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Setting

(X ,F) – a compact foliated space (manifold, matchbox etc.)
modelled transversely on a metric space Z (= Rq, Cantor set etc.)

F = 〈f1, . . . , fm〉 – a finitely generated pseudo(semi-)group (IFS) of
continuous local foliated maps f : Df → Rf , Df , Rf ⊂ X :

f ∈ F ⇔ ∀x∈Df
∃U∃n∈N∃k1,...kn x ∈ U ⊂ Df , f |U = fk1 ◦ . . . fkn |U

A – a finite foliated atlas on X

H = HA – the holonomy pseudogroup of F defined on Z by A

G = GF,H – the finitely generated pseudo(semi-)group of maps
g ◦ f ◦ h with f ∈ F, g , h ∈ H

Paweł WalczakKatedra Geometrii, Uniwersytet Łódzki pawelwal@math.uni.lodz.plTRANSVERSE ENTROPY of FOLIATED IFS’s



Pseudo(semi-)groups

Definition
Given an arbitrary topological space Z , the set G of continuous
maps g : Dg → Z , Dg being open in Z , is said to be a
pseudosemigroup (PSG) whenever
(i) g , h ∈ G =⇒ g ◦ h ∈ G,
(ii) g ∈ G, U ⊂ Dg =⇒ g |U ∈ G,
(iii) g : Dg → Z is continuous and Dg is covered by such open sets

U that g |U ∈ G for all U =⇒ g ∈ G.
If moreover
(iv) idX ∈ G, then G is called a pseudomonoid
and if all g ∈ G are homeomorphisms between open sets Dg and
Rg such that
(v) g ∈ G ⇒ g−1 ∈ G,
then G is a pseudogroup.
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Examples

Examples
Given a smooth manifold M and r ≥ 1, all local Cr maps
g : Dg → M, Dg ⊂ M, form a PSG (in fact, a pseudomonoid).
Given a foliated space (X ,F) and r ≥ 1, all the local foliated
maps g : Dg → X , Dg ⊂ X , being Cr -smooth along the leaves
form a PSG (a pseudomonoid).
Given a Riemannian manifold (M, 〈, ·, ·〉) all the local
isometric, quasi-isometric, (quasi-)conformal maps form PSG’s.
And many more.
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Generating PSG’s

Proposition
For any set G0 of local maps g : Dg → Z there exists the smallest
PSG G containing G0.

Proof.
G can be defined either as the intersection of all the PSG’s
containing G0 or as the set of all the maps g : Dg → Z satisfying
the following:

∀x∈Dg∃U∃n∈N∃g1,...gn∈G0 x ∈ U ⊂ Dg , g |U = g1 ◦ . . . gn|U.

Definition
The PSG of the above Proposition is said to be generated by G0.
PSG’s generated by finite sets are said to be finitely generated.
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Morphisms

Let G and H be PSG’s on spaces X and Y , respectively, and Φ a
set of homeomorhisms φ : Dφ → Rφ between open sets of X and Y
such that

⋃
φ∈Φ Dφ = X .

Definition

Φ is said to be a morphism of G into H, Φ : G→ H, whenever
φ ◦ g ◦ ψ−1 ∈ H for all g ∈ G, φ, ψ ∈ Φ. Φ is an isomorphism
between G and H when Φ : G→ H and
Φ−1 = {φ−1;φ ∈ Φ} : H→ G.
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From foliated maps to PSG’s

Now: F1 = {F1, . . .Fk} – a finite set of foliation preserving maps of
a foliated space (X ,F) into itself,
Fk , k ∈ N – the set of all Fik ◦ · · · ◦ Fi1 ’s, F =

⋃
k∈N Fk .

Certainly: F is a semigroup, a monoid when idX ∈ F1 (if so,
Fk ⊂ Fk+1 for any k ∈ N).

Next: A = {φa; a ∈ A} – a foliated atlas, Da – the domain of φa.
Ta ⊂ Da – transversals, T – the disjoint union of all the Ta’s, a
complete transversal: any leaf L of F intersects T .

∀F ∈ F, a, b ∈ A: Fb,a = πb ◦ F ◦ ιa, where ιa : Ta → Da – the
embedding, πb : Db → Tb – the projection along the plaques.
Certainly: domains Dba of Fba’s are open in Ta’s and
Fca = Fcb ◦ Fba whenever defined.

Finally: G0 = {Fba; a, b ∈ A} generates a PSG G(F,A) on T .
Certainly again, idX ∈ F1 =⇒ G(F,A) – a pseudomonoid.
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PSG’s to PSG’s

Remark
The similar construction can be performed for any finitely
generated PSG F of local foliation preserving maps F : DF → X
defined on open domains DF ⊂ X .

On the next slide:
G is an arbitrary PSG generated by a finite set G0.
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Entropy of a PSG

Definition

For any ε > 0 and k ∈ N, points x and y of X are said to be
(k, ε)-separated whenever d(h(x), h(y)) ≥ ε for some h ∈ Gk .
The set Z ⊂ X is (k , ε)-separated whenever any two points x and
y of Z , x 6= y , are (k , ε)-separated. Since X is compact, all the
(k, ε)-separated sets are finite and one can put

N(k, ε,G0) = max#{Z ⊂ T ,Z is (k , ε)− separated},

N(ε,G0) = lim sup
k→∞

1
k
· logN(k , ε,G0),

E(G,G0) = lim
ε→0

N(ε,G0).

The quantity E(G,G0) is called the topological entropy of G (w.
r. t. G0).

Paweł WalczakKatedra Geometrii, Uniwersytet Łódzki pawelwal@math.uni.lodz.plTRANSVERSE ENTROPY of FOLIATED IFS’s



Transverse entropy

Definition

Given a foliated space (X ,F), a finitely generated PSG F of
foliation preservig maps and a foliated atlas A, the quantity

Et = E(G(F,A),F1)

is called the transverse entropy of F (w. r. t. F ,A and a
generating set F1).
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Basic properties

Proposition

If the two distance functions d1 and d2 on X are Lipschitz
equivalent, c−1d1 ≤ d2 ≤ c · d1 for some constant c ≥ 1, then the
corresponding entropies E1 and E2 are equal. Consequently, if
(X ,F) is a closed foliated manifold and the distances d1 and d2 on
a transversal T arise from Riemannian structures g1 and g2 on X ,
then the corresponding transverse entropies Et1 and Et2 are equal.

Proposition

If G0 and G′0 are two finite sets generating a PSG G, and for any
g ∈ G0 and any x ∈ Dg there exist m ∈ N, a neighbourhhod U of
x and a member h of G′m such that g = h on U, then

E(G,G0) ≤ m0 · E(G′,G′0).

for some m0 ∈ N.
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Corollary

For any finitely generated PSG F of foliation preserving maps and
any two foliated atlases A and Ã on a compact foliated space
(X ,F) the corresponding transverse entropies Et = E(G(F,A),F1)
and Ẽt = E(G(F, Ã),F1) satisfy

c · Et ≤ Ẽt ≤ C · Et

for some c ,C > 0.

Therefore, with a bit of care, one can distinguish between PSG’s of
foliated maps of zero transverse entropy and those of positive
transverse entropy.

Paweł WalczakKatedra Geometrii, Uniwersytet Łódzki pawelwal@math.uni.lodz.plTRANSVERSE ENTROPY of FOLIATED IFS’s



Transversely invariant measures (TIM’s)

Definition
A (Borel, probability) measure µ on Z is said to be G-invariant
whenever µ(h−1(Y )) = µ(Y ) for any h ∈ G and any measurable
Y ⊂ Dh.
For a PSG F of foliation preserving maps a foliated atlas A,
G(F,A)-invariant measures are said to be transversely invariant
(TIM).

Simple examples show, that non-trivial measures invariant by
transformations of a group, semigroup, therefore of a PSG, needn’t
exist.
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Transverse entropy and TIM’s

Theorem
If G has vanishing entropy, then G-inavariant Borel probability
measures exist. Therfore, if Et(F) = 0, then Borel probability
TIM’s for F do exist.

The proof is analogous to that for holonomy pseudogroups in

E. Ghys, R. Langevin, P. W., Entropie geometrique des
feuilletages, Acta Math. 160 (1988), 105 – 142

and for general pseudogroups in Section 4.5 of

P. W., Dynamics of Foliations, Groups and Pseudogroups,
Birhkhäuser 2004.
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Existence of TIM’s - the proof (1)

Proof. Let S(k , ε) be the family of all (k , ε)-separated subsets of Z .
Given a non-negative continuous function f on Z put

Λk,ε(f ) =
1

N(k, ε)
· sup

{∑
y∈Y

f (y);Y ∈ S(k , ε)
}

The functionals Λk,ε are non-negatively homogeneous, subadditive,
monotonic, normaliezed and bounded: Λk,ε(f ) ≤ sup f . Since
E(G) = 0, there exist sequences εn → 0 and N 3 kn →∞ such
that the corresponding functionals Λkn,εn and Λkn+1,εnconverge to
functionals Λ and Λ1 which are non-negatively homogeneous,
subadditive, monotonic and normalized: Λ(1) = Λ1(1) = 1.
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Existence of TIM’s - the proof (2)

Moreover

Λ(f1 + f2) = Λ(f1) + Λ(f2) and Λ1(f1 + f2) = Λ1(f1) + Λ1(f2)

whenever supp f1 ∩ supp f2 = ∅. Put

µ(K ) = inf{Λ(f ); 0 ≤ f ≤ 1, f |K ≡ 1}

and
µ1(K ) = inf{Λ1(f ); 0 ≤ f ≤ 1, f |K ≡ 1}.

Following the proof of Riesz Reprezentation Theorem, see

W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966,
one can show that µ and µ1 extend to Borel probability measures
such that µ = µ1 is G-invariant.
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GVL – Appendix (1)

Theorem (GLW)

If the entropy of a foliation F of a manifold vanishes, then the
Godbillon-Vey class GL(F) = 0 ∈ H3(M).

In

M. V. Losik, A generalization of manifold and its characteristic
classes, Funktsional’nyi Analiz i Ego Prilozheniya, 24 (1990),
29 –37,

V. Bazaikin, A. Galayev, P. Gumenyuk, Non-diffeomorphic
Reeb foliations and modified Godbillon-Vey class, Math. Z.
300 (2022), 1335 – 1349,

a characteristic (diffeo-not-homeo invariant!) class GVL(F) for
codimension-1 foliations has been introduced (and studied).
GVL(F) ∈ H3(S2(M/F)), where S2(M/F) is the second order
frame bundle of the leaf space M/F considered as the generalised
manifold in the Losic sense.
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Since
(1.1) there exists a natural linear map H3(S2(M/F)→ H3(M)
which sends GVL(F) onto GV (F),
(1.2) all the Reeb foliations of S3 have zero entropy while some of
them have non-zero GVL-class [BGG],
(2) Losik generalized manifolds correspond to orbit spaces of
peseudugroups,
one can ask the following (and more)

Questions

(1) When does the condition Et(F) = 0 imply GVL(F) = 0?

(2) Can one extend the Losik notion of a manifold to orbit spaces
of arbitrary PSG’s and provide GLV-classes for reasonable PSG’s?
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Terminus

Finally let me express my best thanks:
to the organizers for the invitation and
to participants for attending my talk.

Figure : Grimming that I hope to see soon
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