Fibered Cones and translation length on sphere complex

Chenxi Wu
UW Madison

July 21, 2022

In collaboration with Hyungryul Baik and Dongruyl Kim, arXiv:2011.08034

Sphere graphs

- Let M be d dimensional compact manifold, the sphere graph has vertices are isotopy classes of embedded S^{d-1} that do not bound a ball, there is an edge of length 1 between 2 vertices iff they are disjoint.
- An homeomorphism f on M induces isometry in the sphere graph S, the stable translation length is

$$
I_{f}=\lim \inf _{n \rightarrow \infty} \frac{d\left(v, f^{n}(v)\right)}{n}
$$

Examples:

- $d=2$: curve complex on compact surfaces. Masur-Minsky (hyperbolic, lox action if pseudo-Anosov), Bowditch (I_{f} rational), Gadre-Tsai (inf $I_{f} \sim g^{-2}$), Baik-Shin (inf $I_{f} \sim g^{-1}$ for Torelli f).
- $M=\#^{n}\left(S^{1} \times S^{2}\right)$: Free splitting complex of free groups, or simplicial completion of the Culler-Vogtmann outer space. Handel-Mosher (hyperbolicity, lox)

Fried's Homological direction

- Let $f: M \rightarrow M$ be a homeomoerphism. Let N be the mapping torus of f, then N fibers over S^{1} with fiber M, and the monodromy is f. Let \tilde{N} be the maximal abelian cover, then its deck group Γ is the free part of $H_{1}(N)$. Consider points on \tilde{N}, looking at its trajectory under the map $(x, t) \mapsto(\tilde{f}(x), t+1)$, then the possible directions in Γ that can be approximated by such (forward or backward) trajectories is called the cone of homological direction.
- The dual cone C of the cone of homological directions in $H^{1}(N)$ corresponds to classes that provides a fibering over S^{1}.
- For suitably chosen representatives of $\operatorname{MCG}(S)$ this cone C is the Thurston's fibered cone.
- For Out $\left(F_{n}\right)$, this cone C contains the "positive cone" by Dowdall-Kapovich-Leininger.

Main theorem

Theorem: (Baik-Kim-W) Let C^{\prime} be a proper subcone of C, L a n-dimensional slice of C^{\prime} by a rational subspace of $H^{1}(N ; \mathbb{R})$. ||| a norm on $H^{1}(N ; \mathbb{R})$, then

$$
I_{f_{\beta}} \lesssim\|\beta\|^{-1-1 /(n-1)}
$$

Proof idea for $d=2$

M : manifold, N : mapping torus

- $\psi: M \rightarrow M$. Lift it to an invariant \mathbb{Z} fold cover $\tilde{M} \rightarrow M$ as $\tilde{\psi}$. Let h be the deck transformation.
- Let \tilde{N} be the \mathbb{Z}^{2} cover of N, deck transformation group is generated by $\{\Psi, H\}$. Let $\left\{e_{1}, e_{2}\right\}$ be the dual basis. Then $\psi_{(p, q)}^{p}=\tilde{\psi}, M_{(p, q)}=\tilde{M} /\left\langle\tilde{\psi}^{q} h^{-p}\right\rangle$.
- When p is large, let $D_{\tilde{q}}$ be a fundamental domain of \tilde{M}, then h^{-p} can be far from $\tilde{\psi}^{q}$, hence, if c is a curve in one fundamental domain in between, it would take many iterations of $\tilde{\psi}^{q}$ till it hits the whole $M_{(p, q)}$.
- Applications to curve complex, free splitting and free factor complexes.
- Case for curve complex was previously done by Gadre-Tsai, Kin-Shin and Baik-Shin-W
- Works for disc complexes as well.

Corollary: (Baik-Kim-W) The minimal stable translation length on curve graphs for pseudo-anosovs on surface of genus g that come from handlebody mapping class decay as $O\left(g^{-2}\right)$.

Further works

- Lower bound?
- Other complexes?
- Outer space for RAAGs?

