Self-similarity of substitution tiling semigroups

Mike Whittaker (University of Glasgow)

Joint work with Jamie Walton (Nottingham)

36th Summer Topology Conference University of Vienna

July 21, 2022

1. I. Tilings and their properties

2. II. Kellendonk's punctured hull and topological Markov shifts

3. III. Self-similar inverse semigroup actions

4. IV. The limit space (there and back again)

1. I. Tilings and their properties $\checkmark \dots$ thanks Lorenzo.

2. II. Kellendonk's punctured hull and topological Markov shifts

3. III. Self-similar inverse semigroup actions

4. IV. The limit space (there and back again)

II. Kellendonk's punctured hull

For each prototile $p \in \mathcal{P}$, choose a point in its interior and label it x(p). Extend the punctures to every tiling T' in Ω by the rule

$$t \in T' \text{ and } t = p + y \implies x(t) = x(p) + y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

II. Kellendonk's punctured hull

For each prototile $p \in \mathcal{P}$, choose a point in its interior and label it x(p). Extend the punctures to every tiling T' in Ω by the rule

$$t \in T'$$
 and $t = p + y \implies x(t) = x(p) + y$.

The discrete hull Ω_{punc} is defined by

 $\Omega_{punc} := \{ T' \in \Omega_T \mid \text{the puncture of a tile in } T \text{ is on the origin} \}$

II. Kellendonk's punctured hull

For each prototile $p \in \mathcal{P}$, choose a point in its interior and label it x(p). Extend the punctures to every tiling T' in Ω by the rule

$$t \in T' \text{ and } t = p + y \implies x(t) = x(p) + y.$$

The discrete hull Ω_{punc} is defined by

 $\Omega_{punc} := \{ T' \in \Omega_T \mid \text{the puncture of a tile in } T \text{ is on the origin} \}$

◆□ → ◆圖 → ◆国 → ◆国 → □ ■

The discrete hull of a tiling

A neighbourhood base for the topology of Ω_{punc} is given by: For P a patch of tiles in some tiling in Ω_{punc} and $t \in P$ define

$$U(P,t) := \{T \in \Omega_{\mathsf{punc}} \mid P - x(t) \subset T\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The discrete hull of a tiling

A neighbourhood base for the topology of Ω_{punc} is given by: For P a patch of tiles in some tiling in Ω_{punc} and $t \in P$ define

$$U(P,t) := \{T \in \Omega_{punc} \mid P - x(t) \subset T\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The discrete hull of a tiling

A neighbourhood base for the topology of Ω_{punc} is given by: For P a patch of tiles in some tiling in Ω_{punc} and $t \in P$ define

$$U(P,t) := \{T \in \Omega_{punc} \mid P - x(t) \subset T\}$$

Lemma (Kellendonk): The sets U(P, t) are clopen, and Ω_{punc} is a Cantor set.

For $p \in \mathcal{P}$ and $t \in \omega(p)$ we call (t, p) a supertile extension, and denote the set of such supertile extensions by S.

Often S can be identified with all pairs $(a, b) \in \mathcal{P}^2$ for which $a \in \omega(b)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For $p \in \mathcal{P}$ and $t \in \omega(p)$ we call (t, p) a supertile extension, and denote the set of such supertile extensions by S.

Often S can be identified with all pairs $(a, b) \in \mathcal{P}^2$ for which $a \in \omega(b)$.

Given a supertile extension $e = (t, p) \in S$, we denote r(e) := t(considered as a prototile in \mathcal{P}) and s(e) := p. We construct the substitution graph G with vertex set \mathcal{P} , edge set S and source and range maps $s, r : S \to \mathcal{P}$.

The substitution graph gives rise to a topological Markov shift

$$\mathcal{F} := \{ e_0 e_1 e_2 \cdots \mid s(e_i) = r(e_{i+1}) \},$$

with left shift $\sigma: \mathcal{F} \to \mathcal{F}$ defined by $\sigma(e_0e_1e_2\cdots) = e_1e_2\cdots$.

There is a natural topology on \mathcal{F} whose basis consists of clopen cylinder sets of all infinite strings starting with some given finite initial string.

The substitution graph gives rise to a topological Markov shift

$$\mathcal{F} := \{ e_0 e_1 e_2 \cdots \mid s(e_i) = r(e_{i+1}) \},$$

with left shift $\sigma: \mathcal{F} \to \mathcal{F}$ defined by $\sigma(e_0e_1e_2\cdots) = e_1e_2\cdots$.

There is a natural topology on \mathcal{F} whose basis consists of clopen cylinder sets of all infinite strings starting with some given finite initial string.

We obtain a homeomorphism between the Markov shift and the punctured hull:

$$\tau \colon \mathcal{F} \xrightarrow{\cong} \Omega_{punc}$$

The Fibonacci tiling

The (border forcing) Fibonacci substitution has four prototiles that substitute as follows:

The substitution graph is on the right, and paths in the graph correspond to punctured tilings...

・ロト ・ 同ト ・ ヨト ・ ヨト

The Fibonacci tiling

A graphical representation of the partial tiling formed by the word w = (b, d)(d, b)(b, d)... Tile lengths are increased by the golden ratio at each increasing level.

III. Self-similar inverse semigroup actions

A semigroup S is an inverse semigroup if for each $s \in S$ there exists a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

III. Self-similar inverse semigroup actions

A semigroup S is an inverse semigroup if for each $s \in S$ there exists a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

According to the Vagner–Preston Representation Theorem, every inverse semigroup is isomorphic to a subsemigroup of $\mathcal{I}(X)$, the inverse semigroup of partial bijections on a set X.

III. Self-similar inverse semigroup actions

A semigroup S is an inverse semigroup if for each $s \in S$ there exists a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

According to the Vagner–Preston Representation Theorem, every inverse semigroup is isomorphic to a subsemigroup of $\mathcal{I}(X)$, the inverse semigroup of partial bijections on a set X.

An action of an inverse semigroup S on a set X is a homomorphism $\pi: S \to \mathcal{I}(X)$. If the homomorphism π is fixed, we usually write $g \cdot x$ for $\pi_g(x)$.

A doubly pointed patch [b, P, a] is given by a finite patch P and tiles $a, b \in P$, where we take the tuple (b, P, a) up to translation equivalence. Let T be the set of all doubly pointed patches along with a 'zero element' $0 \in T$.

A doubly pointed patch [b, P, a] is given by a finite patch P and tiles $a, b \in P$, where we take the tuple (b, P, a) up to translation equivalence. Let \mathcal{T} be the set of all doubly pointed patches along with a 'zero element' $0 \in \mathcal{T}$.

Let [d, Q, c], $[b, P, a] \in \mathcal{T}$ be two doubly pointed patches which, without loss of generality (by translating each, if necessary) have x(b) = x(c). If P and Q agree on any tiles with intersecting interiors and $P \cup Q$ is a valid patch, then we define

$$[d, Q, c][b, P, a] = [d, P \cup Q, a].$$

Otherwise, we define [d, Q, c][b, P, a] = 0. Any product with 0 is defined as 0.

We call $\mathcal{T} = (\mathcal{T}, \cdot)$ the tiling semigroup.

The tiling semigroup \mathcal{T} naturally acts by partial bijections on the discrete hull Ω_{punc} , where a doubly pointed patch g = [b, P, a] has domain $U(P, a) \subset \Omega_{punc}$ and codomain $U(P, b) \subset \Omega_{punc}$.

The action is by translation: If $T \in U(P, a) \subset \Omega_{punc}$, then

$$[b, P, a] \cdot T = T - b(x).$$

The tiling semigroup \mathcal{T} naturally acts by partial bijections on the discrete hull Ω_{punc} , where a doubly pointed patch g = [b, P, a] has domain $U(P, a) \subset \Omega_{punc}$ and codomain $U(P, b) \subset \Omega_{punc}$.

The action is by translation: If $T \in U(P, a) \subset \Omega_{punc}$, then

$$[b, P, a] \cdot T = T - b(x).$$

Note that our notation mirrors function composition: the element [b, P, a] has 'in tile' *a* and 'out tile' *b*, with a product of elements [d, Q, c][b, P, a] interpreted as applying the right then the left-hand term, and requiring that the intermediate tiles *b* and *c* agree.

Self-similar inverse semigroup actions

Definition (Bartholdi, Grigorchuk and Nekrashevych)

Let \mathcal{F} be a topological Markov chain over an alphabet X. An inverse semigroup G acting on \mathcal{F} is called self-similar if for every $g \in G$ and $x \in X$ there exist $y_1, \ldots, y_k \in X$ and $h_1, \ldots, h_k \in G$ such that the sets dom (h_i) are disjoint, $\bigcup_{i=1}^k \operatorname{xdom}(h_i) = x\mathcal{F} \cap \operatorname{dom}(g)$, and for every $xw \in \mathcal{F}$ we have

$$g \cdot xw = y_i(h_i \cdot w), \qquad (1)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where *i* is such that $w \in \text{dom}(h_i)$.

Self-similar inverse semigroup actions

Definition (Bartholdi, Grigorchuk and Nekrashevych)

Let \mathcal{F} be a topological Markov chain over an alphabet X. An inverse semigroup G acting on \mathcal{F} is called self-similar if for every $g \in G$ and $x \in X$ there exist $y_1, \ldots, y_k \in X$ and $h_1, \ldots, h_k \in G$ such that the sets dom (h_i) are disjoint, $\bigcup_{i=1}^k x \operatorname{dom}(h_i) = x \mathcal{F} \cap \operatorname{dom}(g)$, and for every $xw \in \mathcal{F}$ we have

$$g \cdot xw = y_i(h_i \cdot w), \qquad (1)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where *i* is such that $w \in \text{dom}(h_i)$.

Theorem (Walton-W)

The tiling semigroup T of a substitution tiling defines a self-similar inverse semigroup action on the Markov shift F.

Back to the Fibonacci example

 $[a, P_{ba}, b] \cdot (b, d)(d, b)(b, d)z = (a, c) ([c, P_{dc}, d] \cdot (d, b)(b, d)z)$ $= (a, c)(c, a) ([a, P_{ba}, b] \cdot (b, d)z)$

< ロ > < 同 > < 回 > < 回 >

Example: the half hex tiling

Half-hex con't

An illustration of the self-similar relation

$$[p_3, A, p_0] \cdot (p_0, p_0)w = (p_3, p_3) [p_3, A, p_0] \cdot w.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

IV. The limit space (there and back again)

Let G be a finite graph with associated topological Markov shift \mathcal{F} (the right-infinite, left-pointing paths). We define

$$\mathcal{F}^{-} := \{ \cdots e_{-3}e_{-2}e_{-1} \mid r(e_{i}) = s(e_{i-1}) \};$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

IV. The limit space (there and back again)

Let G be a finite graph with associated topological Markov shift \mathcal{F} (the right-infinite, left-pointing paths). We define

$$\mathcal{F}^{-} := \{ \cdots e_{-3}e_{-2}e_{-1} \mid r(e_{i}) = s(e_{i-1}) \};$$

Two elements $x = \cdots e_{-3}e_{-2}e_{-1}$ and $y = \cdots f_{-3}f_{-2}f_{-1} \in \mathcal{F}^-$ are called asymptotically equivalent with respect to the action of the semigroup *G* if there is a sequence (g_n) of *G*, with $\{g_n\} \subseteq G$ finite, and some $w \in \mathcal{F}$ so that for each $n \in \mathbb{N}$ the element

$$g_n \cdot (e_{-n} \cdots e_{-3} e_{-2} e_{-1} w) \in \mathcal{F}$$

has initial string of *n* terms given by $f_{-n} \cdots f_{-3} f_{-2} f_{-1} \in \mathcal{F}^n$. In this case we write $x \sim_{ae} y$. We define the asymptotic equivalence relation \sim on \mathcal{F}^- to be the equivalence relation generated by \sim_{ae} .

The limit space

The limit space \mathcal{J} of a self-similar semigroup action is defined as the quotient space \mathcal{F}^-/\sim . The shift map $\sigma: \mathcal{F}^- \to \mathcal{F}^-$, given by $\cdots e_{-3}e_{-2}e_{-1} \mapsto \cdots e_{-4}e_{-3}e_{-2}$ induces a map $\sigma: \mathcal{J} \to \mathcal{J}$. We denote its inverse limit by

$$\Omega := \varprojlim (\mathcal{J} \stackrel{\sigma}{\leftarrow} \mathcal{J} \stackrel{\sigma}{\leftarrow} \mathcal{J} \stackrel{\sigma}{\leftarrow} \cdots).$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The limit space

The limit space \mathcal{J} of a self-similar semigroup action is defined as the quotient space \mathcal{F}^-/\sim . The shift map $\sigma: \mathcal{F}^- \to \mathcal{F}^-$, given by $\cdots e_{-3}e_{-2}e_{-1} \mapsto \cdots e_{-4}e_{-3}e_{-2}$ induces a map $\sigma: \mathcal{J} \to \mathcal{J}$. We denote its inverse limit by

$$\Omega := \varprojlim (\mathcal{J} \stackrel{\sigma}{\leftarrow} \mathcal{J} \stackrel{\sigma}{\leftarrow} \mathcal{J} \stackrel{\sigma}{\leftarrow} \cdots).$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Anderson–Putnam complex of a tiling is the compact Hausdorff topological space formed through taking the transitive closure of gluing together prototiles in all ways their translations can be adjacent in a tiling.

The limit space

The limit space \mathcal{J} of a self-similar semigroup action is defined as the quotient space \mathcal{F}^-/\sim . The shift map $\sigma: \mathcal{F}^- \to \mathcal{F}^-$, given by $\cdots e_{-3}e_{-2}e_{-1} \mapsto \cdots e_{-4}e_{-3}e_{-2}$ induces a map $\sigma: \mathcal{J} \to \mathcal{J}$. We denote its inverse limit by

$$\Omega := \varprojlim (\mathcal{J} \stackrel{\sigma}{\leftarrow} \mathcal{J} \stackrel{\sigma}{\leftarrow} \mathcal{J} \stackrel{\sigma}{\leftarrow} \cdots).$$
(2)

The Anderson–Putnam complex of a tiling is the compact Hausdorff topological space formed through taking the transitive closure of gluing together prototiles in all ways their translations can be adjacent in a tiling.

Theorem (Walton-W)

Suppose $(\mathcal{T}, \mathcal{F})$ is a self-similar inverse semigroup associated with a recognisable substitution ω . The limit space \mathcal{J} is homeomorphic to the Anderson–Putnam complex of the substitution, and the inverse limit Ω in (2) is conjugate to the continuous hull Ω_{ω} .

References:

- J. Anderson and I.F. Putnam, *Topological invariants for* substitution tilings and their C*-algebras, Ergodic Th. and Dynam. Sys. 18 (1998), 509-537.
- L. Bartholdi, R. Grigorchuk and V. Nekrashevych, *From fractal groups to fractal sets*, Erwin Schrödinger International Institute for Mathematical Physics, 2002.
- J. Kellendonk, *Noncommutative geometry of tilings and gap labelling*, Rev. Math. Phy. **7** (1995), 1133–1180.
- J. Kellendonk and M.V. Lawson, *Tiling semigroups*, J. Algebra 224 (2000), 140–150.
- V. Nekrashevych, *Self-similar inverse semigroups and Smale spaces*, Intern. J. Alg. Comp. **16** (2006), 849–874.
- J. Walton and M.F. Whittaker *Self-similarity and limit spaces* of substitution tiling semigroups, preprint, ArXiv 2112.07652.