Fatou's web and non-escaping endpoints

Vasiliki Evdoridou Dept. of Mathematics and Statistics The Open University

Workshop on Ergodic Theory and Holomorphic Dynamics Vienna - September 29, 2015

Fatou's function

The function

$$f(z) = z + 1 + e^{-z}$$

was first studied by Fatou in 1926.

F(f) consists of one invariant component (Baker domain) which contains the right half-plane.

Fatou's function

The function

$$f(z) = z + 1 + e^{-z}$$

was first studied by Fatou in 1926.

F(f) consists of one invariant component (Baker domain) which contains the right half-plane.

J(f) consists of an uncountable union of curves in the left half-plane (Cantor bouquet).

Fatou's function

The function

$$f(z) = z + 1 + e^{-z}$$

was first studied by Fatou in 1926.

F(f) consists of one invariant component (Baker domain) which contains the right half-plane.

J(f) consists of an uncountable union of curves in the left half-plane (Cantor bouquet).

The escaping set

The set

$$I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to \infty\}$$

is called the escaping set.

The escaping set

The set

$$I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to \infty\}$$

is called the escaping set.

The **fast escaping set**, $A(f) \subset I(f)$, consists of the points that go to infinity as quickly as possible under iteration.

 $A(f) = \{z \in \mathbb{C} : f^n(z) \to \infty \text{ as quickly as possible}\}.$

For Fatou's function:

• *I*(*f*) consists of the Baker domain and the curves in *J*(*f*) except for some of their endpoints;

For Fatou's function:

- *I*(*f*) consists of the Baker domain and the curves in *J*(*f*) except for some of their endpoints;
- A(f) consists of the curves in J(f) except for some of their endpoints.

Spiders' webs

Rippon and Stallard showed that for many transcendental entire functions the escaping set has a structure called a **spider's web**.

Definition 1

A set *E* is an (infinite) spider's web if:

- 1) E is connected and
- 2) \exists a sequence $(G_n), n \in \mathbb{N}$, of bounded, simply connected domains such that
 - $G_n \subset G_{n+1}, n \in \mathbb{N},$
 - $\partial G_n \subset E, n \in \mathbb{N},$
 - $\cup_{n\in\mathbb{N}}G_n=\mathbb{C}.$

Spiders' webs

Rippon and Stallard showed that for many transcendental entire functions the escaping set has a structure called a **spider's web**.

Definition 1

A set *E* is an (infinite) spider's web if:

- 1) E is connected and
- 2) \exists a sequence $(G_n), n \in \mathbb{N}$, of bounded, simply connected domains such that
 - $G_n \subset G_{n+1}, n \in \mathbb{N},$
 - $\partial G_n \subset E, n \in \mathbb{N}$,
 - $\cup_{n\in\mathbb{N}}G_n=\mathbb{C}.$

Spiders' webs

- Rippon and Stallard showed that when *I*(*f*) **contains** a SW then it **is** a SW.
- In most examples we show that A(f) is a SW which implies that I(f) is a SW.
- There exists a complicated example of a function for which I(f) is a SW whereas A(f) is not, due to Rippon and Stallard.

Theorem 2

Let $f(z) = z + 1 + e^{-z}$. Then I(f) is a SW.

Theorem 2

Let
$$f(z) = z + 1 + e^{-z}$$
. Then $I(f)$ is a SW.

Sketch of Proof. Idea: Use a more general result which implies Theorem 2.

Theorem 2

Let $f(z) = z + 1 + e^{-z}$. Then I(f) is a SW.

Sketch of Proof. Idea: Use a more general result which implies Theorem 2. Let f be a t.e.f. and (a_n) be a positive sequence such that:

(1)
$$a_n \to \infty$$
 as $n \to \infty$,

(2) the disc $D(0, a_n)$ contains a periodic cycle of f, for all $n \in \mathbb{N}$.

Consider the set

$$I(f,(a_n)) = \{z \in \mathbb{C} : |f^n(z)| \ge a_n, n \in \mathbb{N}\}.$$

Theorem 2

Let $f(z) = z + 1 + e^{-z}$. Then I(f) is a SW.

Sketch of Proof. Idea: Use a more general result which implies Theorem 2. Let f be a t.e.f. and (a_n) be a positive sequence such that:

(1)
$$a_n \to \infty$$
 as $n \to \infty$,

(2) the disc $D(0, a_n)$ contains a periodic cycle of f, for all $n \in \mathbb{N}$.

Consider the set

 $I(f,(a_n)) = \{z \in \mathbb{C} : |f^n(z)| \ge a_n, n \in \mathbb{N}\}.$

Theorem 3

Let f be a t.e.f. If (a_n) satisfies (1), (2) and $I(f, (a_n))^c$ has a bounded component, then I(f) is a SW.

Now we apply Theorem 3. Take

$$a_n=rac{n+6}{2}, n\in\mathbb{N}.$$

Then

(1)
$$(n+6)/2 \to \infty$$
 as $n \to \infty$,

- (2) $D(0,((n+6)/2)) \supset D(0,7/2) \supset \pm \pi i, n \in \mathbb{N}$, and
- (3) All the components of $I(f, ((n+6)/2))^c$ are bounded.

Hence Theorem $3 \Rightarrow$ Theorem 2.

In 1988 Mayer showed that for the exponential family $f_a(z) = e^z + a$, a < -1, the set of all endpoints of $J(f_a)$ is totally disconnected whereas the union of the endpoints with ∞ is a connected set.

Alhabib and Rempe-Gillen recently showed that the same result holds for the set of escaping endpoints of $J(f_a)$.

In 1988 Mayer showed that for the exponential family $f_a(z) = e^z + a$, a < -1, the set of all endpoints of $J(f_a)$ is totally disconnected whereas the union of the endpoints with ∞ is a connected set.

Alhabib and Rempe-Gillen recently showed that the same result holds for the set of escaping endpoints of $J(f_a)$.

The Julia set for Fatou's function is also a Cantor bouquet and hence we can consider the set of endpoints of J(f), which we denote by E(f). Mayer's result holds also for Fatou's function.

```
Theorem 4
```

```
Let f(z) = z + 1 + e^{-z}. Then E(f) is totally disconnected but E(f) \cup \{\infty\} is connected.
```

The proof is based on a result of Barański.

The fact that I(f) is a SW for Fatou's function leads to a result about the non-escaping endpoints of J(f), $\hat{E}(f) = I(f) \setminus E(f)$.

Theorem 5

Let $f(z) = z + 1 + e^{-z}$. Then $\hat{E}(f) \cup \{\infty\}$ is totally disconnected.

The fact that I(f) is a SW for Fatou's function leads to a result about the non-escaping endpoints of J(f), $\hat{E}(f) = I(f) \setminus E(f)$.

Theorem 5

Let $f(z) = z + 1 + e^{-z}$. Then $\hat{E}(f) \cup \{\infty\}$ is totally disconnected.

Proof.

Suppose there is a non-trivial component of $\hat{E}(f) \cup \{\infty\}$. Since I(f) is a SW, any non-escaping endpoint is separated from ∞ by a 'loop' in I(f) and so this component must lie in $\hat{E}(f) \subset E(f)$. Since, by Theorem 4, E(f) is totally disconnected, we obtain a contradiction.

THANK YOU!