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Il. Kellendonk’s punctured hull
For each prototile p € P, choose a point in its interior and label it
x(p). Extend the punctures to every tiling T’ in Q by the rule

teT' andt=p+y — x(t) = x(p) +y.
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The discrete hull of a tiling
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The discrete hull of a tiling

A neighbourhood base for the topology of {2punc is given by: For P
a patch of tiles in some tiling in Qpunc and t € P define

UP,t) :={T € Qpunc | P —x(t) C T}

Lemma (Kellendonk): The sets U(P, t) are clopen, and Qpunc is a
Cantor set.



The substitution graph and discrete hull

For p € P and t € w(p) we call (¢, p) a supertile extension, and
denote the set of such supertile extensions by .

Often S can be identified with all pairs (a, b) € P? for which
a € w(b).



The substitution graph and discrete hull

For p € P and t € w(p) we call (¢, p) a supertile extension, and
denote the set of such supertile extensions by .

Often S can be identified with all pairs (a, b) € P? for which
a € w(b).

Given a supertile extension e = (t, p) € S, we denote r(e) ==t
(considered as a prototile in P) and s(e) := p. We construct the
substitution graph G with vertex set P, edge set S and source and
range maps s, r: S — P.



The substitution graph and discrete hull

The substitution graph gives rise to a topological Markov shift
F ={ecere2--- | s(e;) = r(eiy1)},

with left shift o : F — F defined by o(eper1er--+) = e1en---.

There is a natural topology on F whose basis consists of clopen

cylinder sets of all infinite strings starting with some given finite
initial string.



The substitution graph and discrete hull

The substitution graph gives rise to a topological Markov shift
F ={ecere2--- | s(e;) = r(eiy1)},

with left shift o : F — F defined by o(eper1er--+) = e1en---.

There is a natural topology on F whose basis consists of clopen

cylinder sets of all infinite strings starting with some given finite
initial string.

We obtain a homeomorphism between the Markov shift and the
punctured hull:

7: F = Qpunc



The Fibonacci tiling

The (border forcing) Fibonacci substitution has four prototiles that
substitute as follows:
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The substitution graph is on the right, and paths in the graph
correspond to punctured tilings...




The Fibonacci tiling
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A graphical representation of the partial tiling formed by the word
w = (b, d)(d, b)(b,d).... Tile lengths are increased by the golden
ratio at each increasing level.
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lI1. Self-similar inverse semigroup actions

A semigroup S is an inverse semigroup if for each s € S there
exists a unique element s* € S such that ss*s = s and s*ss* = s*.

According to the Vagner—Preston Representation Theorem, every
inverse semigroup is isomorphic to a subsemigroup of Z(X), the
inverse semigroup of partial bijections on a set X.

An action of an inverse semigroup S on a set X is a
homomorphism 7 : S — Z(X). If the homomorphism 7 is fixed, we
usually write g - x for mg(x).



Tiling inverse semigroups (Kellendonk)

A doubly pointed patch [b, P, a] is given by a finite patch P and
tiles a, b € P, where we take the tuple (b, P, a) up to translation
equivalence. Let T be the set of all doubly pointed patches along
with a ‘zero element’ 0 € 7.



Tiling inverse semigroups (Kellendonk)

A doubly pointed patch [b, P, a] is given by a finite patch P and

tiles a, b € P, where we take the tuple (b, P, a) up to translation

equivalence. Let T be the set of all doubly pointed patches along
with a ‘zero element’ 0 € 7.

Let [d, Q,c], [b, P,a] € T be two doubly pointed patches which,
without loss of generality (by translating each, if necessary) have
x(b) = x(c). If P and Q agree on any tiles with intersecting
interiors and P U @ is a valid patch, then we define

[d,Q,c][b,P,a] =[d,PUQ,a.

Otherwise, we define [d, Q, c][b, P, a] = 0. Any product with 0 is
defined as 0.

We call T = (T,-) the tiling semigroup.



Tiling inverse semigroups (Kellendonk)

The tiling semigroup 7 naturally acts by partial bijections on the
discrete hull Qpync, where a doubly pointed patch g = [b, P, a] has
domain U(P, a) C Qpunc and codomain U(P, b) C Qpunc.

The action is by translation: If T € U(P,a) C Qpunc, then

[b,P,a]- T =T — b(x).



Tiling inverse semigroups (Kellendonk)

The tiling semigroup 7 naturally acts by partial bijections on the
discrete hull Qpync, where a doubly pointed patch g = [b, P, a] has
domain U(P, a) C Qpunc and codomain U(P, b) C Qpunc.

The action is by translation: If T € U(P,a) C Qpunc, then

[b,P,a]- T =T — b(x).

Note that our notation mirrors function composition: the element
[b, P, a] has ‘in tile' a and ‘out tile' b, with a product of elements
[d, Q, c][b, P, a] interpreted as applying the right then the left-hand
term, and requiring that the intermediate tiles b and ¢ agree.



Self-similar inverse semigroup actions

Definition (Bartholdi, Grigorchuk and Nekrashevych)

Let F be a topological Markov chain over an alphabet X. An
inverse semigroup G acting on F is called self-similar if for every
g€ Gand x € X thereexist y1, ...,y € Xand hy, ..., hy € G
such that the sets dom(h;) are disjoint,

Uf-;l xdom(h;) = xF Ndom(g), and for every xw € F we have

g - xw = yi(hi - w), (1)

where i is such that w € dom(h;).



Self-similar inverse semigroup actions

Definition (Bartholdi, Grigorchuk and Nekrashevych)

Let F be a topological Markov chain over an alphabet X. An
inverse semigroup G acting on F is called self-similar if for every
g€ Gand x € X thereexist y1, ...,y € Xand hy, ..., hy € G
such that the sets dom(h;) are disjoint,

Uf-;l xdom(h;) = xF Ndom(g), and for every xw € F we have

g - xw = yi(hi - w), (1)

where i is such that w € dom(h;).

Theorem (Walton-W)

The tiling semigroup T of a substitution tiling defines a self-similar
inverse semigroup action on the Markov shift F.



Back to the Fibonacci example

[a, Pbaa b] : (b7 d)(d7 b)(b7 d)Z = (av C) ([C7 'Ddca d] : (da b)(bv d)Z)
= (a,c)(c, a) ([a, Ppa, b] - (b, d)z)



Example: the half hex tiling

$5 o
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Half-hex con’t

(Po, x)
(PO, F’o)\N
[ [p3,A.p0 /[pz,A,po]
) \
(p37 P3)
(p3, x)

An illustration of the self-similar relation

[P3, A, po] - (Pos po)w = (p3, p3) [p3, A, po] - w.



IV. The limit space (there and back again)

Let G be a finite graph with associated topological Markov shift F
(the right-infinite, left-pointing paths). We define

F~ = { --e_3ze_re_1 | r(ei) = s(e,-_1)};
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Let G be a finite graph with associated topological Markov shift F
(the right-infinite, left-pointing paths). We define

F~ = { --e_3ze_re_1 | r(ei) = s(e,-_1)};

Two elements x =---e_3e_pe_jand y =---f 3f of 1 € F are
called asymptotically equivalent with respect to the action of the
semigroup G if there is a sequence (g,) of G, with {g,} C G
finite, and some w € F so that for each n € N the element

gn-(e—n--e3ese1w)EF

has initial string of n terms given by f_,---f_3f_>f_1 € F". In this
case we write x ~, ¥. We define the asymptotic equivalence
relation ~ on F~ to be the equivalence relation generated by ~.



The limit space

The limit space J of a self-similar semigroup action is defined as
the quotient space F~/ ~. The shift map o: F~ — F, given by
---e_3e 9e 1+>---e_4e_3e_pinducesamapo: J — J. We
denote its inverse limit by

Qi=lm(J < T ETE ). (2)
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The Anderson—Putnam complex of a tiling is the compact
Hausdorff topological space formed through taking the transitive
closure of gluing together prototiles in all ways their translations
can be adjacent in a tiling.



The limit space

The limit space J of a self-similar semigroup action is defined as
the quotient space F~/ ~. The shift map o: F~ — F, given by
---e_3e 9e 1+>---e_4e_3e_pinducesamapo: J — J. We
denote its inverse limit by

Q:=im(J & T & T <& ---). (2)

The Anderson—Putnam complex of a tiling is the compact
Hausdorff topological space formed through taking the transitive
closure of gluing together prototiles in all ways their translations
can be adjacent in a tiling.

Theorem (Walton-W)

Suppose (T, F) is a self-similar inverse semigroup associated with
a recognisable substitution w. The limit space J is homeomorphic
to the Anderson—Putnam complex of the substitution, and the
inverse limit Q2 in (2) is conjugate to the continuous hull Q.
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