Aufgabenblatt 2 – Übungen Einführung in die Analysis

Übungsgruppe Henk Bruin

October 23, 2017

- 1. Für welche $n \in \mathbb{Z}$ ist $\sqrt{n} \in \mathbb{Q}$? Zeigen Sie dass $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- **2.** Zeigen Sie dass für alle $x, y \in \mathbb{Q}$, auch $x + y, xy \in \mathbb{Q}$. Gilt dies auch für x/y und x^y ?

3.

J.		Ī	1	1	1
	A	$\min A$	$\max A$	$\inf A$	$\sup A$
a)	$[2,6]\cap(2,2\pi)$				
b)	$\{x \in \mathbb{Z} : \sqrt{x} > 9\}$				
c)	$\{x \in \mathbb{R} : e^{-x} \cos 2x \ge 1\}$				
d)	$\{e^{2x-x^2} : x \in \mathbb{R}\}$				

- 4. Schreiben Sie die folgenden Mengen in Intervall-Notation. Sind sie offen, abgeschlossen, beide oder weder?
- (i) $\{x \in \mathbb{R} : 0 < x \le 5\}$, (ii) $[6,8] \setminus [7,9]$, (iii) $[6,8] \cap [7,9]$. (iv) $\bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n})$, (vi) $\bigcap_{n \in \mathbb{N}} (0, \frac{1}{n})$, (vii) $\bigcap_{n \in \mathbb{N}} [0, \frac{1}{n})$, (viii) $\bigcup_{n \in \mathbb{N}} [-n, n]$.
- 5. Zeigen Sie dass $\mathbb Q$ eine dichte Teilmenge von $\mathbb R$ ist.
- 6. Schreiben Sie die folgenden Aussagen mit Hilfe von Quantoren
- a) $\sqrt{n} > 100$ für alle genügend grossen Zahlen.
- b) Die Wurzel jeder rationalen Zahl ist reell.
- c) Jedes Quadrat ist positiv.
- d) $0 < 10x^2 < x$ für alle genügend kleinen positiven reellen Zahlen.
- 7. Übersetzen Sie auf Deutsch:
- (i) $\exists n \in \mathbb{Z} \ m = 2n$. (ii) $\forall A \subset \mathbb{R} \ \exists B \subset \mathbb{R} \ \text{so dass} \ A \cap B = \emptyset \ \text{und} \ A \cup B = \mathbb{R}$.
- **8.** Was ist die Kardinalität von (i) $[0, \infty)$, (ii) die Primzahlen, (iii) $\mathbb{R} \setminus \mathbb{Q}$, (iv) $\mathbb{N} \times \mathbb{Q}$?
- 9. Gegeben 0 < x < y, welche der beiden Zahlen ist grösser?
- (a) $\tan e^{-x}$ oder $\tan e^{-y}$, (b) $e^{-\frac{1}{\sqrt{x^2+1}}}$ oder $e^{-\frac{1}{\sqrt{x^2+1}}}$, (c) $\lfloor \ln x \rfloor$ oder $\lfloor \ln y \rfloor$.
- 10. Gegeben $\varepsilon > 0$ und $M \in \mathbb{N}$. Was ist das kleinste $N \in \mathbb{N}$ so dass
- (a) $\forall n \ge N \ \frac{1}{n+57} < \varepsilon$, (b) $\forall n \ge N \ \frac{\sin n}{\sqrt{n}} < \varepsilon$, (c) $\forall n \ge N \ e^{n^2 1} > M$.
- 11. Ist die obere/untere Grenze einer Menge A eindeutig bestimmt? Sind $\inf(A)$ and $\sup(A)$ eindeutig bestimmt? Begründen Sie Ihre Antwort.