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II. Kellendonk’s punctured hull
For each prototile p ∈ P, choose a point in its interior and label it
x(p). Extend the punctures to every tiling T ′ in Ω by the rule

t ∈ T ′ and t = p + y =⇒ x(t) = x(p) + y .

The discrete hull Ωpunc is defined by

Ωpunc := {T ′ ∈ ΩT | the puncture of a tile in T is on the origin}



II. Kellendonk’s punctured hull
For each prototile p ∈ P, choose a point in its interior and label it
x(p). Extend the punctures to every tiling T ′ in Ω by the rule

t ∈ T ′ and t = p + y =⇒ x(t) = x(p) + y .

The discrete hull Ωpunc is defined by

Ωpunc := {T ′ ∈ ΩT | the puncture of a tile in T is on the origin}



II. Kellendonk’s punctured hull
For each prototile p ∈ P, choose a point in its interior and label it
x(p). Extend the punctures to every tiling T ′ in Ω by the rule

t ∈ T ′ and t = p + y =⇒ x(t) = x(p) + y .

The discrete hull Ωpunc is defined by

Ωpunc := {T ′ ∈ ΩT | the puncture of a tile in T is on the origin}



The discrete hull of a tiling

A neighbourhood base for the topology of Ωpunc is given by: For P
a patch of tiles in some tiling in Ωpunc and t ∈ P define

U(P, t) := {T ∈ Ωpunc | P − x(t) ⊂ T}

Lemma (Kellendonk): The sets U(P, t) are clopen, and Ωpunc is a
Cantor set.
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The substitution graph and discrete hull

For p ∈ P and t ∈ ω(p) we call (t, p) a supertile extension, and
denote the set of such supertile extensions by S.

Often S can be identified with all pairs (a, b) ∈ P2 for which
a ∈ ω(b).

Given a supertile extension e = (t, p) ∈ S, we denote r(e) := t
(considered as a prototile in P) and s(e) := p. We construct the
substitution graph G with vertex set P, edge set S and source and
range maps s, r : S → P.
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The substitution graph and discrete hull

The substitution graph gives rise to a topological Markov shift

F := {e0e1e2 · · · | s(ei ) = r(ei+1)},

with left shift σ : F → F defined by σ(e0e1e2 · · · ) = e1e2 · · · .

There is a natural topology on F whose basis consists of clopen
cylinder sets of all infinite strings starting with some given finite
initial string.

We obtain a homeomorphism between the Markov shift and the
punctured hull:

τ : F
∼=−→ Ωpunc
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The Fibonacci tiling

The (border forcing) Fibonacci substitution has four prototiles that
substitute as follows:

a c d

b a d

c a d

d b b

d

(d , b)
(b, d)

c
(d , c)

a

(a, c)
(c , a)(d , a)

(a, b)

The substitution graph is on the right, and paths in the graph
correspond to punctured tilings...



The Fibonacci tiling

a d c d b a d b a d

b a d c d b

d b a d

d

(b, d)

(d , b)

(b, d)

‡ ‡ ‡ ‡ ‡‡ ‡

‡‡‡ ‡

‡ ‡‡

‡

•

A graphical representation of the partial tiling formed by the word
w = (b, d)(d , b)(b, d).... Tile lengths are increased by the golden
ratio at each increasing level.



III. Self-similar inverse semigroup actions

A semigroup S is an inverse semigroup if for each s ∈ S there
exists a unique element s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗.

According to the Vagner–Preston Representation Theorem, every
inverse semigroup is isomorphic to a subsemigroup of I(X ), the
inverse semigroup of partial bijections on a set X .

An action of an inverse semigroup S on a set X is a
homomorphism π : S → I(X ). If the homomorphism π is fixed, we
usually write g · x for πg (x).
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Tiling inverse semigroups (Kellendonk)

A doubly pointed patch [b,P, a] is given by a finite patch P and
tiles a, b ∈ P, where we take the tuple (b,P, a) up to translation
equivalence. Let T be the set of all doubly pointed patches along
with a ‘zero element’ 0 ∈ T .

Let [d ,Q, c], [b,P, a] ∈ T be two doubly pointed patches which,
without loss of generality (by translating each, if necessary) have
x(b) = x(c). If P and Q agree on any tiles with intersecting
interiors and P ∪ Q is a valid patch, then we define

[d ,Q, c][b,P, a] = [d ,P ∪ Q, a].

Otherwise, we define [d ,Q, c][b,P, a] = 0. Any product with 0 is
defined as 0.

We call T = (T , ·) the tiling semigroup.
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Tiling inverse semigroups (Kellendonk)

The tiling semigroup T naturally acts by partial bijections on the
discrete hull Ωpunc , where a doubly pointed patch g = [b,P, a] has
domain U(P, a) ⊂ Ωpunc and codomain U(P, b) ⊂ Ωpunc .

The action is by translation: If T ∈ U(P, a) ⊂ Ωpunc , then

[b,P, a] · T = T − b(x).

Note that our notation mirrors function composition: the element
[b,P, a] has ‘in tile’ a and ‘out tile’ b, with a product of elements
[d ,Q, c][b,P, a] interpreted as applying the right then the left-hand
term, and requiring that the intermediate tiles b and c agree.
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Self-similar inverse semigroup actions

Definition (Bartholdi, Grigorchuk and Nekrashevych)

Let F be a topological Markov chain over an alphabet X . An
inverse semigroup G acting on F is called self-similar if for every
g ∈ G and x ∈ X there exist y1, . . . , yk ∈ X and h1, . . . , hk ∈ G
such that the sets dom(hi ) are disjoint,⋃k

i=1 xdom(hi ) = xF ∩ dom(g), and for every xw ∈ F we have

g · xw = yi (hi · w), (1)

where i is such that w ∈ dom(hi ).

Theorem (Walton-W)

The tiling semigroup T of a substitution tiling defines a self-similar
inverse semigroup action on the Markov shift F .
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Back to the Fibonacci example

a d c d b a d b a d

b a d c d b

d b a d

d

[a,Pba, b]
(b, d)

[c ,Pdc , d ]

(a, c)

(d , b)

[a,Pba, b]

(c , a)

(b, d)

‡ ‡ ‡ ‡ ‡‡ ‡

‡‡‡ ‡

‡ ‡‡

‡

[a,Pba, b] · (b, d)(d , b)(b, d)z = (a, c) ([c,Pdc , d ] · (d , b)(b, d)z)

= (a, c)(c , a) ([a,Pba, b] · (b, d)z)



Example: the half hex tiling

p2

p3

p4

p5

p0

p1

p0
p0

p2

p3

p4

ϕ

p0

p1

p2

p3

p4

p5



Half-hex con’t

(p0, p0)

(p3, p3)

[p3,A,p0]

(p0, x)

(p3, x)

[p3,A,p0]

An illustration of the self-similar relation

[p3,A, p0] · (p0, p0)w = (p3, p3) [p3,A, p0] · w .



IV. The limit space (there and back again)

Let G be a finite graph with associated topological Markov shift F
(the right-infinite, left-pointing paths). We define

F− := {· · · e−3e−2e−1 | r(ei ) = s(ei−1)};

Two elements x = · · · e−3e−2e−1 and y = · · · f−3f−2f−1 ∈ F− are
called asymptotically equivalent with respect to the action of the
semigroup G if there is a sequence (gn) of G , with {gn} ⊆ G
finite, and some w ∈ F so that for each n ∈ N the element

gn · (e−n · · · e−3e−2e−1w) ∈ F

has initial string of n terms given by f−n · · · f−3f−2f−1 ∈ Fn. In this
case we write x ∼ae y . We define the asymptotic equivalence
relation ∼ on F− to be the equivalence relation generated by ∼ae.



IV. The limit space (there and back again)

Let G be a finite graph with associated topological Markov shift F
(the right-infinite, left-pointing paths). We define

F− := {· · · e−3e−2e−1 | r(ei ) = s(ei−1)};

Two elements x = · · · e−3e−2e−1 and y = · · · f−3f−2f−1 ∈ F− are
called asymptotically equivalent with respect to the action of the
semigroup G if there is a sequence (gn) of G , with {gn} ⊆ G
finite, and some w ∈ F so that for each n ∈ N the element

gn · (e−n · · · e−3e−2e−1w) ∈ F

has initial string of n terms given by f−n · · · f−3f−2f−1 ∈ Fn. In this
case we write x ∼ae y . We define the asymptotic equivalence
relation ∼ on F− to be the equivalence relation generated by ∼ae.



The limit space

The limit space J of a self-similar semigroup action is defined as
the quotient space F−/ ∼. The shift map σ : F− → F−, given by
· · · e−3e−2e−1 7→ · · · e−4e−3e−2 induces a map σ : J → J . We
denote its inverse limit by

Ω := lim←−(J σ←− J σ←− J σ←− · · · ). (2)

The Anderson–Putnam complex of a tiling is the compact
Hausdorff topological space formed through taking the transitive
closure of gluing together prototiles in all ways their translations
can be adjacent in a tiling.

Theorem (Walton-W)

Suppose (T ,F) is a self-similar inverse semigroup associated with
a recognisable substitution ω. The limit space J is homeomorphic
to the Anderson–Putnam complex of the substitution, and the
inverse limit Ω in (2) is conjugate to the continuous hull Ωω.
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