Types of connectedness.

Henk Bruin

November 29, 2021

Definition 1 A set A in a topological space (X, τ) is called **connected** if there are no sets $U, V \subset X$ such that

- 1. U and V are open;
- 2. $U \neq \emptyset \neq V$;
- 3. $U \cap V = \emptyset$, i.e., U and V are disjoint.
- 4. $A \subset U \cup V$.

Otherwise A is disconnected.

The connected component of $x \in A$ is the largest connected subset of A containing x. We call A totally disconnected if the connected component of every $x \in A$ is $\{x\}$ itself.

The prime example of a totally disconnected is the Cantor set. The **middle third Cantor** set and a "two-dimensional version of it are both Cantor sets.

Figure 1: Two representations of the Cantor set.

Theorem 2 Every two sets C and C' that are

- compact and non-empty;
- totally disconnected;
- perfect (i.e., without isolated points);

are homeomorphic to each other. Such a set is called a Cantor set.

Definition 3 An arc in a set A is the image of a continuous map $\gamma : [0,1] \rightarrow A$. We call A arc-connected or path-connacted if for every distinct $x, y \in A$ there is an arc in A whetween x and y (i.e., $\gamma(0) = 0$ and $\gamma(1) = y$.

Arc-connectedness implies connectedness, but not the other way around, as the $\sin \frac{1}{x}$ -curve $\overline{\{(x, \sin \frac{1}{x}) : x \in (0, 1\}} \subset \mathbb{R}^2$ (connected but not arc-connected) shows. The Warsaw circle is arc-connected again.

Figure 2: The $\sin \frac{1}{x}$ -curve and Warsaw circle.

Definition 4 An arc in a set A is the image of a continuous injective map $\gamma : [0,1] \to A$. We call A locally connected at $x \in A$ if for every neighborhood $V \ni x$, there is an open neighborhood $x \in U \subset V$ that is connected. We call A locally connected if it is locally connected at every at $x \in A$.

The Warsaw circle is connected, arc-connected but not locally connected. Local connectedness doesn't imply connectedness (sets with more than one connected component may be locally connected). Local connected plus connectedness together implies arc-connectedness.

Definition 5 A loop in a set A is the image of a continuous injective map $\gamma : \mathbb{S}^1 \to A$. We call A simply connected if for every loop in A can be continuously contracted to a point.

Figure 3: A sphere with two holes and a torus with two non-homotopic loops.

Simply connected means in a way: "not too many holes". The 2-sphere \mathbb{S}^2 with one hole is simply connected, but with two holes it is no longer simply connected. A torus is not simply connected: it has two "non-homotopic" non-contractible loops.

Figure 4: Linked rings and Olympic rings.

Illusionists have a trick to separate thwo linked rings R and R' (i.e., R, R' are tori \mathbb{T}^2 or solid tori $R = \mathbb{D}^2 \times \mathbb{S}^1$). Without trick, and inside \mathbb{R}^3 , this is impossible.

If $A, A' \subset \mathbb{R}^3$ are linked as links in a chain, do A, A' have to be non-simply connected?

Figure 5: Alexander's horned sphere.

Theorem 6 Let $f : X \to Y$ be a continuous map between topological spaces. If $A \subset X$ is connected/arc-wise connect/locally connected/simply connected then f(X) has these same properties.

Corollary 7 If $f : SX \to \mathbb{R}$ is a continuous map and $A \subset X$ is connected, then for every $x, y \in f(A)$, also the interval $[x, y] \subset f(A)$.

Figure 6: Antoine's necklace and a detail image.