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1 Converging sequences

In metric spaces we know the notion of convergence, which we can translate directly
to topological spaces.

Definition 1 Let (xn)n∈N be a sequence in topological space X. This sequence con-
verges to x (notation: xn → x) if for

∀ neighborhood U 3 x ∃n0 ∈ N ∀n ≥ n0 xn ∈ U.

Instead of “∀ neighborhood U 3 x” it suffices to take “∀U in a neighborhood basis
of x”. If X is a metric space, then the balls {B1/n(x)}1≤n∈N serve as neighborhood
basis, and the sequential convergence of Definition 1 reduces to the usual definition
in metric spaces.

Example 2 In the function space

X = RR =
∏
R

R = {f : R→ R}

with product topology, a neighborhood basis of f ∈ X is given by

Ux,ε = {g ∈ X : |g(x)− f(x)| < ε} for each x ∈ R and ε > 0.

Hence fn → f means that ∀ x ∈ R ∀ ε > 0 ∃ n0 ∀ n ≥ n0, |fn(x) − f(x)| < ε. But
this is pointwise convergence of (fn)n∈N to f .
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Definition 3 A topological space (X, τ) satisfies the first countability axiom if
every x ∈ X has a countable neighborhood basis. Such spaces are called AA1, for 1st
Abzählbarkeitsaxiom.

Since the balls {B1/n(x)}1≤n∈N serve as countable neighborhood basis in a metric
space, metric spaces are AA1 spaces.

For AA1 spaces two standard properties (that we know from metric spaces) hold:

Proposition 4 Let X be an AA1 space and E ⊂ X, x ∈ X. Then x ∈ E if and only
if there is a sequence (xn)n∈N in E such that xn → x. In other words, accumulation
points1 are limits of sequences.

Proof. ⇒ Let B(x) = {Un}n∈N be a countable neighborhood basis of x. (We
use AA1 here!).
We can assume that this basis is nested: Un+1 ⊂ Un for each n ∈ N. If not,
then take the neighborhood basis Ũn = ∩j≤nUj instead. Then Ũn+1 ⊆ Ũn
automatically.
If x ∈ E, then for every neighborhood of x, in particular for every Un,
E ∩ Un 6= ∅. Take xn ∈ Un ∩ E. Then the sequence (xn)n∈N converges to x,
because for every neighborhood U , we can find n0 such that Un0 ⊂ U , and
then for every n ≥ n0, xn ∈ Un ⊂ Un0 ⊂ U .

⇐ Assume (xn)n∈N ⊂ E converges to x. Let U be any neighborhood of
x. Converges means that there is n0 such that xn ∈ U for all n ≥ n0. In
particular xn0 ∈ E ∩ U 6= ∅. But U was arbitrary, so x ∈ E. �

Theorem 5 Let X be an AA1 space and f : X → Y a map from X to another
topological space. Then

f is continuous at x ∈ X if and only if for every sequence xn → x, the
images f(xn)→ f(x).

The property on the right is called sequential continuity2.

1Häufingspunkte
2Folgenstetigkeit
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Proof. ⇒ Let V be a neighborhood of f(x). By continuity at x, there is a
neighborhood U 3 x such that f(U) ⊂ V . Suppose xn → x, so there is n0

such that xn ∈ U for all n ≥ n0. But then also f(xn) ∈ V for all n ≥ n0, so
f(xn)→ f(x).

⇐ Let {Un}n∈N be a neighborhood basis of x (we use AA1 here) and assume
it is nested as in the previous proof. Assume by contradiction that f is not
continuous at x, so there is a neighborhood V 3 f(x) such that f(Un)∩V c 6=
∅ for each n ∈ N. So we can take xn ∈ Un \ f−1(V ).
Let U 3 x an arbitrary neighborhood, and find n0 ∈ N such that Un0 ⊂ U .
Because the neighborhood Un are nested, we have xn ∈ Un ⊂ Un0 ⊂ U for all
n ≥ n0, so xn → x. By assumption, also f(xn)→ f(x). But this contradicts
that f(xn) /∈ V for all n ∈ N. �

In both proofs, AA1 was used (and we indicated where). But we know that
there are spaces that are simply too big for the AA1 property to hold. And then
Proposition 4 and Theorem 5 can indeed fail.

Example 6 Recall the orderings interval Ω = [0, ω1] of ordinal numbers, where ω1 is
the first uncountable ordinal.

ω1 is an accumulation point of Ω0 := Ω \ {ω1}, but there is no sequence
(αn)n∈N ⊂ Ω0 such that αn → ω1.

This shows that Proposition 4 fails. Also Theorem 5 fails.

Let f : Ω→ {0, 1} be defined by

f(x) =

{
0 if x ∈ Ω0;

1 if x = ω1.

Then f is sequentially continuous, see above. But f is not continuous,
because

f(Ω0) = f(Ω) = {0, 1} 6⊂ {0} = f(Ω0) = f(Ω0).

But one of the equivalent properties of continuity is f(E) ⊂ f(E) (see the
class notes Theorem 3.2, and that fails here for E = Ω0.
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Example 7 We continue Example 2, i.e., X = RR = {f : R → R} with product
topology leading to pointwise convergence. Let

E = {f : R→ R : f(x) 6= 0 for at most finitely many points},

and g(x) ≡ 1. Clearly g /∈ E, but g ∈ E. Indeed, take any finite subset J of R and
ε > 0. Then

UJ,ε(g) = {f ∈ X : |f(x)− g(x)| < ε ∀x ∈ J}
is a neighborhood of g. The indicator function 1J ∈ UJ,ε and also 1J ∈ E. Hence g
is indeed an accumulation point of E.

On the other hand, there is no sequence (gn)n∈N ⊂ E such that gn → g. Indeed,
of (gn)n∈N was such a sequence, let An = {x ∈ R : gn(x) 6= 0}. Each An is finite by
the definition of E. Therefore A :=

⋃
n∈NAn is countable. We can therefore find a

finite set J ⊂ R that is disjoint from A. But then gn /∈ UJ, 1
2

for all n ∈ N, because

gn(x) = 0 for all x ∈ J .

2 Nets

So if the problem is that neighborhood bases can be too large for sequences to deal
with, we need a kind of sequence with an index set that is large enough. These are
called nets.

We start with the properties imposed on the index set.

Definition 8 Let (I,≤I) be a set with a (partial) order ≤I. It is called a directed
set3 if the following properties hold:

(R1) ∀i ∈ I : i ≤I i (≤ is reflexive);

(R2) i ≤I j and j ≤I k implies i ≤I k (≤ is transitive);

(R3) the order need not be total, but: ∀ i, j ∈ I ∃k such that i ≤I k and j ≤I k.

Definition 9 A map x : I → X from a directed set I into a topological space X is
called a net4. As notation we use (xi)i∈I.

3gerichtete Menge
4Netz
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Now we are ready to generalize limits (and accumulation points) from sequences
to nets.

Definition 10 A net (xi)i∈I in a topological space X

• converges to x if ∀ neighborhood U 3 x ∃ i ∈ I ∀ j ≥I i xj ∈ U .

• has accumulation point x if ∀ neighborhood U 3 x ∀ i ∈ I ∃ j ≥I i xj ∈ U .

Example 11 (a) If I = N with the usual order, then nets reduce to sequences.
Net-convergence reduces to convergence of sequences.

(b) Let X be a topological space, and x ∈ X arbitrary, having the neighborhood
system U(x). Then I := U(x) becomes directed if we take the order U ≤I V if
V ⊂ U . (Note that this is in general not a total order.) For each U ∈ U(x),
choose a point xU ∈ U . Then (xU)U∈U(x) is a net that converges to x. This works
always, even if U(x) is uncountable or U(x) doesn’t even have a countable basis.

(c) Given a real interval [a, b], let

P = {a = p0 < p1 < · · · < pN = b}

be the collection of all finite partitions of [a, b]. The mesh of such a partition
P is δ(P ) := max{|pi − pi−1| : 1 ≤ i ≤ N}. The collection P becomes directed
by setting P ≤P P ′ if δ(P ′) ≤ δ(P ).

We extend this a bit by adding to P ∈ P an intermediate vector5 ξ =
(ξ1, . . . ξN) with pi−1 ≤ ξi ≤ pi for all 1 ≤ i ≤ N . Then

I = {(P, ξ) : P ∈ P , ξ is an intermediate vector to P}

becomes a directed set by setting (P, ξ) ≤I (P ′, ξ′) if δ(P ′) ≤ δ(P ). So the
intermediate vectors play no role in the definition of ξ.

Take a function f : [a, b]→ R and define Riemann sums

Rf
(P,ξ)

N∑
i=1

f(ξi)|pi − pi−1|

5Zwischenvektor
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for P = {a = p0 < p1 · · · < p=b}, ξ = (ξ1 . . . , ξN). Then (Rf
(P,ξ)(P,ξ)∈I is

in fact a net on R. One can show that f is Riemann integrable with integral
x =

∫ b
a
f(t) dt if and only if (Rf

(P,ξ))P,ξ)∈I converges to x.

We also need the analog of subsequence for nets:

Definition 12 Let (H,≤H) and (I,≤I) be two directed sets, and (xi)i∈I a net in a
topological space. A refinement or subnet6 of (xi)i∈I is given by the composition

x ◦ ϕ : H → X

provided ϕ : H → I has the properties:

• ϕ is monotone: h1 ≤H h2 implies ϕ(h1) ≤I ϕ(h2).

• ϕ is confinal: ∀ i ∈ I ∃ h ∈ H such that i ≤I ϕ(h).

The notation becomes (xϕ(h))h∈H

Remark 13 If I = H = N (so (xi)I is a sequence) and ϕ : H → I is a strictly
increasing map, say ϕ(h) = ih, then the subnet (xϕ(h))h∈H becomes the subsequence
(xih)h∈N.

However, not every subnet of a sequence is a subsequence. For example, if

ϕ : [0, 1)→ N, ϕ(t) = b 1

1− t
c ∈ N,

then (xϕ(h))h∈[0,1) is not a subsequence, but it is a subnet.

Proposition 14 Let (xi)i∈I be a net in a topological space X.

(a) (xi)i∈I converges to x if and only if every subnet (xϕ(h))h∈H converges to x as
well.

(b) (xi)i∈I has x as accumulation point if and only if there is a subnet (xϕ(h))h∈H
that converges to x.

6Verfeinerung oder Teilnetz
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Proof. (a) ⇒ Let ϕ : H → I be a monotone confinal map. Let the net
(xi)i∈I converge to x, so for every neighborhood U 3 x there is i ∈ I such
that xj ∈ U for all j ≥I i. Since ϕ is confinal, there is h ∈ H such that
ϕ(h) ≥I i. Since ϕ is monotone and ≤I is transitive, ϕ(k) ≥I ϕ(h) ≥I i for
all k ≥H h. But then xϕ(k) ∈ U for all k ≥H h, and (xϕ(k))h∈H converges to
x.

⇐ For H = I, the identity map ϕ(h) = h is monotone and confinal. By
assumption (xϕ(h))h∈H converges to x, so by indeed taking ϕ the identity,
(xi)i∈I converges to x.

(b) ⇒ Let L = {(i, U) : i ∈ I, U ∈ U(x), xi ∈ U} with (i, U) ≤L (i′, U ′) if
i ≤I i′ and U ′ ⊆ U . With this definition of order, L is directed. Also L 6= ∅
because for U = X, xi ∈ U holds automatically.
Now define a monotone and confinal map ϕ : L → I by ϕ(i, U) = i. We
need to show that (xϕ(i,U))(i,U)∈L converges to x. Let V 3 x be an arbitrary
neighborhood and choose i0 ∈ I with xi0 ∈ V . Because x is an accumulation
point, this is possible. In particular (i0, V ) ∈ L. For any (i, U) ≥L (i0, V )
we have i ≥I i0 and xi ∈ U ⊂ V . Therefore xϕ(i,U) = xi ∈ U ⊂ V , so that
indeed (xϕ(i,U))(i,U)∈L converges to x.

⇐ Let ϕ : H → I a monotone confinal map such that the subnet
(xϕ(i,U))(i,U)∈L converges to x. Hence for any neighborhood U 3 x, there
is hU ∈ H such that xϕ(h) ∈ U for all h ≥H hU .
Choose a neighborhood U 3 x and i0 ∈ I arbitrary. Because ϕ is confinal,
there is h0 such that ϕ(h0) ≥I i0. Now choose h ∈ H so that both h ≥H hU
and h ≥H h0. Then ϕ(h) ≥I ϕ(h0) ≥I i0 and xϕ(h) ∈ U . That is, x is an
accumulation point of (xi)i∈I . �

Now we go back to Proposition 4 and Theorem 5, and show that they do hold for
nets, also without the assumption that X is an AA1 space. We copy these results
and proofs, indicating main changes in red.

Proposition 15 Let X be a topological space and E ⊂ X, x ∈ X. Then x ∈ E if and
only if there is a net (xi)i∈I in E that converges to x. In other words, accumulation
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points7 are limits of nets.

Proof. ⇒ Let U(x) be a neighborhood system of x. Construct a net
(xU)U∈U(x) with xU ∈ U as in Example 11(b). Since x ∈ E, there is indeed
such xU that also belongs to E. Therefore (xU)U∈U(x) is inside E, and it
indeed converges to x.

⇐ Take an arbitrary neighborhood U 3 x. Because (xi)i∈I converges to x,
there is i0 such that xi ∈ U for all i ≥I i0. But (xi)i∈I belongs to E, so
xi0 ∈ U ∩ E 6= ∅. Hence x ∈ E. �

Theorem 16 Let X be a topological space and f : X → Y a map between X and Y .
Then

f is continuous at x ∈ X if and only if for every net (xi)i∈I converging to
x, the image net (f(xi))i∈I converges f(x).

The property on the right is called net continuity8.

Proof. ⇒ Let V be a neighborhood of f(x). By continuity at x, there is a
neighborhood U 3 x such that f(U) ⊂ V . Suppose (xi)i∈I converges to x,
so there is i0 such that xi ∈ U for all i ≥I i0. But then also f(xi) ∈ V for all
i ≥I i0, so f(xi))i∈I converges to f(x).

⇐ Assume by contradiction that f is not continuous at x, so there is a
neighborhood V 3 f(x) such that f(U) ∩ V c 6= ∅ for every U ∈ U(x), the
neighborhood system of x. So we can take xU ∈ U \ f−1(V ).
The net (xU)U∈U(x) as in Example 11(b) converges to x. By assumption,
also (f(xU))U∈U(x) converges to f(x). But this contradicts that f(xU) /∈ V
for all U ∈ U(x). �

7Häufingspunkte
8Netzstetigkeit
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3 Countability Axioms

Apart from AA19 from Definition 3 there is also AA2:

Definition 17 A topological space satisfies the second countability axiom if it
has a countable basis. Such spaces are called AA2, for 2nd Abzählbarkeitsaxiom.

Clearly AA2 implies AA1 and from the exercises we know

• The euclidean line is AA1 and AA2;

• The Sorgenfrey line is AA1 but not AA2;

• R with discrete topology is AA1 (because U(x) = {{x}} suffices) but not AA2;

• R with cofinite topology is neither AA1 nor AA2. Indeed, if B(x) = {Bi}i∈N
were a countable neighborhood basis, then every Bi has an open Ui with x ∈
Ui ⊂ Bi. But Ui = R \ Ai for some finite Ai, and A := ∪i∈NAi is only count-
able, so there is x 6= y ∈ R \ A. Hence there is no Bi contained in the open
neighborhood U := R \ {y}.

In general, AA2 is hard to check. But in metric spaces, it is easier, because it
follows from (the usually easy to check) property of separability:

Definition 18 A topological space is separable if it has a countable dense10 subset.

Every metric space is AA1 because {B1/n(x)}1≤n∈N is a neighborhood basis. Every
separable (say with countable dense set A) metric space is AA2, because

{B1/n(a) : 1 ≤ n ∈ N, a ∈ A}

is a basis.
Without metric, a separable space need not be AA2; for example the Sorgenfrey

line. However, every AA2 space is separable; just take one point in each element of
the countable basis.

9Every point has a countable neighborhood basis
10dicht
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4 Ultranets

By passing to a subsequence, you have a chance to make a non-convergent sequence
convergent. For example, the real sequence xn = (−1)n n

n+1
doesn’t converge; it has

two accumulation points −1 and +1. By taking only the even terms, the sequence
converges to 1. That is, by taking nk = 2k, the subsequence xnk

= 2k
2k+1

→ 1 as
k →∞.

The same holds for nets (xi)i∈I in a topological space (X, τ). If E and E ′ are
subsets of X with disjoint closures, and the intersections (xi)i∈I ∩E and (xi)i∈I ∩E ′
are both infinite, one can expect an accumulation point in E and another in E ′. But
we can take a subset of (xi)i∈I that only selects xi ∈ E, and this subnet may even
converge in E.

An ultimate subnet would be one that distinguishes between any pair of disjoint
sets E and E ′. This is an ultranet:

Definition 19 We call (xi)i∈I an ultranet11 if for every E ⊂ X, there is iE ∈ I
such that either xi ∈ E for all i ≥I iE or xi ∈ Ec for all i ≥I iE. (In this case, we
say that either xi ∈ E eventually or xi ∈ Ec eventually.)

Theorem 20 Every net can be refined to an ultranet.

Proof. We will skip the proof, see the last part of Chapter 5 in the class
notes, with an argument via (ultra)filters, which we skip as well. Note,
however, that the proof of this theorem relies on Zorn’s Lemma, see the
Appendix of the class notes. �

Lemma 21 Let f : X → Y be a map between topological spaces. Then the image of
an ultranet is again an ultranet.

Proof. Let F ⊂ Y be any set, and E = f−1(F ). If (xi)i∈I is an ultranet in
X, then either xi ∈ E eventually or xi ∈ Ec eventually. But then also either
f(xi) ∈ F eventually or f(xi) ∈ F c eventually. Since F was arbitrary, the
image net (f(xi))i∈I is an ultranet. �

11Ultranetz oder ultrafeines Netz

10



Proposition 22 If an ultranet (xi)i∈I has an accumulation point x, then it converges
to x.

Proof. Let U be an arbitrary neighborhood of x. Since (xi)i∈I is an
ultranet, there is i0 ∈ I such that either xi ∈ U for all i ≥I i0 or xi ∈ U c for
all i ≥I i0. But x is an accumulation point, there are is some i ≥I i0 such
that xi ∈ U . Hence xi ∈ U for all i ≥I i0. �

5 Compactness

The notion of compactness in euclidean space is simple: the Heine-Borel Theorem
says that A ∈ Rn is compact if and only if it is closed and bounded.

In general, compactness is more involved. The basic definition is as follows:

Definition 23 Let (X, τ) be a topological space and E ⊂ X. An open cover of E
is a collection {Ui}i∈I of open sets in X such that E ⊂

⋃
i∈I Ui.

The set E ⊂ X of a topological space is compact if every open cover has a finite
subcover.

In a metric space, every compact set is bounded and closed (in fact, compact-
ness implies closedness in any Hausdorff space, but this implication can fail in non-
Hausdorff spaces). However, there are metric spaces in which closed bounded sets
are not compact. The standard example is the set {en}n∈N of unit vectors en =
(0, 0, . . . , 0, 1︸︷︷︸

position n

, 0 . . . ) in the sequence space `∞.

Another (non-equivalent) version of compactness is sequentially compact12.

Definition 24 A subset E in a topological space (X, τ) is sequentially compact if
every sequence (xn)n∈N in E has a subsequence (xnk

)k∈N that converges in E (so also
the limit limk→∞ xnk

∈ E).

Proposition 25 A subset E of a topological space X is sequentially compact if and
only if every countable open cover of E has a finite subcover. (This latter property
is called countably compact13.)

12Folgenkompakt
13abzählbar kompakt
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Proof. ⇒ If (xn)n∈N contains the same value infinitely often, then there is
a constant (and hence convergent) subsequence. So let us assume that as a
set A := {xn}n∈N is countably infinite. Assume by contrapositive that A has
no accumulation point in E, so for every x ∈ E, there is a neighborhood Ux
such that Ux ∩ A = ∅ or = {x} itself, namely if x ∈ A. Let U =

⋃
x∈E\A Ux.

Then {U} ∪ {Ua : a ∈ A} is a countable open cover of E without finite
subcover.

⇐ Let {Un}n∈N be an open cover of E without finite subcover. That means,
for every n ∈ N, E \

⋃
j≤n Uj 6= ∅, so we can choose xn ∈ E \

⋃
i≤n Uj,

giving a sequence (xn)n∈N. By sequential compactness, it has a convergent
subsequence (xnk

)k∈N, say with limit a ∈ E. Since {Un}n∈N is an open cover,
there is m ∈ N such that a ∈ Um. By convergence, xnk

∈ Um for all k
sufficiently large. But if this sufficiently large nk ≥ m, then xnk

∈ Um but
also xnk

/∈
⋃
i≤nk

Ui. This is a contradiction. �

Remark 26 If the sequence (xn)n∈N has a subsequence (xnk
)k∈N that converges to x,

then x is an accumulation point of (xn)n∈N. But let us remember the definition of
accumulation point x of a sequence: For every neighborhood U 3 x, there is n ∈ N
such that xn ∈ U \{x}. Consider the space X = N with basis of the topology {0, n}n≥1.
Then the sequence (xn = n)n∈N has indeed 0 as accumulation point, but (xn)n∈N has
no subsequence that converges, to 0 or anywhere. Hence in this space, every sequence
has 0 as an accumulation point, but the only sequences with a convergent subsequence
are those that repeat the same number infinitely often.

As a consequence, sequential compactness can be a bit of a mess. In a metric space,
fortunately, every sequence having an accumulation point, sequential compactness,
countable compactness and compactness are all equivalent.

Example 27 Apparently, sequential compactness implies, but is not the same as,
compactness. To see the difference, we take again the order interval Ω = [0, ω1] where
ω1 is the first uncountable ordinal. Then Ω0 = Ω \ {ω1} is not compact, because
{[0, α)}α∈Ω0 is an open cover that has no finite subcover.

It is good to note here, that Ω0 is an uncountable set, even though every α ∈ Ω0

is a (finite or) countable ordinal. This is of the same gist as: N is infinite, but every
n ∈ N is finite.
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Now to show that Ω0 is sequentially compact, take a sequence A := (αn)n∈N in
Ω0. By the well-ordering of Ω0, we can create an increasing subsequence (βn)n∈N as
follows:

β0 = minA, βn+1 = min{α ∈ A : α > βn}.

Let β = sup{βn : n ∈ N}. As in Example 2.23 of the class notes, β < ω1, so β ∈ Ω0.
We want to show that β = limn→∞ βn. Suppose not, so there is a neighborhood U 3 β
(or in fact a basis set (γ0, γ1) 3 β), such that βn /∈ U for infinitely many n ∈ N.
But (betan)n∈N is increasing and bounded by β, so βn /∈ U for all n ∈ N. But β
is the smallest upper bound of (βn), so (γ0, β) = ∅. That is, β is the first ordinal
after γ0, and γ0 = βn for some n ∈ N. But this leaves no room for βn+1, which is a
contradiction.

Hence, every infinite sequence in Ω0 has an increasing subsequence which converges
to its supremum β ∈ Ω0. This implies sequential compactness, and by Proposition 25
also countable compactness.

So we need to replace sequential compactness by net-compactness: there is no
difference between compactness and net-compactness.

Theorem 28 In a topological space (X, τ), the following statements are equivalent:

(i) X is compact;

(ii) X has the finite intersection property14: if (Fi)i∈I is a collection of closed
sets with

⋂
i∈I Fi = ∅, then there is a finite subset J ⊂ I such that

⋂
i∈J Fi = ∅;

(iii) Every net in X has an accumulation point;

(iv) Every ultranet in X converges.

14endliche Durchschnittseigenschaft
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Proof. (i) ⇒ (ii) Let X be compact and take the open sets Ui = F c
i .

Because
⋂
i∈I Fi = ∅,

⋃
i∈I Ui = X, so {Ui}i∈I is an open cover. Let J be a

finite subset of I such that
⋃
i∈J Ui = X. Then

⋂
i∈J Fi = ∅ as required.

(ii)⇐ (i) Reverse the proof of the previous step.

(ii)⇒ (iii) Let (xi)i∈I be a net in X and for each i ∈ I define the closed set

Fi = {xj : j ≥I i}.

If J ⊂ I is a finite set, then by property (R3) of directed sets, together with
induction, we can find iJ ∈ I such that iJ ≥I i for each i ∈ J . But then
xJ ∈

⋂
i∈J Fi, that is: no finite intersection of Fi’s is empty.

By property (ii), F :=
⋂
i∈I Fi is not empty, so we can choose x ∈ F . Let

U be an arbitrary neighborhood of x. Then x ∈ Fi for each i ∈ I, and
U ∩{xj : j ≥I i} 6= ∅ because x belongs to the closure of {xj : j ≥I i}. That
means that, for every i ∈ I, there is j ≥I i so that xj ∈ U . In other words:
x is an accumulation point of (xi)i∈I .

(ii) ⇐ (iii) Assume that (Fi)i∈I is a collection of closed sets such that⋂
i∈J Fi 6= ∅ for every finite subset J ⊂ I. To show that also

⋂
i∈I Fi 6= ∅ we

need to construct a net.
Set J = {J ⊂ I : J is finite} with directed order J ≤J J ′ if J ⊂ J ′. Since⋂
i∈J Fi 6= ∅, we can choose xJ ∈

⋂
i∈J Fi. This makes (xJ)J∈J into a net.

Since we assume (iii), this net has an accumulation point, say x. We will
show that x ∈

⋂
i∈I Fi, and then we are done.

Let U be an arbitrary neighborhood of x. Let i ∈ I be arbitrary, so as a
singleton {j} ∈ J . Since x is an accumulation point of (xJ)J∈J , there is
J ≥J {j} (that is: j ∈ J) such that xJ ∈ U . But then xJ ∈

⋂
i∈J Fi ⊂ Fj,

so U ∩ Fj 6= ∅. But the neighborhood U 3 x and j ∈ I were arbitrary, so
x ∈ Fi for all i ∈ I. That is x ∈

⋂
i∈I Fi 6= ∅.

(iii)⇒ (iv) Let (xi)i∈I be an ultranet in X. It is a net, with an accumulation
point according to (iii). By Proposition 22 it must converge.

(iii) ⇐ (iv) Every net has a convergent subnet by Theorem 20. By (iv)
this subnet converges, say to x. But then x is an accumulation point of the
original net. �
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A main compactness result is the Theorem of Tychonov concerning product spaces.
Before stating and proving it, we need a lemma.

Lemma 29 Let X =
∏

λ∈ΛXλ a product space with product topology, and (xi)i∈I
a net in X. Then (xi)i∈I converges to p = (pλ)λ∈Λ ∈ X if and only if (πλ(xi))i∈I
converges to pλ ∈ Xλ for every λ ∈ Λ.

Proof. ⇒ The projection πλ is continuous for every λ ∈ Λ. By Theorem 5,
the image net (πλ(xi))i∈I converges to πλ(p) = pλ.

⇐ Choose any finite subset (λ1, . . . , λN) of Λ and take V = π−1
λ1

(Uλ1) ∩
π−1
λ2

(Uλ2) ∩ · · · ∩ π−1
λN

(UλN ) for open sets Uλj with pλj ∈ Uλj ⊂ Xλj . That is,
V is a basis neighborhood of p ∈ X.
By assumption, for each 1 ≤ k ≤ N we have that (πλk(xi))i∈I converges to
pλk , so there is ik ∈ I such that πλk(xi) ∈ Uλk for all i ≥I ik. By rule (R3) of
directed sets together with induction, we can find iV ∈ I such that iV ≥I ik
for each k ∈ {1, . . . , N}. Therefore also xi ∈ V for all i ≥I iV . Since V is
arbitrary, (xi)i∈I converges to p. �

Theorem 30 (Tychonov’s Theorem) Let X =
∏

λ∈ΛXλ be a product space with
product topology. Then X is compact if and only if Xλ is compact for every λ ∈ Λ.

Proof. ⇒ The projection πλ is continuous and also surjective for every
λ ∈ Λ. Therefore πλ(X) = Xλ is compact, due to Theorem 7.6 of the class
notes.

⇐ Let (xi)i∈I be an ultranet in X. By Lemma 21, (πλ(xi))i∈I is an ultranet
in Xλ for each λ ∈ Λ. But Xλ is compact, so by Theorem 28 this ultranet
converges, say to pλ ∈ Xλ. But Lemma 29 then implies that (xi)i∈I
converges to p = (pλ)λ∈Λ ∈ X. This shows that an arbitrary ultranet (xi)i∈I
in X converges. Using Theorem 28 again, X is compact. �
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