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Fatou's function

The function
f (z) = z + 1+ e−z

was �rst studied by Fatou in 1926.
F (f ) consists of one invariant component (Baker domain) which contains
the right half-plane.

J(f ) consists of an uncountable union of curves in the left half-plane (Can-
tor bouquet).
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The escaping set

The set
I (f ) = {z ∈ C : f n(z)→∞ as n→∞}

is called the escaping set.

The fast escaping set, A(f ) ⊂ I (f ), consists of the points that go to
in�nity as quickly as possible under iteration.

A(f ) = {z ∈ C : f n(z)→∞ as quickly as possible}.
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The escaping set

For Fatou's function:

• I (f ) consists of the Baker domain and the curves in J(f ) except for
some of their endpoints;

• A(f ) consists of the curves in J(f ) except for some of their
endpoints.
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Spiders' webs
Rippon and Stallard showed that for many transcendental entire functions
the escaping set has a structure called a spider's web.

De�nition 1

A set E is an (in�nite) spider's web if:

1) E is connected and

2) ∃ a sequence (Gn), n ∈ N, of bounded, simply connected domains
such that

• Gn ⊂ Gn+1, n ∈ N,
• ∂Gn ⊂ E , n ∈ N,
• ∪n∈NGn = C.
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Spiders' webs

• Rippon and Stallard showed that when I (f ) contains a SW then it
is a SW.

• In most examples we show that A(f ) is a SW which implies that
I (f ) is a SW.

• There exists a complicated example of a function for which I (f ) is a
SW whereas A(f ) is not, due to Rippon and Stallard.



Fatou's web

Theorem 2

Let f (z) = z + 1+ e−z . Then I (f ) is a SW.

Sketch of Proof.
Idea: Use a more general result which implies Theorem 2.
Let f be a t.e.f. and (an) be a positive sequence such that:

(1) an →∞ as n→∞,

(2) the disc D(0, an) contains a periodic cycle of f , for all n ∈ N.

Consider the set

I (f , (an)) = {z ∈ C : |f n(z)| ≥ an, n ∈ N}.

Theorem 3

Let f be a t.e.f. If (an) satis�es (1), (2) and I (f , (an))
c has a bounded

component, then I (f ) is a SW.
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Fatou's web

Now we apply Theorem 3. Take

an =
n + 6

2
, n ∈ N.

Then

(1) (n + 6)/2→∞ as n→∞,

(2) D(0, ((n + 6)/2)) ⊃ D(0, 7/2) ⊃ ±πi , n ∈ N, and
(3) All the components of I (f , ((n + 6)/2))c are bounded.

Hence Theorem 3 ⇒ Theorem 2. �



Fatou's web



Endpoints

In 1988 Mayer showed that for the exponential family fa(z) = ez + a, a < −1,
the set of all endpoints of J(fa) is totally disconnected whereas the union
of the endpoints with ∞ is a connected set.
Alhabib and Rempe-Gillen recently showed that the same result holds for
the set of escaping endpoints of J(fa).

The Julia set for Fatou's function is also a Cantor bouquet and hence
we can consider the set of endpoints of J(f ), which we denote by E (f ).
Mayer's result holds also for Fatou's function.

Theorem 4

Let f (z) = z + 1+ e−z . Then E (f ) is totally disconnected but
E (f ) ∪ {∞} is connected.

The proof is based on a result of Bara«ski.
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Endpoints

The fact that I (f ) is a SW for Fatou's function leads to a result about the
non-escaping endpoints of J(f ), Ê (f ) = I (f ) \ E (f ).

Theorem 5

Let f (z) = z + 1+ e−z . Then Ê (f ) ∪ {∞} is totally disconnected.

Proof.

Suppose there is a non-trivial component of Ê (f ) ∪ {∞}. Since I (f ) is a
SW, any non-escaping endpoint is separated from ∞ by a `loop' in I (f )
and so this component must lie in Ê (f ) ⊂ E (f ). Since, by Theorem 4,
E (f ) is totally disconnected,we obtain a contradiction. �
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