3.62 allow the following characterizations of chaos for density
shifts.

Corollary 3.63. Let (Xf , σ) be a density shift with canonical function f .
Then

(1) (Xf , σ) is Devaney chaotic if and only if infn f(n)/n > 0.

(2) (Xf , σ) is Auslander-Yorke chaotic if and only if f is unbounded.

(3) (Xf , σ) is Li-Yorke chaotic if and only if f is unbounded.

3.5. β-Shifts and β-Expansions

Throughout this section, we fix β > 1. A number x ∈ [0, 1] can be expressed
as (infinite) sum of powers of β:

x =

∞∑

k=1

bkβ
−k where

{

bk ∈ {0, 1, . . . , ⌊β⌋} if β /∈ N;

bk ∈ {0, 1, . . . , β − 1} if β ∈ {2, 3, 4, . . . }.
For the case β ∈ {2, 3, 4, . . . }, this is the usual β-ary expansion; it is unique
except for the β-adic rationals { m

βn : m ∈ Z, n ∈ N}. For example, if β = 10,

then 0.3 = 0.29999 . . . If β /∈ N, then x need not have a unique β-expansion
either. As summarized in Theorem 3.67, some points have uncountably many
different expansions, but there is a canonical way to define an expansion,
called the greedy expansion:

• Take b1 = ⌊βx⌋, that is, we take b1 as large as we possibly can.

• Let x1 = βx− b1 and b2 = ⌊βx1⌋, again b2 is as large as possible.
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• Let x2 = βx1 − b2 and b3 = ⌊βx2⌋, etc.

In other words, xk = T k
β (x) for the map Tβ : x 7→ βx mod 1, and bk+1 is the

integer part of βxk.

Definition 3.64. The closure of the greedy β-expansions of all x ∈ [0, 1] is
a subshift of {0, . . . , ⌊β⌋}N; it is called the β-shift and we will denote it as
(Xβ , σ).

If b = (bk)
∞
k=1 is the β-expansion of some x ∈ [0, 1], then σ(b) is the

β-expansion of Tβ(x). The following lemma from [431] characterizes the
β-shift in terms of the lexicographic order �lex:

Lemma 3.65. Let c = c1c2c3 . . . be the β-expansion of 1, and suppose it is
not finite, i.e., ci > 0 infinitely often5. Then b ∈ Xβ if and only if

σn(b) �lex c for all n ≥ 0.

However, the greedy expansion (bi)i≥1 of x is the largest sequence in
lexicographical order among all the expansions of x.

Example 3.66. Let β = 1.8393 . . . be the largest root of the equation
β3 = β2 + β + 1. One can check that c = 111000000 . . . Therefore b ∈ Xβ if
and only if one of

σn(b) = 0 . . . , σn(b) = 10 . . . , σn(b) = 110 . . . or σn(b) = c,

holds for every n ≥ 0. The subshift Xβ is itself not of finite type, because

there are infinitely many forbidden words 1110k1, k ≥ 0, but by some re-
coding it can be seen to be conjugate to an SFT (see the middle panel of
Figure 3.6), and it has a simple edge-labeled transition graph.

Proof of Lemma 3.65. Let b = (bk(x))k≥1 be the β-expansion of some
x ∈ [0, 1). (If x = 1 there is nothing to prove because b = c.) Since x < 1
we have b1 = ⌊βx⌋ ≤ c1 = ⌊β · 1⌋. If the inequality is strict, then b ≺lex c.
Otherwise, 0 ≤ x1 = Tβ(x) = βx− b1 < β · 1− c1 = Tβ(1), and we find that
b2 = ⌊βx1⌋ ≤ c2 = ⌊βTβ(1)⌋. Continue by induction.

5This condition is required for the “if” direction. For example, if c = 1110∞ as in Exam-
ple 3.66, then b = (110)∞ <lex c, but there is no point x ∈ [0, 1] with this itinerary. In fact, b is

the lazy expansion of the point 1; it is “the other” canonical itinerary that 1 has.
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T 2

β1 Tβ1 10

100

111

110 0

0

1

1

0

0

1

Figure 3.6. Left: The map Tβ for β3 = β2 + β + 1. Then T 3
β (1) = 0.

Middle: A corresponding vertex-labeled graph. Right: A corresponding

edge-labeled graph.

Conversely, define half-open subintervals of [0, 1]:

Aj = [
j

β
,
j + 1

β
) 0 ≤ j < c1,

Ac1j = [
c1
β

+
j

β2
,
c1
β

+
j + 1

β2
) 0 ≤ j < c2,(3.11)

Ac1c2j = [
c1
β

+
c2
β2

+
j

β2
,
c1
β

+
c2
β2

+
j + 1

β2
) 0 ≤ j < c3,

...
...

...
...(3.12)

They are adjacent and clearly Tβ(Aj) = [0, 1) for 0 ≤ j < c1. Also
Tβ(Ac1j) = [j/β, (j + 1)/β) for 0 ≤ j < c2. Since σn((ck)k≥1) �lex (ck)k≥1

by the first part of the proof, we have c2 ≤ c1. In particular Tβ(Ac1j) is one
of the intervals in the first row of (3.11). Therefore T 2

β (Ac1j) = [0, 1). By
induction, we obtain

(3.13) T k+1
β (Ac1c2...ckj) = [0, 1) for all k ∈ N, 0 ≤ j < ck+1.

In fact, Ac1...ckj = {x ∈ [0, 1] : bn(x) = cn for 1 ≤ n ≤ k, bk+1(x) = j}.
Now take (bk)k≥1 ∈ AN such that (bk)k≥1 �lex (ck)k≥1, and define n0 = 0

and recursively nr+1 = min{k > nr : bk 6= ck−nr}. Suppose first that all nr’s
are finite. Then bnr+1 . . . bnr+1

is the index of one of the intervals in the
nr+1 − nr’th row of (3.11). The intersection

⋂

r≥0

T−nr
β (Abnr+1...bnr+1

)

(of intervals of length ≤ β−r) is a single point x with (bk(x))k≥1 = (bk)k≥1.
If ns+1 = ∞ for some s ≥ 0, and we set Abns+1bns+2... = {1}, then {x} =
⋂s

r=0 T
−nr
β (Abnr+1...bnr+1

) gives again the unique point with (bk(x))k≥1 =

(bk)k≥1. �
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The greedy expansion above is not the only way of expressing x =
∑

k≥1 bkβ
−k for bk in the digit set {0, . . . , ⌊β⌋}. For instance, in the lazy

expansion we always take the smallest possible6, digit bk such that the
sum x can still be achieved. For β = 2, choosing the greedy and lazy ex-
pansion make the difference in expressing dyadic rationals in (0, 1) as x =
b1 . . . bk1000 . . . (greedy, with partition {[0, 12), [12 , 1]}) and x = b1 . . . bk0111 . . .

(lazy, with partition {[0, 12 ], (12 , 1]}). All other numbers in [0, 1] have a unique
expansion for β = 2.

In general, the number of expansions can be much larger, for a larger set
of points. This can be shown by counting the number of orbits of the point
x under iteration of the multivalued map

Tβ :
[

0,
⌊β⌋+ 1

β

]

→
[

0,
⌊β⌋+ 1

β

]

, x 7→ βx− i if x ∈ ∆i.

Here ∆i = [ iβ ,
⌊β⌋+1+iβ

β2 ] are the domains of the branches of Tβ , and the

labels i are used as the symbols of the itinerary i(x) = b0b1b2 . . . of points,
i.e., bk = i if T k

β (x) ∈ ∆i along some forward orbit is an expansion of
x. The intervals where the ∆i’s overlap are called switch regions, see
Figure 3.7. Points for which infinitely many forward Tβ-orbits each visit the
switch regions infinitely often have uncountably many expansions.

0 1

⌊β⌋+1
β − 1 ⌊β⌋+1

β

The orbit of the greedy expansion in [0, 1)

The orbit of the lazy expansion in [ ⌊β⌋+1

β
− 1, ⌊β⌋+1

β
)

Switch regions ∆i ∩∆i+1 = [ i+1

β
, ⌊β⌋+1+iβ

β2 ]

Figure 3.7. The map Tβ : [0, ⌊β⌋+1

β
] → [0, ⌊β⌋+1

β
] with switch regions.

On the other hand, points whose forward Tβ-orbit avoid switch regions
(and then the forward orbit is indeed uniquely defined) have only one ex-
pansion. Such points are called univoque; we denote the set of univoque
points in (0, ⌊β⌋/(β − 1)) by Uβ . Larger values of β lead to smaller switch

6In terms of the algorithm given for the greedy expansion, we need to take bk = ⌈βxk−1 −
⌊β⌋/(β − 1)⌉ so that xk ≤ ∑

j>k⌊β⌋βk−j , i.e., xk (and therefore x) can still be reached choosing

the remaining digits bj maximal.
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regions and thus smaller univoque sets; that is, until β becomes integer and
the digit set is increased by one. The following theorem is a summary of
results from [273,356], just for the digit set {0, 1}.

Theorem 3.67. The set Uβ of positive univoque points satisfies:

(1) Uβ = ∅ for 1 < β ≤ γ = 1
2(1 +

√
5) ≈ 1.618 . . . , the golden mean;

(2) #Uβ = 2 for γ < β ≤ βc ≈ 1.755 . . . , the leading root of x3 =
2x2 − x− 1;

(3) #Uβ = ℵ0 for βc < β < βKL ≈ 1.787 . . . , the so-called Komornik-

Loreti constant7;

(4) #Uβ = 2ℵ0 for βKL ≤ β < 2; it is a Cantor set of positive Haus-
dorff dimension;

(5) Uβ = (0, 1) \ {dyadic rationals} if β = 2.

In fact, Leb(Uβ) = 0 for all β ∈ [1, 2).

Further details are given also in [197]. Previously, Erdös and coauthors
[235–237], studied the number of β-representations of 1 as function β. For
similar results for larger digit sets {0, 1, . . . ,m}, see e.g. [41,196], among a
by now very extensive literature.

Proposition 3.68. The β-shift is a coded shift.

Proof. Let c = c1c2c3 . . . be the β-expansion of 1. Then we can take as set
of code words

S ={0, 1, . . . , (c1 − 1)
︸ ︷︷ ︸

1−words

, c10, c11, . . . , c1(c2 − 1)
︸ ︷︷ ︸

2−words

,

c1c20, c1c21, . . . , c1c2(c3 − 1)
︸ ︷︷ ︸

3−words

, . . .(3.14)

...
...

c1c2c3c4c5c6 . . .
︸ ︷︷ ︸

a single infinite word

}.

Apart from the single infinite word, these are exactly the indices of the
intervals Ac1...ckj in (3.11). We know from (3.13) that T k+1

β (Ac1...ckj) = [0, 1),

so free concatenations of such code words all represent (bk(x))k≥1 for some
x ∈ [0, 1]. Any concatenation in S∗ also satisfies Lemma 3.65, so that S∗ is
dense in (and in fact equal to) Xβ . �

7This constant is the solution of the equation
∑

k≥0
ρk+1β

−k = 1 for the Thue-Morse se-

quence ρTM = ρ0ρ1ρ2 · · · = 0110 1001 ..., see Example 1.6 and [356]. The numerical value is

1.7872316501 < βKL < 1.7872316505 and βKL was proven to be transcendental in [18].
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To illustrate this for the β-shift Xβ with c = c1c2c3 . . . , consider an

edge-labeled countable transition graph with vertices (vn)n≥0 and arrows8
{

vn−1
cn−→ vn, for n ≥ 1, so c is written out over the horizontal spine,

vn
a−→ v0, for n ≥ 1, 0 ≤ a < cn,

see Figure 3.8. The code words are the labels of the simple loops from v0 to
itself, and the infinite paths starting from v0 are in one-to-one correspondence
with the points in Xβ .

• 2

0

1

• 1

0

• 0 • 2

0

1

• 0 •

0

1 • 0 •

0

1

2 •

Figure 3.8. The edge-labeled transition graph for a β-shift with c = 21020102 . . .

Corollary 3.69. Every β-transformation is intrinsically ergodic.

Proof. This was first shown by Hofbauer [306], see also [155] based on
a weakened form of specification9. Implementing Theorem 3.48, we have
#{s ∈ S : |s| = n} ≤ β for each n, so the exponential growth-rate of these
words is 0. Hence Theorem 3.48 even implies that every factor of the β-shift
is intrinsically ergodic. �

Remark 3.70. For the β-transformation with slope β > 1, the measure of
maximal entropy is absolutely continuous w.r.t. Lebesgue, and there is an
explicit formula for the density:

dµ

dx
=

1

Λ

∑

n≥1

β−n
1[0,Tn

β (1)]

for an appropriate normalizing constant Λ, see [275,433].

The following result was probably first stated in [370, Section 6].

Corollary 3.71. For every β ∈ [1, 2], the β-shift (Xβ , σ) is hereditary.

8This graph is the edge-labeled version of the Hofbauer tower of the corresponding β-
transformation, see Section 3.6.3.

9because specification as in Definition 2.81 and hence Lemma 2.85 do not apply
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Proof. This follows directly from Lemma 3.65 which determines the shape
of the code-words in Proposition 3.68. Indeed, if x ∈ Xβ and n = min{i ≥
1 : xi 6= ci}. Then xn < cn and x1 . . . xn is a code word. Now repeat the
argument with σn(x). �

Theorem 3.72. The Tβ-orbit of 1

(1) contains 0 if and only if Xβ is conjugate to an SFT;

(2) is preperiodic if and only if Xβ is sofic10;

(3) is not dense in [0, 1] if and only if Xβ is synchronized;

(4) is disjoint from [0, δ] for some δ > 0 if and only if Xβ has specifi-
cation.

We give a proof below, but refer to [432,473] for other proofs and related
results.

Proof. First note that if β ∈ N, then Xβ is the full shift on β symbols, so
clearly an SFT. Assume therefore that β is non-integer.

For Statement 1, let aj = Tβ(1)
j , so a0 = 1 and aN = 0 for some N ≥ 2.

Let P be the partition given by the branches of TN−1
β . Then aj ∈ ∂P and

the image TN−1
β (∂J) ⊂ {ai}Ni=0 for each J ∈ P . This means that P is a

Markov partition for TN−1
β , and hence (Xβ , σ

N−1) is a memory N − 1 SFT

over the alphabet {0, 1, . . . , ⌊β⌋}. See Example 3.66 for an illustration of
this.

For Statement 2, and c = c1c2 . . . cN (cN+1 . . . cN+p)
∞, we claim that Xβ

only has finitely many different follower sets, see Definition 3.34. Let w be a
proper prefix of some s1s2s3 · · · ∈ S∗ for the collection of word S from (3.14).
That is, there are k ≥ 1 and 0 ≤ m < |sk| such that |w| = |s1 . . . sk−1|+m.
The possible follower sets are

F(w) =







S∗ if m = 0

{aS∗ : 0 ≤ a < c2} ∪ {c2aS∗ : 0 ≤ a < c3} ∪ . . . if m = 1

{aS∗ : 0 ≤ a < c3} ∪ {c3aS∗ : 0 ≤ a < c4} ∪ . . . if m = 2

{aS∗ : 0 ≤ a < c4} ∪ {c4aS∗ : 0 ≤ a < c5} ∪ . . . if m = 3
...

...
...

Since c is eventually periodic, this list of follower sets eventually becomes
periodic as well: for each i ≥ 0, they are the same for m = N + i and
m = N +p+ i. This proves the claim, so by Theorem 3.36, Xβ is sofic. (It is
easy to construct an edge-labeled transition graph for Xβ , see Example 3.73.)

10Since 1 is not in the range of Tβ , the orbit of 1 cannot be periodic. If Tn(1)(j/β) for some

j ∈ N, then Tn+1(1) = 0 and case 1. applies, even though limyրj/β Tβ(y) = 1.
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If on the other hand, the expansion of 1 is not preperiodic, so the Tβ-
orbit of 1 is infinite, then there are infinitely many different follower sets by
Theorem 3.76 below, so Xβ cannot be sofic.

For Statement 3, assume that orb(1) is not dense in [0, 1] and let U be

an interval that is disjoint from orb(1). Take N so large that the domain
Z of an entire branch of TN

β is contained in U . The set Z is a cylinder

set, associated to a unique word v ∈ LN (Xβ). If u ∈ LM (Xβ) is such that

uv ∈ L(Xβ), then the domain Y of the corresponding branch of TM
β is such

that TM
β (Y ) ∩ Z 6= ∅. But since orb(1) ∩ Z = ∅, we have TM

β (Y ) ⊃ Z.

Therefore, for every z ∈ TN
β (Z), there is y ∈ Y such that TM+N

β (y) = z.

Symbolically, this means that for every word w ∈ L(X) such that vw ∈
L(Xβ), also uvw ∈ L(Xβ). In other words, v is synchronizing.

Conversely, suppose that v ∈ L(X) is some word. Then v corresponds
to the domain Z of some branch of TN

β . If orb(1) is dense, then there is

n ∈ N such that Tn
β (1) ∈ Z. Therefore there is a one-sided neighborhood

Y of 1 such that Tn
β (Y ) = [0, Tn

β (1)], and there is x ∈ Z \ Tn
β (Y ). Let w

be the itinerary of TN
β (x); since x ∈ Y , vw ∈ L(Xβ). Similarly, taking

u = c1c2 . . . cn, since Tn
β (1) ∈ Z, also uv ∈ L(Xβ). However, uvw /∈ L(Xβ),

because there is no y ∈ Y such that Tn
β (y) = x. This shows that v is not

synchronizing, and since v was arbitrary, Xβ is not synchronized.

Finally, for Statement 4, take N such that the cylinder set [0N ] corresponds
to a subinterval ZN contained in [0, δ]. Then TN

β (ZN ) = [0, 1]. Also, for any

k-cylinder [x] corresponding to an interval Zx ⊂ [0, 1], we have T k
β (Zx) ⊃

[0, δ] ⊃ ZN . Specification follows from this.

On the other hand, if 0 is an accumulation point of orb(1), then for any
M,N ∈ N, there is some word x ∈ LM (Xβ) corresponding to a interval Zx

such that TM
β (Zx) ⊂ [0, β−N+1]. Then there is no word y ∈ LN (Xβ) such

that xy1 ∈ L(Xβ), and thus specification fails. �

Example 3.73. Let β = 1.801937735 . . . be the largest root of the equation
β3 = β2 + 2β − 1. One can check that c = 11010101010 . . . is preperiodic,
and the Tβ-orbit of 1 is {1, β − 1, β(β − 1), β − 1, β(β − 1), . . . . The points
{0, β(β−1), 1/β, β−1, 1} define a Markov partition, see Figure 3.9. Therefore
the dynamical system ([0, 1], Tβ) can be described as an SFT, but not in the
alphabet {0, 1}. However, by edge-labeling the transition graph in Figure 3.9,
we get Xβ . Therefore x ∈ Xβ if and only if for every n ≥ 0 one of

σn(x) = 0 . . . , σn(x) = 10 . . . , σn(x) = 110 . . . or σn(x) = c,

holds. The subshift Xβ is itself not of finite type, because there are infinitely

many forbidden words 1110k1, k ≥ 0, but by some recoding it can be seen
to be conjugate to an SFT (see the middle panel of Figure 3.6), and it has a
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simple edge-labeled transition graph. Also, Xβ is the image of the length one
sliding block code π(a) = π(b) = 0, π(c) = π(d) = 1, because a, b ⊂ [0, 1/β]
and c, d ⊂ [1/β, 1].

T 2

β1 Tβ1 10

a b c d
db

ca
0

0

1

0

1

10 1

a = [0, β(β − 1)− 1]

b = [β(β − 1)− 1, 1/β]

c = [1/β, β − 1]

d = [β(β − 1), 1]

Figure 3.9. The transition graph for a sofic β-shift for β = 1.801937735 . . .

The first two types of β-shifts in Theorem 3.72 correspond to certain
algebraic properties of β, which we will mention, but not prove. For the
definitions of Pisot and Perron numbers, see Section 8.1.

Theorem 3.74. If β is a Pisot number then Xβ is sofic. If the subshift Xβ

is sofic then β is a Perron number.

Remark 3.75. We refer to [475] and [81, Chapter 7] for more results in
this spirit. If Xβ is sofic, then the Tβ-orbit of 1 is a finite set, say 0 =
x0 < x1 < x2 < · · · < xd = 1, where x0 = 0 is added for convenience, also
if it is not part of orbTβ

(1). The intervals τi = [xi−1, xi] form a Markov

partition with associated matrix M = (mij)
d
i=1 where mij = 1 if Tβ(τi) ⊃ τj

and mij = 0 otherwise. This also defines a substitution χβ(a) = a1 . . . at
(with the letters ai in increasing order) if Tβ(τa) = τa1 ∪ · · · ∪ τat with fixed

point ρ = limn χ
n
β(a1), and substitution shift (Xρ, σ) for Xρ = orbσ(ρ).

See [15, 16] for studies of these kind of substitution systems. The Pisot
substitution conjecture states that this subshift has a purely point spectrum
(see Section 6.8.3) if and only if β is a Pisot number. This special version of
the Pisot substitution conjecture was proved by Barge [48].

Continuing on the theme of follower sets, let

(3.15) F(n) := #{F : F is the follower set of some v ∈ Ln(Xβ)}
be the number of distinct follower sets of words in Ln(Xβ). Clearly, F(n) ≤
p(n), but in general F(n) is much smaller. Recall from Theorem 3.36 that
F(n) is a bounded sequence if and only if the subshift is sofic. For β-shifts,
we see in general linear growth of F(n).

Theorem 3.76. For every β-shift (Xβ , σ) with β > 1, we have F(n) = n+1,
except when orb(1) is finite; in this case, (Xβ , σ) is sofic.
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Proof. This result comes from [422, Theorem 2.25], but we give a different
dynamical proof. Set β > 1, and assume that c = c1c2c3 . . . is the β-
expansion of 1. Let D0 = [0, 1] and in general11 Dn = [0, Tn

β (1)]. First

assume that all points Tn
β (1) are distinct. The proof will be by induction.

For n = 0, there is only one follower set F0 of the empty word ǫ: F0 =
L(Xβ). Therefore F(0) = 1.

For n = 1 and a1 6= c1, Tβ([a1/β, (a1 + 1)/β]) = [0, 1] = D0 and the
follower set of a1 is F0. If a1 = c1, then Tβ([a1/β, 1]) = [0, Tβ(1)] = D1

and the follower set F1 of a1 is equal to the collection of itineraries of points
x ∈ D1. Therefore F(1) = 2.

For general n, if v = a1a2 . . . an, and k is the smallest index such that
ak+1 . . . an = c1 . . . cn−k, then the corresponding follower set equals Fn−k.
In particular, if k = 0, then the follower set of a1 . . . an is the collection of
itineraries of x ∈ Dn. Hence F(n) = n+ 1, proving the statement.

If Dn = Dk for some k < n (say n is minimal with this property) then
we get no new follower sets anymore, and F(m) = n + 1 for all m ≥ n. As
shown in Theorem 3.36, Xβ is sofic in this case. �

Theorem 3.77. The β-shift for β > 1 has topological entropy log β.

Proof. This is a special case of a theorem of interval dynamics saying that
every piecewise affine map with slope ±β has topological entropy htop(Tβ) =
max{log β, 0}, but we will give a purely symbolic proof.

Recall the β-expansion c = c1c2 . . . of 1 and the set of code words S from
(3.14). By Proposition 3.68, every word in L(Xβ) has the form12

(3.16) s1s2 . . . smc1c2 . . . ck for some (maximal) s1, . . . , sm ∈ S, k ≥ 0.

Let pβ(n) and pS∗(n) be the number of words in Ln(Xβ) and Ln(S
∗) respec-

tively. Since every word in S∗ is a word in L(Xβ), we have pS∗(n) ≤ pβ(n).
Conversely, by (3.16),

pβ(n) ≤
∑

0≤m≤n

pS∗(m) ≤ (n+ 1) max
1≤m≤n

pS∗(m).

Therefore the exponential growth-rates are the same:

htop(Xβ) = lim sup
n→∞

1

n
log pβ(n) = lim sup

n→∞

1

n
log pS∗(n).

11This notation is derived the Hofbauer tower construction from Section 3.6.3 applied to
β-transformations. If the orbit of 1 is infinite, then there are n + 1 levels in the tower of height
≤ n. The image of each n-cylinder under Tn

β is one of these, and therefore #F(n) = n+ 1. The

same result holds for unimodal maps. More generally, for interval maps with d + 1 branches, we
have #F(n) ≤ dn+ 1.

12The fact that {Ac1...ckj : k ∈ N, 0 ≤ j < ck+1} for a partition of [0, 1) show that (bk)k≥1

starts with a code word rather than the suffix of a code word for every x ∈ [0, 1).
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Now to compute the latter, we use generating functions:

fS∗(t) =
∑

n≥0

pS∗(n)tn and fS(t) =
∑

n≥1

#{s ∈ S : |s| = n}tn.

Note that pS∗(0) = 1 (the single empty word ǫ) and #{s ∈ S : |s| = n} = cn.
We have pS∗(n) =

∑n
k=1#{s ∈ S : |s| = k}pS∗(n− k), and this gives for the

power series

1 + fS∗(t)fS(t) = 1 +
∑

n≥0

pS∗(n)tn
∑

m≥1

#{s ∈ S : |s| = m}tm

= 1 +
∑

N≥1

N∑

k=1

pS∗(N − k)tN−k#{s ∈ S : |s| = k}tk

= 1 +
∑

N≥1

pS∗(N)tN = fS∗(t).

Therefore fS∗(t) = 1
1−fS(t)

. Since 1 =
∑

n≥1 cnβ
−n = fS(β

−1), β−1 is a

(simple) pole of fS∗ and fS∗(t) is well-defined for |t| < β−1. Hence β−1 is
the radius of convergence of fS∗ , and this means that the coefficients of fS∗

satisfy

lim sup
n→∞

1

n
log pS∗(n) = log β.

This concludes the proof. �

One can ask whether β-shifts are density shifts and vice versa. After
all, the one-sided β-shift (Xβ , σ) is characterized as {x ∈ AN : x �lex c} for
the �lex-maximal sequences c of Lemma 3.65 and the one-sided density shift
(Xf , σ) is characterized as {x ∈ AN : x �sum z} for the ≺sumord-maximal
sequence z of (3.8). If σn(y) �sum x for all n ≥ 0 then σn(y) �lex x for
all n ≥ 0, see [506, Lemma 8.1]. Therefore the shift-maximal sequence of a
density shift is also shift-maximal for a β-shift, and every one-sided density
shift is also a β-shift. The converse, however, is false. For example, c = 302∞

is shift-maximal w.r.t. �lex but not w.r.t. �sum because σ2(c) 6 �sumc (in
fact, these two sequences are not comparable). A way of finding (non-sofic)
density β-shifts with β ∈ [0, 1]13 is as follows: Given a β-transformation
Tβ : [01, 1] → [0, 1], define T̄β : [1− 1

β , 1] → [1− 1
β , 1] by

(3.17) T̄β(x) =







Tβ(x) = βx if 1− 1
β ≤ x ≤ 1

β ,

1− 1
β if 1

β < x < 2β−1
β2 ,

Tβ(x) = βx− 1 if 2β−1
β2 ≤ x ≤ 1,

see Figure 3.10.

13This is for simplicity of exposition; similar construction for β > 2 are of course possible.
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Tβ T̄β

10 1 − 1

β

1

β

A
2β−1

β2

β − 1

Figure 3.10. Turning a β-transformation into a Sturmian shift.

Since T̄β(1 − 1
β ) = T̄ (1) = β − 1, this map can be considered as a

non-decreasing circle endomorphism on [1 − 1
β , 1]/1− 1

β
∼1, with plateau A =

[ 1β ,
2β−1
β2 ]. If T̄n

β (1) /∈ A for all n ≥ 1, then the rotation number α :=

ρ(T̄β) /∈ Q, and c = i(1) is shift-maximal both w.r.t. �lex and �sum, and
it is in particular a sequence with maximum frequency of 1s. It is also a
Sturmian sequence; more specifically, the itinerary of α for the circle rotation
Rα : S1 → S1 w.r.t. the partition (0, α] (with symbol 1) and (α, 1] (with
symbol 0), cf. Definition 4.48. The canonical function of the density shift
equals the Beatty sequence f(n) = ⌈nα⌉.

3.6. Unimodal Subshifts

A unimodal map is a continuous map f : [0, 1] → [0, 1] with a single point
c ∈ (0, 1), called critical or turning point such that f |[0,c] is increasing and

f |[c,1] is decreasing14. This makes the critical value f(c) the largest value
that f assumes. Examples are the quadratic family fa(x) = ax(1 − x),
a ∈ (0, 4] and the family tent maps Ts(x) = min{sx, s(1−x)}, s ∈ (0, 2], see
Figure 3.11. It is customary to scale unimodal maps so that f(0) = f(1) = 0,
but the interesting dynamics takes place on the core [f2(c), f(c)], provided
f2(c) < c < f(c).

Unimodal maps are simple to define, but difficult to analyze. Before
starting on the symbolic description, i.e., kneading theory, we give some
background on the topological properties of unimodal maps15.

14in our definition; in the frequently used family fc(z) = z2 + c, c ∈ [−2, 1

2
], the roles of

increasing and decreasing are reversed.
15Also for multimodal maps (i.e., continuous intervals with multiple critical points), symbolic

dynamics have been studied. Much of the structure presented here has a direct analogue, albeit


