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An important class of invariant measures, are the measures
which are absolutely continuous with respect to Lebesgue
measure.

Absolutely continuous invariant measures can be contructed
for a lot of real one dimensional systems such as real
quadratic mappings.

Although, this is only possible for only a few cases in the
complex one dimensional setting.
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Conformal measures for transcendental functions

Definition

Let f be holomorphic, let t > 0. The measure µ is t-conformal for
f , if, for any measurable set E on which f in injective,

µ(f (E )) =

∫
E
|f ′|tdµ.

Existence of conformal measures have been showed for many of
the rational maps.
Conformal measures have been constructed only for some
transcendental functions:

For some exponential maps (Urbański-Zdunik),

For a large class of meromorphic functions (Mayer-Urbański
“balanced growth condition”),

Other examples (?)
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Dynamics near ∞

The behavior of the function near infinity plays an essential role in
the above constructions of conformal measures.

Definition (Escaping set)

Let f be an entire function, its escaping set is

I (f ) = {z : f n(z)→∞}.

Unlike polynomials, the Julia set of transcendental functions
intersects any neighborhood of ∞.
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The eventual dimension

The Hausdorff dimension of the escaping set of a transcendental
entire function can be any value in [1, 2].

Theorem (Rempe-Gillen-Stallard)

For all d ∈ [1, 2] there exists a function f in class B such that
HD(I (f )) = d .

In their proof they use the eventual dimension.

Definition (Eventual dimension)

edim(f ) = lim
R→∞

HD ({z : ∀n ≥ 0, |f n(z)| ≥ R}) .

The above examples have edim(f ) = HD(I (f )).
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Hyperbolic sets

Definition (Hyperbolic set)

The compact set X ⊂ J(f ) is a hyperbolic set if f (X ) ⊂ X and
there exists n > 0 and κ > 1 such that

|f n′(z)| ≥ κ

for all z ∈ X .

Definition (Hyperbolic dimension)

The hyperbolic dimension hypdim(f ) of a function f is the
supremum of the dimensions of the hyperbolic sets of f .

Remark

The exponent of the conformal measures is equal to the hyperbolic
dimension.
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Eventual hyperbolic dimension

Definition (Eventual hyperbolic dimension)

ehypdim(f ) = lim
R→∞

sup{HDX : X ⊂ C\DR hyperbolic set}

Proposition

The exponential maps and the functions satisfying
Mayer-Urbański’s “balanced growth” condition all have
ehypdim(f ) = 1.

Alexandre De Zotti The eventual hyperbolic dimension of entire functions



Poincaré functions (1)

Let f : C→ C be holomorphic.

A Poincaré function L is a lineariser of a repelling periodic
point of f , that is, L : C→ C is holomorphic and satisfies the
Schröder equation:

C
w 7→ρw−→ C

L ↓ ↓ L
C −→

f ◦p
C

where p is the period and ρ the multiplier, and L sends 0 on
one of the points of the periodic cycle.

A choice of L′(0) uniquely determine L.
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Poincaré functions (2)

Example

Let f (z) = zd , with d ≥ 2. Then the normalised Poincaré function
associated to the fixed point z = 1 is L(z) = ez .

If f is entire, then L is entire.

The singular set of a Poincaré function L for a repelling fixed
point of an entire function f is the postsingular set of f .

In particular, if the map f is hyperbolic, the function L
belongs to the class B.

Poincaré functions of polynomials have finite positive order.
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linearisers of polynomials (1)

Theorem

1 Let P be a polynomial and let L be a Poincaré function of a
repelling periodic point of P. Then

ehypdim(L) ≥ hypdim(P).

2 If moreover the polynomial is hyperbolic and if its Julia set is
connected, then

ehypdim(L) = hypdim(P) = HD(J(P)) < 2.

Remark

The second part holds indeed for any topological Collet-Eckmann
polynomial.
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linearisers of polynomials (2)

Corollary

If P is as above and is not conjugated to a Chebychev polynomial
or a monomial, then there are Poincaré functions L of P such that:

1 < ehypdim(L) < HD(J(L)) = 2.

Corollary

There exists a residual set R of the boundary of the Mandelbrot
set, such that for all c ∈ R, and all repelling periodic cycle of
z2 + c , the corresponding Poincaré function L is in class B, has
finite positive order and satisfies

hypdim(L) = 2.
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Other linearisers

Theorem

For any entire function f ,

ehypdimL ≥ hypdim f .

Corollary

For f (z) = 2πiez , the Poincaré function L associated to 2πi have
only finitely many singular values, and

hypdim L = 2.

Moreover L can be chosen hyperbolic.
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Equivalence classes and edim

Definition (Equivalences)

Two entire functions f and g are said to be affinely equivalent if
there exists ϕ and ψ affine isomorphisms of C such that

ϕf = gψ.

Quasiconformal equivalence is the same with affine replaced by
quasiconformal.

Proposition (Stallard, Rempe-Gillen)

The eventual dimension is constant along affine equivalence
classes.
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Equivalence classes and ehypdim

Proposition

The eventual hyperbolic dimension is constant along affine
equivalence classes.

Theorem

There exists f and g class B functions of finite positive orders
which are quasiconformally equivalent and satisfying

1 < ehypdimf < ehypdimg < 2.
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THANK YOU !
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