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§0. REVIEW OF REAL AND COMPLEX NUMBERS

In this section we briefly recall some of the basic definitions and properties concerning the
sets of real and complex numbers (cf. [SS07]). This material is part of the prerequisites
and is presented here without proofs. It merely should remind the reader of facts used in
due course without further mentioning and serves to fix some notation.

0.1. Field axioms 〈Körperaxiome〉 for R:

Axioms of addition

(A1) Law of associativity 〈Assoziativgesetz〉: for all x, y, z ∈ R

(x+ y) + z = x+ (y + z).

(A2) Law of commutativity 〈Kommutativgesetz〉: for all x, y ∈ R

x+ y = y + x.

(A3) Existence of zero: there exists a number 0 ∈ R such that

x+ 0 = x ∀x ∈ R.

(A4) Existence of the additive inverse: for each x ∈ R there exists a number −x ∈ R such
that

x+ (−x) = 0.

Axioms of multiplication

(M1) Law of associativity: for all x, y, z ∈ R

(xy)z = x(yz).

(M2) Law of commutativity: for all x, y ∈ R

xy = yx.
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(M3) Existence of a unit: there exists a number 1 ∈ R such that

x · 1 = x ∀x ∈ R.

(M4) Existence of the multiplicative inverse: for each x ∈ R with x 6= 0 there exists a
number x−1 ∈ R such that

xx−1 = 1.

Distributive law 〈Distributivgesetz〉

(D) For all x, y, z ∈ R
x(y + z) = xy + xz.

Recall some of the immediate consequences of the above axioms: the uniqueness of the zero
element 0 ∈ R, the unit 1 ∈ R, as well as of the additive and multiplicative inverses −x
and x−1 for any nonzero element x ∈ R. Furthermore, there are no zero divisors 〈Nullteiler〉
in R, i.e., for all x, y ∈ R\{0} we have xy 6= 0. Integer powers xn (n ∈ N) of a real number
x are always well-defined — as the n-fold product x · · ·x ; finite sums and products are
well-defined and obey extended versions of the commutative and distributive law, thus
leading to standard notation involving the symbols

∑
and

∏
as, for example, in

n∑

j=1

aj and
n∏

j=1

aj a1, . . . , an ∈ R.

0.2. The complex number field C: The field axioms for C are of course
precisely the same with R replaced by C everywhere in the statements. (All axioms listed
above are just instances of the abstract field axioms for the set R.) Alternatively, we may
identify C as a set with R×R equipped with operations of addition and multiplication for
ordered pairs (xj , yj) ∈ R2 (j = 1, 2) as follows:

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

(x1, y1) · (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).

Then we can prove that the field axioms are satisfied with (0, 0) as the zero element and
(1, 0) as the unit. Recall that the element i := (0, 1) has the property that i2 = (−1, 0)
and that every complex number z can be written as

z = x+ iy,

where x and y are uniquely determined real numbers. We call x the real part 〈Realteil〉 and
y the imaginary part 〈Imaginärteil〉 of z, denoted by x = Re(z) and y = Im(z).
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As an additional structure on C there is complex conjugation 〈komplexe Konjugation〉¯: C →
C, defined by z = x + iy 7→ z̄ := x − iy. As a map complex conjugation is a field
automorphism 〈Körperautomorphismus〉 (i.e., isomorphism onto itself) with the additional
property of involution 〈Involution〉, that is ¯̄z = z holds for all z ∈ C.

Note that by embedding R as a subfield into C, x 7→ x + i0, we may identify 0 ∈ R with
0 ∈ C as well as 1 ∈ R with 1 ∈ C.

0.3. R as an ordered field: There exists a relation > on R with the following
properties:

(O1) Trichotomy 〈Trichotomie〉: for each x ∈ R precisely one of the following holds

x > 0 or x = 0 or − x > 0.

Elements x satisfying x > 0 are called positive 〈positiv〉. If −x > 0 we also write
x < 0 and call x negative 〈negativ〉. If x non-positive we thus have x = 0 or x < 0,
which we summarize by writing x ≤ 0. Similarly, we use the notation x ≥ 0 for a
non-negative element x ∈ R.

(O2) For all x, y ∈ R: If x > 0 and y > 0 then x+ y > 0.

(O3) For all x, y ∈ R: If x > 0 and y > 0 then xy > 0.

Definition: For x, y ∈ R we henceforth write

x > y if x− y > 0,

x < y if y > x,

x ≥ y if x > y or x = y,

x ≤ y if y − x ≥ 0.

From (O1) we obtain that for x, y ∈ R precisely one of the relations x < y, x = y, or x > y
holds. (Thus the maximum and the minimum of two real numbers is well-defined.) We
list a few more simple consequences for elements x, y, a ∈ R:

transitivity 〈Transitivität〉: x < y and y < z implies x < z
if x < y then x+ a < y + a
if x < y and a > 0 then xa < ya
x < y ⇐⇒ −x > −y
if x 6= 0 then x2 > 0
y > x > 0 ⇐⇒ x−1 > y−1 > 0.
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Recall that an interval 〈Intervall〉 in R is a set which is of any of the following types: let
a, b ∈ R with a < b and define
the open bounded interval ]a, b[ := {x ∈ R : a < x < b},
the open half-bounded intervals ] −∞, b[ := {x ∈ R : x < b}, ]a,∞[:= {x ∈ R : a < x},
the half-open intervals ]a, b] := {x ∈ R : a < x ≤ b}, [a, b[:= {x ∈ R : a ≤ x < b},
the closed half-bounded intervals ] −∞, b] := {x ∈ R : x ≤ b}, [a,∞[:= {x ∈ R : a ≤ x},
the closed bounded interval [a, b] := {x ∈ R : a ≤ x ≤ b},
and ] −∞,∞[ = R.

0.4. Absolute value in R: For a real number x we define its absolute value
〈Absolutbetrag oder Betrag〉 by

|x| :=

{

x if x ≥ 0,

−x if x < 0.

The basic properties of the map | | : R → R, x 7→ |x| are

(i) for all x ∈ R we have |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0.

(ii) for all x, y ∈ R: |xy| = |x| · |y|
(iii) Triangle inequality 〈Dreiecksungleichung〉: |x+ y| ≤ |x| + |y| for all x, y ∈ R.

Simple consequences are | − x| = |x|,
∣
∣
∣
∣

x

y

∣
∣
∣
∣
=

|x|
|y| whenever y 6= 0, the so-called reverse

triangle inequality
|x− y| ≥ |x| − |y|

(or equivalently, |x+y| ≥ |x|−|y|), and the following formulae for maximum and minimum

max(x, y) =
x+ y + |x− y|

2
min(x, y) =

x+ y − |x− y|
2

.

0.5. Countable and uncountable sets in R: Recall that a set X is countable
〈abzählbar〉 if there exists a bijective map F : X → N. For example, N, N × N, and Q are
countable sets, but R is not. Thus R is an uncountable set. In fact, any interval ]a, b[ with
a < b is uncountable. (cf. [SS07, 4.4].)

0.6. Order completeness 〈Ordnungsvollständigkeit〉 and uniqueness of R:

Axiom of order completeness: Any non-empty subset of R which is bounded
above (resp. below) possesses a supremum (resp. infimum).
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Theorem (Dedekind): Up to isomorphism (of ordered fields) R is the unique order
complete ordered field with the rational numbers Q as an ordered subfield1.

0.7. Some consequences of the order completeness of R: Based on
the order completeness one can prove the following important properties of the set of real
numbers (cf. [SS07]):

The Archimedian property: If2 a > 0 and y ∈ R then there exists n ∈ N such
that na > y.

Density of Q and R \ Q in R: If x, y ∈ R with x < y, then there exists a
rational number q ∈ Q such that x < q < y and an irrational number s ∈ R \ Q such that
x < s < y.

Existence of roots: If a ∈ R and a > 0, then for all n ∈ N there exists a unique
x ∈ R such that xn = a.

1Richard Dedekind (1831–1916) ["rIçaKt "de:d@kInt], German mathematician
2Archimedes (287–212 B.C.) (ὁ Ἀρχιμήδης), one of the greatest ancient Greek mathematicians, physi-

cists, engineers . . .
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SEQUENCES, SERIES, AND
SUBSETS OF R
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§1. N AS A SUBSET OF R AND SOME CONSE-

QUENCES OF THE ARCHIMEDIAN PROPERTY

1.1. N as a subset of R:

Here we briefly discuss how the natural numbers can be characterized as a subset of the
real number field by means of the following notion.

Definition: A subset X ⊆ R is said to be inductive if

(i) 0 ∈ X

(ii) x ∈ X =⇒ x+ 1 ∈ X.

Theorem: There exists a smallest inductive subset N ⊆ R. The set N together with
the successor map S : N → R, n 7→ n + 1 satisfies Peano’s axioms1, that is

(PA1) 0 ∈ N

(PA2) ∀n ∈ N: S(n) ∈ N, i.e. S(N) ⊆ N

(PA3) ∄n ∈ N: S(n) = 0, i.e. 0 6∈ S(N)

(PA4) S is injective, i.e. ∀n,m ∈ N: S(n) = S(m) =⇒ n = m

(PA5) Induction axiom: if M ⊆ N is inductive (as a subset of R) then M = N.

Proof. Define N to be the intersection of all inductive subsets of R. By construction N is
contained in every inductive subset of R, hence it is the smallest such set.

Furthermore, N is an inductive subset of R, since both defining properties of inductive sets
are preserved under intersection. Thus (PA1) and (PA2) are immediate.

(PA3): The set P := {x ∈ N : x ≥ 0} is inductive, since 0 ∈ P and x ≥ 0 implies x+1 ≥ 0.
Therefore P must contain the smallest inductive set N (in fact, this yields P = N). In
other words, all elements of N are non-negative. If n ∈ N with S(n) = 0 then n + 1 = 0.
Hence n = −1 < 0 and n belongs to N — a contradiction � .

(PA4) follows from the field axioms (in R), since n + 1 = m+ 1 implies n = m.

1Giuseppe Peano (1858–1932) [dZu"seppe pe"a:no], Italian mathematician
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(PA5): M is an inductive set and must therefore contain the smallest inductive set N,
which implies M ⊆ N ⊆ M. Hence M = N.

By the uniqueness of the set theoretic construction of the natural numbers N the set N is
isomorphic to N (cf. [SS07]). Thus we obtain a model of N inside R in the sense of the
following statement.

Corollary: We may identify N with N ⊆ R and can henceforth consider N as a
subset of R.

Remark: In contrast with the totally ordered field R its subset N (as an ordered set
with the order inherited from that on R) is well-ordered, i.e., any non-empty subset of N
possesses a minimum. To see this, let ∅ 6= A ⊆ N. If A is a finite subset, the minimum
clearly exists (and can be found after finitely many comparisons of the elements in A). If
A is not finite, choose a ∈ A arbitrary and define B := {x ∈ A : x ≤ a}, C := A\B. Then
A = B ∪C, every element in C is greater than any element in B, and B is finite, thus has
a minimum. By construction, the minimum of B is the minimum of A as well.

The following results are simple, but important, consequences of the Archimedian property.

1.2. THEOREM:

(i) For all ε ∈ R with ε > 0 there exists n ∈ N, n ≥ 1, such that
1

n
< ε.

(ii) Let r ∈ R with r ≥ 0. If for all n ∈ N, n ≥ 1, the inequality r <
1

n
holds, then r = 0.

Proof. (i): Application of the Archimedian property (with a = ε and y = 1) gives that
∃n ∈ N such that nε > 1 (note that this implies n > 0). Hence we obtain ε > 1/n.

(ii): Let r ≥ 0. If r > 0 then (i) implies the existence of m ∈ N, m ≥ 1, such that
0 < 1/m < r — a contradiction � . Thus only r = 0 is possible.

1.3. LEMMA: Let x ∈ R, x ≥ −1. Then we have

∀n ∈ N : (1 + x)n ≥ 1 + nx Bernoulli’s inequality2.

2The Bernoulli family ["bErnUli] was a family of Swiss mathematicians in the 17th and 18th century,
who originally came from Holland.
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Proof. By induction on n.

If n = 0 we clearly have (1 + x)0 = 1 ≥ 1 + 0 · x.
Suppose the statement holds for n. Since 1 + x ≥ 0 we conclude

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x) = 1 + nx+ x+ nx2

= 1 + (n+ 1)x+ nx2
︸︷︷︸

≥0

≥ 1 + (n + 1)x.

1.4. PROPOSITION: Let b ∈ R.

(i) If b > 1 then ∀K ∈ R ∃n ∈ N: bn > K.

(ii) If 0 < b < 1 then ∀ε > 0 ∃n ∈ N: bn < ε.

Proof. (i): Let x := b− 1, then x > 0. For all m ∈ N Bernoulli’s inequality gives

bm = (1 + x)m ≥ 1 +mx.

Let K ∈ R. By the Archimedian property there is some n ∈ N such that nx > K − 1.
Therefore using m = n in the above inequality we obtain

bn ≥ 1 + nx > 1 +K − 1 = K.

(ii): Put b1 := 1/b, then b1 > 1. Let ε > 0. Then (i) can be applied to b1 with K := 1/ε,
i.e. there is some n ∈ N such that bn1 > K. Thus we have

bn =
1

bn1
<

1

K
= ε.

1.5. Geometric sums: Let n ∈ N. We define the function sn : R → R by

sn(x) :=

n∑

k=0

xk = 1 + x+ x2 + . . .+ xn ∀x ∈ R.

If x = 1 we obtain

sn(1) =
n∑

k=0

1 = n+ 1.
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If x 6= 1 we take the differences on both sides of the following equations

sn(x) = 1 + x+ x2 + . . .+ xn−1 + xn

x sn(x) = x+ x2 + x3 + . . .+ xn + xn+1

to obtain
sn(x) − xsn(x)
︸ ︷︷ ︸

(1−x)sn(x)

= 1 − xn+1,

which in turn yields the following formula

(1.1)

n∑

k=0

xk =
1 − xn+1

1 − x
(n ∈ N, x ∈ R \ {1}).

Observation: We may rewrite (1.1) as

sn(x) =

n∑

k=0

xk =
1

1 − x
− xn+1

1 − x
,

where the first term of the difference on the right-hand side is independent of n.

If |x| < 1 the absolute value of the second term of the above difference has numerator
〈Zähler〉 |x|n+1, which becomes arbitrarily small when n gets large. To be more precise,
for every ε1 > 0 Proposition 1.4.(ii) guarantees that there exists an N ∈ N such that
|x|N < ε1. In fact, the latter inequality then holds for all n ∈ N with n ≥ N as well:
|x|n < ε1. Therefore we obtain that

∣
∣
∣
∣

xn+1

1 − x

∣
∣
∣
∣
=

|x|n+1

1 − x
<

ε1

1 − x
∀n ≥ N.

Let ε > 0 be arbitrary and put ε1 := ε(1 − x). Then the above inequality implies that

∣
∣
∣
∣
sn(x) − 1

1 − x

∣
∣
∣
∣
< ε ∀n ∈ N, n ≥ N.

Thus we see that for arbitrary fixed x with |x| < 1 the sum sn(x) is approximately equal
to 1/(1−x) as n gets large, in the sense that the error can be made smaller than any given
positive “tolerance” as soon as n is larger than an appropriately chosen “number of steps
in the computation”.



§2. SEQUENCES AND LIMITS

2.1. DEFINITION: A sequence 〈Folge〉 of real numbers is a map a : N → R. Thus
for every n ∈ N a number a(n) ∈ R is given.

We usually write sequences in indexed form, i.e. we set an := a(n) and denote the sequence
by (an)n∈N or (a0, a1, a2, . . .) or simply (an). Occasionally we will encounter index sets other
than N, as for example in the sequence (ak, ak+1, . . .) starting with index k, also denoted
by (an)n≥k; sometimes k will be allowed to be a negative integer as well. (In fact, any
countable set can serve as index set as long as it is totally ordered.)

2.2. EXAMPLES:

1) Let c ∈ R and an = c for all n ∈ N. This gives the constant sequence (c, c, . . .) = (c)n∈N.

2) Let an =
1

n
for all n ∈ N with n ≥ 1. Then we get

(
1

n

)

=

(

1,
1

2
,
1

3
,
1

4
, . . .

)

.

3) an = (−1)n (n ∈ N) defines (an) = (1,−1, 1,−1, . . .).

4) an =
n

n+ 1
gives the sequence

(
n

n+ 1

)

=

(

0,
1

2
,
2

3
, . . .

)

.

5) an =
n

2n
describes the sequence

( n

2n

)

=

(

0,
1

2
,
2

4
,
3

8
, . . .

)

.

6) The Fibonacci1 numbers: Let f0 = 0 and f1 = 1. If n ≥ 2 define fn inductively by

fn = fn−1 + fn−2.

Thus we obtain (fn) = (0, 1, 1, 2, 3, 5, 8, 13, 21, . . .).

7) Let x ∈ R and put an = xn. Then we obtain the sequence (an) = (1, x, x2, x3, . . .).

8) Let x ∈ R and define sn =
∑n

k=0 x
k (=

∑n
k=0 ak with ak as in 7)). This gives the

sequence of geometric sums (sn) = (1, 1 + x, 1 + x+ x2, . . .).

1Fibonacci [fibo"natÙi], actually Leonardo Pisano (1170–1250 [?]) [leo"nardo pi"sa:no], an Italian math-
ematician, invented this series to solve a problem according to the breeding of rabbits.
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With the following notion the subject of mathematical analysis really gets started.

2.3. DEFINITION: Let (an) be a sequence and a ∈ R. The sequence (an) is said
to be convergent 〈konvergent〉 to a if the following holds:

∀ε > 0 ∃N ∈ N such that |an − a| < ε ∀n ≥ N.

aa− ε a + ε

R

In this case a is called the limit2 〈Grenzwert oder Limes〉 of the sequence (an). In symbols
we describe this fact by a = lim

n→∞
an, briefly a = lim an, or an → a as n→ ∞, also an → a

(n→ ∞).

Equivalently, a is the limit of (an) if

∀ε > 0 ∃N ∈ N such that an ∈ ]a− ε, a+ ε[ ∀n ≥ N.

We then also say that the members an of the sequence eventually or finally lie in the
interval ]a− ε, a+ ε[ or the property |a− an| < ε holds for almost all n ∈ N, i.e. for all but
finitely many n (namely at most those with n < N) the statement is true.

If a sequence (an) is not convergent (to any a ∈ R) it is said to be divergent 〈divergent〉.
A sequence converging to 0, i.e. an → 0 as n→ ∞, is called a zero sequence or null sequence
〈Nullfolge〉.

Note: In the conditions stated above ε > 0 is “given arbitrarily” and our task in showing
convergence is to find N ∈ N (which in general will depend on ε!) such that for all n ≥ N
the sequence element an belongs to the ε-neighborhood 〈ε-Umgebung〉 Uε(a) :=]a− ε, a+ ε[
of a ∈ R.

Furthermore, the property of convergence as well as the value of the limit remains un-
changed upon alteration or dropping of finitely many members of a sequence.

2.4. Examples:

1) The constant sequence (an) = (c) is convergent to c: for given ε > 0 choose N = 0, then
|an − c| = 0 < ε for all n ≥ N .

2The term “limit” (from the Latin limes, literally “border”) was first used by Isaac Newton.
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2)

(
1

n

)

is a null sequence: let ε > 0; by the Archimedian property there exists N ∈ N

such that N > 1/ε; then we have for n ≥ N that

∣
∣
∣
∣

1

n
− 0

∣
∣
∣
∣
=

1

n
≤ 1

N
< ε.

3) ((−1)n) is divergent, which we prove by contradiction 〈indirekt〉: suppose there is a ∈ R
with (−1)n → a (n→ ∞); let ε := 1/2 and choose N ∈ N such that for all n ≥ N we have
|an − a| < ε = 1/2. Note that |an+1 − an| = |(−1)n+1 − (−1)n| = |(−1)n(−1 − 1)| = 2.
Hence we obtain

2 = |an+1 − an| = |(an+1 − a) + (a− an)| ≤
[triangle inequ.]

|an+1 − a| + |a− an| <
1

2
+

1

2
= 1

— a contradiction � .

4) lim
n→∞

n

n + 1
= 1, i.e.

(
n

n + 1

)

is convergent to 1: let ε > 0; choose N ∈ N such that

N > 1/ε, then we have for all n ≥ N

∣
∣
∣
∣

n

n+ 1
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

n− (n+ 1)

n+ 1

∣
∣
∣
∣
=

1

n + 1
≤ 1

N
< ε.

5) lim
n→∞

n

2n
= 0: as a lemma we state that

∀n ≥ 4: n2 ≤ 2n [proof by induction, exercise!].

Using the above result we have
n

2n
≤ 1

n
if n ≥ 4; let ε > 0 and choose N ∈ N such that

N ≥ max(4, 2/ε), then we have for n ≥ N

∣
∣
∣
n

2n
− 0
∣
∣
∣ =

n

2n
≤ 1

n
≤ 1

N
≤ ε

2
< ε.

2.5. Definition: A sequence (an) is said to be bounded (from) above 〈nach oben

beschränkt〉 (resp. bounded (from) below 〈nach unten beschränkt〉), if there exists K ∈ R
such that for all n ∈ N we have an ≤ K (resp. an ≥ K). The sequence is 〈bounded〉
〈beschränkt〉 if it is bounded above and below.

Thus we have the following equivalence:

(2.1) (an) is bounded ⇐⇒ ∃K > 0 ∀n ∈ N : |an| ≤ K.

Note that the constant K is independent of n.



9

2.6. Proposition: A convergent sequence is bounded.

Proof. Let a = lim an and choose N ∈ N such that |an − a| < 1 holds when n ≥ N . Then
for all n ≥ N

|an| = |an − a+ a| ≤ |an − a| + |a| < 1 + |a|.
Put K := max(|a0|, |a1|, . . . , |aN−1|, |a| + 1), then |an| ≤ K follows for all n ∈ N.

2.7. Remark: The converse statement of the above proposition is wrong. For ex-
ample, the sequence ((−1)n) is bounded (since |an| = 1 for all n) but not convergent [cf.
Example 2.4.3)].

2.8. Examples:

1) The sequence (fn) of Fibonacci numbers [cf. Example 2.2.6)] is divergent.

Proof. We assert that ∀n ≥ 5: fn ≥ n.

Indeed, we have f5 = 5 and then for n ≥ 6 inductively

fn+1 = fn + fn−1 ≥
[ind. hyp.]

n+ (n− 1) ≥ n+ (2 − 1) = n+ 1.

The above assertion now implies that the sequence (fn) is unbounded [Archimedian prop-
erty of R] and hence cannot be convergent [by the negation of Proposition 2.6].

2) Let x ∈ R and consider the sequence (xn)n∈N. The convergence properties depend on
the value of x:

Case |x| > 1: Proposition 1.4.(i) implies that for every K ∈ R there is an N ∈ N such that
∀n ≥ N we have |x|n > K. Therefore (xn) is not bounded, hence cannot be convergent.

Case |x| = 1: If x = −1 then (xn) = ((−1)n) is not convergent [cf. Example 2.4.3)]; if x = 1
then (xn) = (1)n∈N is a constant sequence and thus convergent to 1.

Case |x| < 1: If x = 0 then (xn)n≥1 = (0)n≥1 has limit 0.
Finally, if 0 < |x| < 1 we can show that (xn) also converges to 0: Let ε > 0. By Proposition
1.4.(ii) there is an N ∈ N such that |x|n < ε holds for all n ≥ N . In other words,

|xn − 0| = |xn| = |x|n < ε ∀n ≥ N,

which proves that lim
n→∞

xn = 0.
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2.9. Proposition (Uniqueness of the limit): If a sequence (an) converges
to a ∈ R and to b ∈ R, then a = b.

(In particular, the notation lim an = a is justified by this statement.)

Proof. (By contradiction.) Suppose a 6= b and put ε :=
|a− b|

3
. Then ε > 0 and we observe

the following:

lim an = a =⇒ ∃N1 such that ∀n ≥ N1: |an − a| < ε

as well as

lim an = b =⇒ ∃N2 such that ∀n ≥ N2: |an − b| < ε.

Thus for n ≥ N := max(N1, N2) both of the above inequalities are valid and yield

|a− b| = |a− an + an − b| ≤ |a− an| + |an − b| < 2ε =
2

3
|a− b|.

By assumption, we have |a− b| > 0 and therefore obtain 1 < 2/3 — a contradiction � .

2.10. Basic operations with convergent sequences:

(i) Sum and product: If (an), (bn) are convergent, then the sequences (an + bn) and
(an · bn) are also convergent and

lim
n→∞

(an + bn) =
(

lim
n→∞

an

)

+
(

lim
n→∞

bn

)

(2.2)

lim
n→∞

(anbn) =
(

lim
n→∞

an

)

·
(

lim
n→∞

bn

)

.(2.3)

Proof. Let a := lim an and b := lim bn.

Sum: We have to show that an + bn → a+ b (n→ ∞).
Let ε > 0. Then ε/2 > 0 as well, thus we have

lim an = a =⇒ ∃N1 such that ∀n ≥ N1: |an − a| < ε/2
and
lim bn = b =⇒ ∃N2 such that ∀n ≥ N2: |bn − b| < ε/2.

Therefore we obtain for n ≥ N := max(N1, N2)

|(an + bn) − (a+ b)| = |(an − a) + (bn − b)| ≤ |(an − a)| + |(bn − b)| < ε

2
+
ε

2
= ε.

Product: We have to show that anbn → ab (n→ ∞).
Since (an) is convergent it is bounded, thus ∃K1 > 0 such that |an| ≤ K1 for all n ∈ N.
Define K := max(K1, |b|), then K > 0.
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Let ε > 0. Using
ε

2K
in place of ε in the defining property of convergence for (an) and

(bn) we obtain
∃M1 ∈ N such that |an − a| < ε/(2K) for all n ≥M1 as well as
∃M2 ∈ N such that |bn − b| < ε/(2K) for all n ≥M2.

Therefore we have for all n ≥M := max(M1,M2)

|anbn − ab| = |anbn − anb+ anb− ab| = |an(bn − b) + (an − a)b|
≤ |an||bn − b| + |an − a||b| < K

ε

2K
+

ε

2K
K = ε.

(ii) Linearity of the limit: As a corollary to (i) we obtain: If λ, µ ∈ R and (an), (bn)
are convergent, then the linear combination λ · (an)n∈N + µ · (bn)n∈N := (λan + µbn)n∈N

converges as well and

lim
n→∞

(λan + µbn) = λ lim
n→∞

an + µ lim
n→∞

bn.

Proof. Let a := lim an and b := lim bn. The constant sequence (λ), resp. (µ), converges to
λ, resp. µ, hence by (i) λan → λa and µbn → µb; furthermore, again by (i), we have the
sum rule (λan) + (µbn) → λa+ µb.

(iii) Quotient: If (an), (bn) are convergent and b := lim bn is nonzero, then there exists

n0 ∈ N such that bn 6= 0 for all n ≥ n0 and the sequence

(
an

bn

)

n≥n0

converges with limit

(2.4) lim
n→∞

an

bn
=

lim an

lim bn
.

Proof. Let a := lim an.

We first show that
1

bn
→ 1

b
(n→ ∞).

Put ε′ := |b|/2 and note that ε′ > 0. By convergence of (bn) to b, there is an n0 ∈ N such
that for all n ≥ n0 we have

|b|
2

= ε′ > |bn − b| ≥
[reverse tri. inequ.]

|b| − |bn|.

The outermost inequality implies |bn| > |b|/2 and thus bn 6= 0 for all n ≥ n0.

Let ε > 0, then, again by the basic convergence estimate of (bn) applied to ε′′ := |b|2ε/2 > 0,
we obtain the existence of N1 ∈ N such that

|bn − b| < ε′′ =
|b|2ε

2
∀n ≥ N1.
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We conclude that for n ≥ N := max(n0, N1)

∣
∣
∣
∣

1

bn
− 1

b

∣
∣
∣
∣
=

∣
∣
∣
∣

b− bn
bnb

∣
∣
∣
∣
=

1

|bn|
1

|b| |b− bn| ≤
2

|b|
1

|b|
|b|2ε

2
= ε.

Finally, the product rule (i) gives
an

bn
= an · 1

bn
→ a · 1

b
=
a

b
.

(iv) Example: Let an =
3n2 + 13n

n2 + 2
(n ∈ N).

We rewrite an (upon division of the numerator and the denominator by the highest order
term with respect to n) in the form

an =
3 + 13

n

1 + 2
n2

and observe that repeated use of (i) and (ii) yields 3 +
13

n
= 3 + 13 · 1

n
→ 3 + 13 · 0 = 3

and

1 +
2

n2
= 1 + 2 · 1

n
· 1

n
→ 1 + 2 · 0 · 0 = 1, hence by the quotient rule (iii)

lim
n→∞

an = lim
n→∞

3n2 + 13n

n2 + 2
= lim

n→∞

3 + 13
n

1 + 2
n2

=
lim 3 + 13

n

lim 1 + 2
n2

=
3

1
= 3.

(v) If (an), (bn) are convergent and an ≤ bn for almost all n (i.e. for all n ≥ n0), then

lim an ≤ lim bn.

Proof. Put cn := bn − an, then cn ≥ 0 for almost all n and c := lim cn = lim bn − lim an by
(ii). Thus it suffices to show that c ≥ 0, since this implies lim an ≤ lim bn.

Suppose the contrary, that is c < 0. Let ε := −c, then ε > 0 and there exists N ∈ N such
that for all n ≥ N we have

ε > |cn − c| = |cn − (−ε)| = |cn + ε| =
[cn≥0,ε>0]

cn + ε.

But this implies that for all n ≥ N we would have cn < 0 — a contradiction � .

(vi) The Sandwich Lemma: If (an), (bn), (cn) are sequences such that an ≤ bn ≤ cn
holds for almost all n and an → a, cn → a (n → ∞), then also (bn) is convergent and
lim bn = a.
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Proof. Let ε > 0 and choose N ∈ N such that for all n ≥ N the inequalities |an − a| < ε
and |cn − a| < ε hold. Then

a− ε < an ≤ bn ≤ cn < a+ ε ∀n ≥ N

and upon subtracting a we obtain

−ε < bn − a < ε ∀n ≥ N.

In other words, the inequality |bn−a| < ε holds for all n ≥ N , thus (bn) converges to a.

(vii) Example: Consider the sequence (bn) given by

bn :=
2n∑

k=n+1

1

k2
=

1

(n+ 1)2
+

1

(n+ 2)2
+ . . .+

1

(2n)2
.

Note that n+ 1 ≤ k ≤ 2n implies
1

k2
<

1

n2
and therefore

0 < bn <
1

n2
+

1

n2
+ . . .+

1

n2
︸ ︷︷ ︸

n terms

≤ n · 1

n2
=

1

n
→ 0 (n→ ∞).

Hence we may apply the Sandwich lemma with an = 0, cn = 1/n and conclude that (bn)
is convergent with limit 0.

Remark: Note that the above example shows that strict inequalities an < bn for all n
do (in general) not imply a strict inequality for the respective limits, i.e. an < bn 6⇒
lim an < lim bn, but of course lim an ≤ lim bn.

2.11. Series: Many sequences (sm) in applications occur through summation over the
first m members of a given sequence (an) of real numbers.

Definition: The sequence (sm)m∈N of partial sums 〈Partialsummen〉 is defined by

sm :=

m∑

k=0

ak = a0 + a1 + . . .+ am (m ∈ N)

and is called (infinite) series 〈(unendliche) Reihe〉, usually denoted by

∞∑

k=0

ak. If (sm) is

convergent, then lim sm is called the sum of the series and we write

∞∑

k=0

ak = lim
m→∞

sm = lim
m→∞

m∑

k=0

ak.
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Remark: (i) We will also consider series with summation starting at n0 ∈ N, that is
∞∑

k=n0

ak with corresponding partial sums (sm)m≥n0.

(ii) Every sequence can be interpreted as a series: Let (cn) be an arbitrary sequence and
define ak := ck − ck−1 (k ≥ 1) and a0 := c0. Then we obtain

cn =

n∑

k=0

ak.

Examples: 1) Let ak =
1

k(k + 1)
(k ≥ 1), then the corresponding series is

∞∑

k=1

1

k(k + 1)
.

Observe that ak =
k

k + 1
− k − 1

k
, hence

sn =
n∑

k=1

ak =
n∑

k=1

(
k

k + 1
− k − 1

k

)

=

(
1

1 + 1
− 1 − 1

1

)

+

(
2

2 + 1
− 2 − 1

2

)

+. . .+

(
n− 1

n
− n− 2

n− 1

)

+

(
n

n + 1
− n− 1

n

)

=
n

n + 1

is convergent to 1, that is

∞∑

k=1

1

k(k + 1)
= lim

n→∞
sn = 1.

2) The geometric series: Let x ∈ R and consider
∞∑

k=0

xk.

Recall that we have already determined the values of the partial sums (sm) in 1.5, where
we have obtained

sm = m+ 1 if x = 1, sm =
1 − xm+1

1 − x
if x 6= 1.

Case x = 1: sm = m+ 1 is unbounded, hence (sm) is divergent.

Case x = −1: s2n = 1−(−1)
2

= 1 and s2n+1 = 1−(1)
2

= 0, hence (sm) is not convergent (argue
as in Example 2.4.3)).

Case |x| > 1: sm = 1
1−x

− xm+1

1−x
; as observed in Example 2.8.2), the sequence (xm+1) is

unbounded and thus (sm) as well. Therefore the series is not convergent.

Case |x| < 1: sm = 1
1−x

− xm+1

1−x
, where xm+1 → 0 [cf. Example 2.8.2)]. Applying the rules

for the computation of limits in 2.10 yields lim sm = 1
1−x

, that is

∞∑

k=0

xk =
1

1 − x
(|x| < 1).
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3) As special cases of 2) consider x = ±1
2

in the geometric sum, then we obtain

1 +
1

2
+

1

4
+

1

8
+ . . . =

1

1 − 1
2

= 2

1 − 1

2
+

1

4
− 1

8
+ . . . =

1

1 + 1
2

=
2

3
.

Proposition: If

∞∑

n=0

an and

∞∑

n=0

bn are convergent series and λ, µ ∈ R, then

∞∑

n=0

(λan + µbn) is convergent and

∞∑

n=0

(λan + µbn) = λ
∞∑

n=0

an + µ
∞∑

n=0

bn.

Proof. Apply the limit rules 2.10 to the partial sums.

2.12. Infinite or improper limits:

Definition: A sequence (an) is said to have (improper or) infinite limit +∞ 〈ist
uneigentlich konvergent oder bestimmt divergent gegen +∞〉, if for all K ∈ R there is an
N ∈ N such that an > K for all n ≥ N . We then denote this fact by lim

n→∞
an = +∞.

A sequence (an) is said to have (improper or) infinite limit −∞, if (−an) has infinite limit
+∞.

Note that a sequence with infinite limit is necessarily unbounded, namely not bounded
above if the improper limit is +∞ and not bounded below if the improper limit is −∞.

Examples: 1) lim
n→∞

n = +∞ 2) lim
n→∞

(−n2) = −∞

3) Let an = (−1)nn (n ∈ N), then (an) is unbounded hence not convergent. But (an) is
not improperly convergent either, since a2n → +∞ and a2n+1 → −∞.

4) Let an = n for even n, and an = 0 for odd n. Then (an) is unbounded, divergent, and
also not improperly convergent.
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5) Some rules for operations with improper limits: if (an) is convergent to a ∈ R and (bn),
(cn) have improper limit +∞, then

lim(an + bn) = lim(bn + an) = +∞
lim(cn + bn) = lim(bn + cn) = +∞
lim(an − bn) = lim(−bn + an) = −∞

if a > 0 then lim(anbn) = lim(bnan) = +∞
lim(cnbn) = lim(bncn) = +∞.

Warning: There are no general limit relations for differences of sequences with infinite
limit +∞ or products of a zero sequence with an improperly convergent sequence. For
example,

limn = +∞, limn2 = +∞ and lim(n− n) = 0, but lim(n− n2) = −∞
and
lim 1

n
= 0, lim 1

n2 = 0 and lim
(
n · 1

n

)
= 1, but lim

(
n · 1

n2

)
= 0.

Proposition: (i) Let (an) have infinite limit +∞ or −∞, then there exists n0 ∈ N

such that

(
1

an

)

n≥n0

is well-defined and lim
1

an
= 0.

(ii) If (an) is a zero sequence with an > 0 (resp. an < 0) for all n ∈ N, then lim
1

an

= +∞

(resp. lim
1

an
= −∞)

Proof. (i) It suffices to consider the case lim an = +∞. If we put K = 0, then by definition

there is an n0 ∈ N such that for all n ≥ n0 we have an > K = 0. Thus

(
1

an

)

n≥n0

is well

defined. Note that in addition 1
an
> 0 (n ≥ n0).

Let ε > 0. Putting K = 1/ε we obtain some N ∈ N such that an > K = 1/ε whenever
n ≥ N . Therefore we have for n ≥ max(n0, N) the inequality 0 < 1

an
< ε, which shows

convergence of ( 1
an

) to 0.

(ii) is left as an exercise.

Example: lim n
2n = 0 [cf. Example 2.4.5)] and n

2n > 0, hence (ii) of the above Proposi-

tion implies that

(
2n

n

)

has infinite limit +∞.

Remark: If (an), (bn) satisfy an ≤ bn for almost all n and lim an = +∞, then lim bn =
+∞ follows directly.



§3. COMPLETENESS OF R AND CONVERGENCE

PRINCIPLES

In this section we investigate important consequences of order completeness of R [cf. Sec-
tion 0] for sequences of real numbers. We recall the statement of the

3.1. Axiom of order completeness: A non-empty subset of R which is
bounded above (resp. below) possesses a supremum (resp. infimum).

We define the key notions for sequences which allow us to deduce strong methods for
convergence tests of sequences.

3.2. Definition: Let (an)n∈N be a sequence of real numbers.

(i) If (nk)k∈N is a sequence of natural numbers (i.e. nk ∈ N for all k) satisfying n0 < n1 <
n2 < . . . (i.e. nk < nk+1 for all k) then the sequence (ank

)k∈N = (an0 , an1, an2 , . . .) is called
a subsequence 〈Teilfolge〉 of the sequence (an).

(ii) A real number a is called cluster point 〈Häufungswert〉 of the sequence (an), if there
exists a subsequence (ank

)k∈N converging to a.

3.3. Proposition: A real number a is a cluster point of the real sequence (an) if and
only if every ε-neighborhood of a contains infinitely many members of (an), that is

(3.1) ∀ε > 0 ∀N ∈ N ∃m ≥ N : am ∈ Uε(a) = ]a− ε, a+ ε[

(recall that am ∈ Uε(a) is equivalent to |am − a| < ε).

Proof. • We show the ‘only if’-part (i.e. necessity): a is cluster point ⇒ (3.1).

Let (ank
)k∈N be a subsequence with limk→∞ ank

= a and ε > 0 arbitrary. We can choose
k0 ∈ N such that ank

∈ Uε(a) holds for all k ≥ k0.

LetN ∈ N, then there exists k1 ≥ k0 such that nk1 ≥ N [since . . . < nk−1 < nk < nk+1 < . . .
by definition of a subsequence]. Therefore, if we put m := nk1, then am = ank1

∈ Uε(a) by
construction.

17
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• We show the ‘if’-part (i.e. sufficiency): (3.1) ⇒ a is cluster point.

Putting ε := 1 and N := 0 we obtain an n0 ∈ N sucht that an0 ∈ U1(a). Then construct a
subsequence (ank

)k∈N with the property

∀k ∈ N, k ≥ 1, ∃nk ∈ N : nk > nk−1 and ank
∈ U 1

k+1
(a)

inductively: For the basic case k = 1, (3.1) with ε := 1/2 and N := n0 + 1 gives some
n1 ≥ N > n0 such that an1 ∈ U 1

2
(a). If an1 , . . . , ank

have been defined, then applying (3.1)

with ε := 1/(k + 2) and N := nk + 1 we obtain nk+1 ≥ N > nk such that ank+1
∈ U 1

k+2
(a).

We assert that (ank
)k∈N converges to a: Let ε > 0. Choose k0 ∈ N such that 1

k0+1
< ε [cf.

1.2.(i)], then we have for all k ≥ k0 that

|ank
− a| < 1

k0 + 1
< ε.

3.4. Examples: 1) If an = (−1)n then (an) has 1 and −1 as cluster points, since
the subsequences (a0, a2, a4, . . .) (with even index only) and (a1, a3, a5, . . .) (with odd index
only) converge to these values:

lim
k→∞

a2k = lim 1 = 1 lim
k→∞

a2k+1 = lim(−1) = −1.

2)

(

(−1)n +
1

n

)

n≥1

also has cluster points 1 and −1, since

lim
k→∞

a2k = lim

(

1 +
1

2k

)

= 1+0 = 1 lim
k→∞

a2k+1 = lim

(

−1 +
1

2k + 1

)

= −1+0 = −1.

3) (n) has no cluster points, since every subsequence is unbounded, hence divergent.

4) Let an = n, if n is even, and an = 1
n
, if n is odd. The sequence (an) is unbounded, since

for example a2k → ∞ (k → ∞). But (an) has 0 as cluster point, because the subsequence
(a2k+1)k∈N =

(
1

2k+1

)
converges to 0.

3.5. Remark: If (an) is a sequence with limit a, then a is the only cluster point of
(an) [cf. the Exercises].
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3.6. Theorem (of Bolzano-Weierstraß1): Every bounded sequence of real
numbers has a cluster point (that is, possesses at least one cluster point).

Proof. Let (an) be a bounded sequence, then there exists K ∈ R such that |an| ≤ K holds
for all n ∈ N. Consider the subset

A := {x ∈ R : an > x holds for at most finitely many n} ⊆ R.

Since no an can be larger than K, we have K ∈ A, thus A is nonempty.

A is bounded from below: If x < −K, then x 6∈ A [since an ≥ −K for all n]; hence −K−1
is a lower bound for A.

By order completeness A has an infimum. Let a := inf A.

Claim: a is a cluster point of (an).

Let ε > 0.

• Since a+ ε > a the number a+ ε is not a lower bound of A [property of the infimum a!].
Hence there exists y ∈ A such a ≤ y < a+ ε.

By definition of A we have an ≤ y < a + ε for almost all n. Therefore we obtain

(⋆) ∃n0 ∈ N ∀n ≥ n0 : an < a+ ε.

• Since a is a lower bound of A we have that a − ε 6∈ A. Hence an > a − ε holds for
infinitely many n, that is

(⋆⋆) ∀N ∈ N ∃m ≥ N : a− ε < am.

Combining (⋆) and (⋆⋆) gives (3.1), therefore a is a cluster point of (an).

3.7. Remark: Note that in the above proof we have found the greatest cluster point
of a given bounded sequence (an). Indeed, if b > a — using the notation as in the proof
— we may choose c ∈ A with a < c < b. If ε := b − c > 0 then the ε-neighborhood Uε(b)
contains only finitely many members an. Thus b is not a cluster point of (an). Similarly,
we can prove that a smallest cluster point exists.

1Bernhard Bolzano (1781–1848) ["be5nhaKt bOl"tsa:no], German mathematician
Karl Weierstraß (1815–1897) [kaKl "vaI@5Stras], German mathematician, was the one who introduced the
letter ε to mathematical analysis.
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3.8. Definition: (i) Let (an) be a bounded sequence. The greatest cluster point of
the sequence is called the limit superior 〈Limes superior〉 of (an) and is denoted by lim sup an

or liman. The smallest cluster point of (an) is called the limit inferior 〈Limes inferior〉 of
(an) and is denoted by lim inf an or liman.

(ii) If (an) is not bounded above (resp. below), then we set lim sup an = +∞ (resp.
lim inf an = −∞).

3.9. Examples: 1) Let an = (−1)n
(
1 + 1

n

)
, then (an) has cluster points 1 and −1,

thus

lim sup(−1)n

(

1 +
1

n

)

= 1, lim inf(−1)n

(

1 +
1

n

)

= −1.

2) (n) has no (real) cluster points and lim supn = +∞.

In deciding wether a certain sequence is convergent or not the defining property of con-
vergence requires to already be in the possession of a good guess for the value of the
prospective limit. Unless the sequence is simple enough to be analyzed directly by means
of the basic rules for computation of limits [cf. 2.10] (or is seen to be unbounded), it might
be difficult or even hopeless to guess the limit with complicated terms or when the sequence
members are not defined by an explicit formula or procedure.

To deal with such situations we strive for the development of methods that allows to decide
the question of convergence without having to know a candidate for the limit in advance. In
some cases, this then also leads to a successful determination of the limit a posteriori. There
are also situations where a reasonable candidate for the limit is easily guessed or the only
possible value can be determined (under the assumption that the sequence converges), but
direct convergence proofs are inaccessible. The principles of Cauchy2 and that of monotone
bounded sequences [cf. 3.10 and 3.12] are among the most powerful alternative methods
to prove convergence of real sequences.

3.10. Cauchy sequences:

Definition: A real sequence (an) is a Cauchy sequence if

(3.2) ∀ε > 0 ∃N ∈ N ∀n ≥ N ∀m ≥ N : |an − am| < ε.

Theorem: Let (an) be a real sequence. The following are equivalent:

(i) (an) is convergent

(ii) (an) is a Cauchy sequence.

2Augustin Louis Cauchy (1789–1857) [ogys"tẼ lwi ko"Si], French mathematician
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Remark: Note that condition (ii) can be checked without knowing the limit. Moreover,
if (ii) fails to hold we may conclude that the sequence is divergent.

Proof. (i) ⇒ (ii): Let a := lim an and ε > 0. Choose N such that |an − a| < ε/2 holds
∀n ≥ N . Then we have for all n,m ≥ N

|an − am| = |(an − a) + (a− am)| ≤ |an − a| + |a− am| <
ε

2
+
ε

2
= ε.

(ii) ⇒ (i): Let (an) be a Cauchy sequence.

Step 1: (an) is bounded.

We put ε = 1 in (3.2) and obtain that there is some N such that n,m ≥ N implies
|an − am| < ε = 1. In particular, if m = N this means that |an| − |aN | ≤ |an − aN | < 1,
hence |an| ≤ 1+ |aN |, holds for all n ≥ N . Since clearly |an| ≤ 1+max(|a0|, . . . , |aN |) =: K
for n = 1, . . . , N , we therefore have |an| ≤ K for all n ∈ N.

Step 2: By the Theorem of Bolzano-Weierstraß [cf. 3.6] (an) has a cluster point a ∈ R.

Step 3: an → a (n→ ∞)

Let ε > 0. Choose N such that |an − am| < ε/2 for all n,m ≥ N . Since a is a cluster
point there exists k ≥ N such that |ak − a| < ε/2. Combining these facts we obtain that
for n ≥ N

|an − a| = |(an − ak) + (ak − a)| ≤ |an − ak| + |ak − a| ≤ ε

2
+
ε

2
= ε.

3.11. Example: Let (ak) be a sequence and suppose there is some θ ∈]0, 1[ such that
|ak| ≤ θ for all k. Consider the partial sums sn :=

∑n
k=0 ak

k. If m < n then

|sn − sm| ≤
n∑

k=m+1

|ak|k ≤
n∑

k=m+1

θk =
n∑

k=0

θk −
m∑

k=0

θk =
1 − θn+1

1 − θ
− 1 − θm+1

1 − θ

=
θm+1 − θn+1

1 − θ
= θm+1 1 − θn−m

1 − θ
≤ θm+1 1

1 − θ
.

Let ε > 0. Since 0 ≤ θ < 1 we can choose N such that 0 ≤ θm+1 < ε(1 − θ) holds for all
m ≥ N . Therefore we have for all N ≤ m < n that

|sn − sm| ≤ θm+1 1

1 − θ
< ε.
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If n = m ≥ N we have sn − sm = 0 and if N ≤ n ≤ m the roles of n and m can
be interchanged in the above estimates. In summary, we obtain that (sn) is a Cauchy
sequence.

We conclude that the series
∑∞

k=0 ak
k is convergent, although we have no clue what its

sum might be — and in the general case there is no way to determine the limit.

3.12. Monotone sequences:

Definition: A real sequence (an) is (strictly) increasing 〈(streng) monoton wachsend〉
if for all n ∈ N: an ≤ an+1 (resp. an < an+1). A real sequence (an) is (strictly) decreasing
〈(streng) monoton fallend〉 if for all n ∈ N: an ≥ an+1 (resp. an > an+1). If n0 ∈ N such that
(an)n≥n0 is (strictly) increasing (or decreasing) we shall occasionally express this by saying
that (an) has the corresponding property for n ≥ n0.

Remark: A decreasing sequence (an) which is bounded below is bounded. Indeed, if
C is a lower bound we have for all n ∈ N

C ≤ an ≤ an−1 ≤ · · · ≤ a0.

Similarly for increasing sequences which are bounded above.

Example: 1) The Fibonacci sequence (fn) [cf. Example 2.2.6)] is increasing and strictly
increasing for n ≥ 2. We have f0 = 0 < f1 = 1 = f2 and fn > 0 when n ≥ 1, therefore

fn+1 = fn + fn−1 > fn + 0 = fn ∀n ≥ 2.

2) Let x0 > 0 and define the sequence (xn) recursively by

xn+1 =
1

2
(xn +

3

xn
) (n ∈ N).

Note that by induction xn > 0 for all n, hence the recursion defines a sequence (xn).

Claim 1: ∀n ≥ 1: x2
n ≥ 3

This follows from

xn+1
2 − 3 =

1

4
(xn +

3

xn
)2 − 3 =

1

4
(xn

2 + 6 +
9

xn
2
) − 3

=
1

4
(xn

2 − 6 +
9

xn
2
) =

1

4
(xn − 3

xn
)2 ≥ 0.
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Claim 2: (xn) is decreasing for n ≥ 1

We have for n ≥ 1

xn − xn+1 = xn − xn

2
− 3

2xn

=
1

2xn

(x2
n − 3),

which is nonnegative by claim 1, hence xn ≥ xn+1.

The theorem which we prove below will guarantee that the sequence (xn) is convergent,
since it is bounded below (by

√
3) and decreasing for n ≥ 1. What is the value of the limit

x := lim xn?

In this case we can make use of the recursion relation. Note first that x ≥
√

3 > 0 [since
xn ≥

√
3] and then take limits for n→ ∞ on both sides of the recursion relation

xn+1 = 1
2
(xn + 3

xn
)

↓ ↓
x = 1

2
(x+ 3

x
).

Therefore x2 = 3, that is x =
√

3.

Theorem: If (an) is increasing (for n ≥ n0) and bounded above, then (an) is conver-
gent. A corresponding statement holds for decreasing sequences that are bounded below.

Proof. Let A := {an : n ∈ N}. As noted in a remark above (an) is bounded, thus the set
A is bounded. Put a := supA. We show that (an) converges to a:

Let ε > 0. Since a is the supremum of A we can find m ∈ N such that a − ε < am ≤ a.
By monotonicity we obtain that a − ε < am ≤ an ≤ a holds for every n ≥ m. Hence
|a− an| < ε for every n ≥ m which proves that an → a.

As an application of the preceding theorem we present a useful alternative to describe
the limit superior (resp. limit inferior) of an arbitrary bounded sequence as the limit of a
specifically constructed decreasing (resp. increasing) sequence.

3.13. Proposition: Let (an) be a bounded real sequence, then

lim sup
n→∞

an = lim
n→∞

(sup{ak : k ≥ n})

and
lim inf
n→∞

an = lim
n→∞

(inf{ak : k ≥ n}).

A corresponding statement holds for unbounded sequences with improper values +∞ or
−∞ assigned to sup, inf, lim sup, or lim inf in the appropriate way.
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Proof. (For lim sup, the case of lim inf being very similar.)
Let Mn := {ak : k ≥ n} and xn := supMn. Since Mn+1 ⊆ Mn the sequence (xn) is
decreasing.

Furthermore, if C > 0 is a bound for (an), that is |an| ≤ C for all n, then it also is one for
(xn), hence (xn) is bounded too.

By Theorem 3.12 (xn) is convergent. Let x := lim xn.

Assertion: x is a cluster point of (an).

Let ε > 0.
• We may choose N ∈ N such that for all n ≥ N : x ≤ xn < x + ε. By construction
an ≤ xn, hence

∀n ≥ N : an < x+ ε.

• Since xn is the supremum of the set Mn = {ak : k ≥ n} (and xn − ε < xn), we have the
following:

∀n ∈ N ∃m ≥ n : am > xn − ε ≥ x− ε.

Combining the two inequalities above we find that for all n there is some m ≥ n such that
am ∈ Uε(x). [Proposition 3.3] then implies that x is a cluster point of (an).

Finally, if (ank
) is an arbitrary subsequence of (an), then clearly ank

≤ xnk
holds for all k.

Therefore, if (ank
) converges we must have

lim
k→∞

ank
≤ lim

k→∞
xnk

= x.

Thus x is the largest cluster point, i.e. x = lim sup an.
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3.14. Adherent points and accumulation points of subsets of R:

Definition: Let A ⊆ R and a ∈ R.

(i) a is an adherent point 〈Berührpunkt〉 of A if ∀ε > 0 we have that Uε(a) ∩A 6= ∅.
(Every ε-neighborhood of a contains at least one point of A.)

(ii) a is an accumulation point 〈Häufungspunkt〉 of A if

∀ε > 0 : Uε(a) ∩A contains infinitely many points.

Basic properties: Clearly, every accumulation point of A and every element of A
is an adherent point of A.

(a) a is an adherent point of A ⇐⇒ there exists a sequence (an) in A: an → a (n→ ∞)
[(an) in A means an ∈ A for all n]

�

�

�

�
⇒ For n ∈ N, n ≥ 1, choose an ∈ U1/n(a)∩A. Then (an) is a sequence in A with an → a.
�

�

�

�
⇐ By assumption there exists (an) with an ∈ A for all n and satisfying for all ε > 0 that
there is some N such that an ∈ Uε(a) for all n ≥ N . In particular, Uε(a)∩A is not empty.

(b) a is an accumulation point of A ⇐⇒ a is an adherent point of A \ {a}
Proof as an exercise.

Examples: 1) 0 is an accumulation point of A = { 1

n
: n ∈ N, n ≥ 1} (but 0 does not

belong to A).

2) Let A = {1} and an = 1 for all n. Then 1 is an adherent point of A and a cluster point
of (an), but it is not an accumulation point of A.
Thus we learn that, in general, a cluster points of a sequence (an) need not be an accumu-
lation point of the set {an : n ∈ N}.
3) Consider Q ⊆ R. Then every point x ∈ R is an accumulation point of Q. This follows
from the density of Q in R [cf. 0.7].

4) Let a < x0 < b and A =]a, x0[∪ ]x0, b[. Every x ∈ [a, b] is an accumulation point of A.

Remark: Let A be a bounded subset of R.

(i) By the Theorem of Bolzano-Weierstraß, every sequence (an) in A has a cluster point,
which is then also an adherent point of A.

(ii) The supremum (resp. infimum) of A is an adherent point of A. Moreover, supA (resp.
inf A) is the limit of an increasing (resp. decreasing) sequence in A: Let α := supA, choose
α− 2 < a0 ≤ α, and construct (an) inductively with the property

∀n ∈ N, n ≥ 1 : an ∈ A, an ≥ an−1 and α− 1

n
≤ an ≤ α.
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3.15. Principle of nested intervals 〈Intervallschachtelungsprinzip〉:
Let a ≤ b and I be the closed bounded interval [a, b], then

(3.3) diam (I) := b− a

is called the diameter 3 or length of I. Note that

∀x, y ∈ I : |x− y| ≤ diam (I).

Theorem: Let In (n ∈ N) be a sequence of closed bounded intervals with the following
properties:

(i) I0 ⊇ I1 ⊇ . . . ⊇ In ⊇ In+1 . . .

(ii) lim
n→∞

diam (In) = 0.

Then there is a unique point x ∈ R which belongs to every In (n ∈ N), i.e.

⋂

n∈N

In = {x}.

Proof. Let In = [an, bn] (n ∈ N), where an ≤ bn. By property (i) we have for all n,N ∈ N

a0 ≤ a1 ≤ . . . ≤ an ≤ an+1 ≤ bN+1 ≤ bN ≤ . . . ≤ b1 ≤ b0.

Thus (an) is a Cauchy sequences, since by property (ii) for any n,m ≥ N the right-hand
side of

0 ≤ |am − an| = amax(m,n) − amin(m,n) ≤ bN − aN

can be made arbitrarily small when N is sufficiently large.

Hence there exists x ∈ R such that x = lim an.

For all n ≥ k we have the inequalities ak ≤ an ≤ bn ≤ bk.

Sending n→ ∞ yields ak ≤ x ≤ bk for every k, thus x ∈
⋂

n∈N

In.

If z1 and z2 are arbitrary points in
⋂

n∈N

In then (ii) implies

0 ≤ |z2 − z1| ≤ diam (Ik) → 0 (k → ∞).

Thus
⋂

n∈N

In contains only a single point which then has to be x.

To summarize,
⋂

n∈N

In = {x}, where x is uniquely determined as the limit of (an).

3The word “diameter” was originally derived from the Greek ἡ διάμετρος (literally “measurements”)
and is now common in most languages.
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3.16. Completeness revisited: The current section has been devoted to the
derivation of consequences of the Axiom of order completeness 3.1. Along the way, we
proved in succession the Theorem of Bolzano-Weierstraß [cf. 3.6], the Cauchy convergence
principle [cf. 3.10], and (via the principle of monotone bounded sequences) also the principle
of nested intervals [cf. 3.15].

It is an intriguing fact, that in turn the statement of order completeness becomes a provable
theorem when any of the other three results is taken as an axiom instead. For example,
below we give a proof that the principle of nested intervals implies order completeness.

We summarize this situation in a diagram:

order completeness ⇐ principle of nested intervals

⇓ ⇑
Bolzano-Weierstraß theorem ⇒ Cauchy principle

Theorem: The principle of nested intervals implies order completeness.

Proof. Let A be a bounded and nonempty subset of R. We will construct a nested sequence of
intervals In = [an, bn] (n ∈ N) with the following properties

(i) every bn is an upper bound for A

(ii) no an is an upper bound for A.

Let b0 be an upper bound for A [A is bounded] and choose α ∈ A arbitrary [A is nonempty!].
Then α ≤ b0 and a0 := α − 1 ≤ b0 cannot be an upper bound for A.

We proceed by induction: supppose that [a0, b0] ⊇ . . . ⊇ [an, bn] have been constructed satisfying
(i) and (ii). Let m := (bn − an)/2 be the midpoint of In and define

[an+1, bn+1] :=

{

[an,m] if m is an upper bound of A

[m, bn] otherwise.

By the principle of nested intervals we have
⋂

n∈N

In = {s} for some s ∈ R.

Claim 1: s is an upper bound for A

Assume the contrary, then there exists x ∈ A such that x > s. Since an ≤ s ≤ bn for all n and
bn − an → 0 (n → ∞) there exists N such that

bN − s ≤ bN − aN < x − s.

Therefore bN < x, which is a contradiction to property (i) above.
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Claim 2: s is the least upper bound of A

Supppose that s′ < s is also an upper bound of A. Then there is n ∈ N such that diam (In) < s−s′.
Since s ∈ In we have

s − an ≤ diam (In) < s − s′,

which implies that an > s′ and thus an is an upper bound of A — a contradiction � to (ii)
above.



§4. CONVERGENCE OF SERIES

Let (ak)k∈N be a sequence of real numbers. Recall that the series
∑∞

k=0 ak is defined to be
convergent if and only if the corresponding sequence (sm)m∈N of partial sums sm =

∑m
k=0 ak

is convergent, with lim sm being called the sum of the series.

4.1. Proposition (Cauchy principle for series): The series

∞∑

k=0

ak is con-

vergent if and only if

(4.1) ∀ε > 0 ∃N ∈ N such that ∀n ≥ m ≥ N :

∣
∣
∣
∣
∣

n∑

k=m

ak

∣
∣
∣
∣
∣
< ε.

Proof. The sequence of partial sums (sm) converges if and only if it is a Cauchy sequence
[cf. Theorem 3.10]. The latter is equivalent to the property that

∀ε > 0 ∃N ∈ N : |sn − sm−1| < ε ∀n,m− 1 ≥ N,

where we may assume in addition that n ≥ m− 1, which yields sn − sm−1 =
∑n

k=m ak.

4.2. Remark: Note that condition (4.1) is not affected by changing finitely many
ak’s in the series. Thus the convergence behavior of a series does not depend on alteration
of a finite number of terms. (However, the value of the sum might change, of course.)

4.3. Corollary: If
∑∞

k=0 ak is convergent, then (an) is a null sequence.

Proof. Let ε > 0 and put m = n ≥ N in condition (4.1). Thus |an| < ε holds for all
n ≥ N , hence an → 0 (n → ∞).

29
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4.4. Proposition: Let
∑
an be a series of nonnegative numbers, i.e. an ≥ 0 for all

n ∈ N, then

∞∑

n=0

an is convergent ⇐⇒ the sequence of partial sums (sm) is bounded.

Proof.
�

�

�

�
⇒ (sm) is convergent, hence bounded.

�

�

�

�
⇐ sm+1 = sm + am+1 ≥ sm shows that (sm) is increasing. Since, by assumption, (sm) is
also bounded [3.12, Theorem] implies convergence.

4.5. Examples: 1)

∞∑

n=0

(−1)n is divergent, since (−1)n 6→ 0.

2) The harmonic series
∞∑

n=1

1

n
is divergent, since the partial sums are unbounded:

s2k =

2k
∑

n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)

︸ ︷︷ ︸

≥2 1
4
= 1

2

+

(
1

5
+

1

6
+

1

7
+

1

8

)

︸ ︷︷ ︸

≥4 1
8
= 1

2

+ . . .+

(
1

2k−1 + 1
+ . . .+

1

2k

)

︸ ︷︷ ︸

≥2k−1 1

2k = 1
2

≥ 1 +
1

2
+

1

2
+ . . .+

1

2
︸ ︷︷ ︸

k terms

≥ 1 +
k

2
.

Note that in this example an := 1
n
→ 0 (n → ∞) but

∑
an is divergent. Thus Corollary

4.3 gives a necessary condition for convergence which is not sufficient (an → 0 does not
imply that

∑
an converges)!

3) If s ∈ N with s ≥ 2, then

∞∑

n=1

1

ns
is convergent.

Since all terms are nonnegative it suffices to prove boundedness of the partial sums: Let
m ∈ N and choose l ∈ N such that m ≤ 2l+1 − 1, then we obtain

sm =

m∑

n=1

1

ns
≤

2l+1−1∑

n=1

1

ns
= 1 +

(
1

2s
+

1

3s

)

︸ ︷︷ ︸

≤2 1
2s

+ . . .+





2l+1−1∑

2l

1

ns





︸ ︷︷ ︸

≤2l 1

2ls

≤
l∑

j=0

2j 1

2js
=

l∑

j=0

(
1

2s−1

)j

≤
∞∑

j=0

(
1

2s−1

)j

=
1

1 − 1
2s−1

,

which gives an upper bound independent ofm. (The same proof would work for any s ∈ ]1,∞[.)
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4.6. Theorem (Leibniz’s1 criterion for alternating series): Let an ≥ 0
for all n ∈ N and consider the series with alternating signs

∞∑

n=0

(−1)nan = a0 − a1 + a2 − a3 + a4 − . . .

If in addition (an) satisfies

(i) an ≥ an+1 for all n, i.e. (an) is decreasing,

and

(ii) an → 0 (n→ ∞),

then the series
∑

(−1)nan is convergent.

Furthermore, for the partial sums sm =
∑m

n=0(−1)nan and the sum of the series s =
limm→∞ sm =

∑∞
n=0 an we have the error estimate

(4.2) |s− sm| ≤ am+1 ∀m ∈ N.

(In other words, the error of each partial sum is not larger than the first neglected term.)

Proof. Observe that for all k

s2k+1 = s2k − a2k+1 ≤ s2k

s2k+2 = s2k − (a2k+1 − a2k+2)
︸ ︷︷ ︸

≥0 by (i)

≤ s2k

s2k+3 = s2k+1 + (a2k+2 − a2k+3)
︸ ︷︷ ︸

≥0 by (i)

≥ s2k+1,

which we summarize by

s1 ≤ s3 ≤ s5 ≤ . . . ≤ s2k+1 ≤ s2k ≤ . . . ≤ s4 ≤ s2 ≤ s0.

In other words, we have a sequence of nested intervals Ik := [s2k+1, s2k] (k ∈ N) with
diam (Ik) = s2k − s2k+1 = a2k+1 → 0 as k → ∞ [by property (ii)]. Therefore [Theorem
3.15] implies that

⋂

k∈N Ik = {s}.
Since s2k+1 ≤ s ≤ s2k for all k we obtain for every m ∈ N that

|s− sm| ≤ |sm+1 − sm| = am+1,

which gives (4.2) and also proves convergence of (sn): Let ε > 0 and choose N such that
0 ≤ an < ε for all n ≥ N . Then for all n ≥ N

|sn − s| ≤ an+1 < ε.

1Gottfried Wilhelm Leibnitz (1646–1716) ["gOtfri:t "vIlhElm "laIbnIts], German philosopher and scientist
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4.7. Example: The alternating harmonic series
∞∑

n=1

(−1)n−1

n
is convergent, since

(
1
n

)

is decreasing and converges to 0.

4.8. Remark and warning: The value of the sum — and even the convergence
behavior (!) — of a convergent series may depend on the order of summation. To be more
precise, if

∑∞
n=0 an is a convergent series and τ : N → N is bijective, then the rearrangement

〈Umordnung〉
∑∞

n=0 aτ(n) need not have the same sum or need not converge at all.

For example, consider again the alternating harmonic series

∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . ,

which is convergent as we have shown above. If we rearrange the terms in the series in the
following way

1 − 1

2
︸ ︷︷ ︸

1/2

−1

4
+

1

3
− 1

6
︸ ︷︷ ︸

1/6

−1

8
+

1

5
− 1

10
︸ ︷︷ ︸

1/10

− 1

12
+

1

7
− 1

14
︸ ︷︷ ︸

1/14

− 1

16
+ . . .

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− . . . =

1

2

(

1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

)

,

then we obtain half of the original sum.

We can even find a divergent rearrangement of the (originally convergent) alternating
harmonic series, where the negative terms occur with more and more delay as we progress:
Let n ≥ 2 and observe that

1 − 1

2
+

1

3
− 1

4
︸ ︷︷ ︸

>0

+

(
1

5
+

1

7

)

︸ ︷︷ ︸

>2/8=1/4

−1

6
+

(
1

9
+

1

11
+

1

13
+

1

15

)

︸ ︷︷ ︸

>4/16=1/4

−1

8
+ . . .

+

(
1

2n + 1
+

1

2n + 3
+ . . .+

1

2n+1 − 1

)

︸ ︷︷ ︸

>2n−1/2n+1=1/4

− 1

2n+ 2

>
n− 1

4
−
(

1

6
+

1

8
+ . . .+

1

2n+ 2

)

≥ n− 1

4
− n− 1

6
=
n− 1

12
,

thus the partial sums corresponding to such a rearrangement must be unbounded.

The following definition introduces the appropriate convergence notion for series which is
stable under rearrangements.
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4.9. Definition: A series
∑
an is absolutely convergent 〈absolut konvergent〉 if

∑ |an|
is convergent.

4.10. Remark: (i) Since |an| ≥ 0 absolute convergence is thus equivalent to the
boundedness of sm =

∑m
n=0 |an|.

(ii) Convergence does not imply absolute convergence, as can be seen from the example of

the alternating harmonic series, where an = (−1)n−1

n
(n ≥ 1): in this case

∑ |an| =
∑

1
n

is
the harmonic series, which is divergent.

Absolute convergence is a stronger condition than convergence.

4.11. Proposition: Every absolutely convergent series is convergent.

Proof. Suppose
∑ |an| is convergent. Let ε > 0. By the Cauchy principle for series we can

find N ∈ N such that

∀n ≥ m ≥ N :

n∑

k=m

|ak| < ε.

Applying the triangle inequality (for finitely many terms) we obtain

∀n ≥ m ≥ N :

∣
∣
∣
∣
∣

n∑

k=m

ak

∣
∣
∣
∣
∣
≤

n∑

k=m

|ak| < ε,

which in turn by the Cauchy principle for series yields convergence of
∑
an.

4.12. Rearrangement theorem for absolutely convergent series:
Let

∑
an be an absolutely convergent series. Then every rearrangement

∑
aτ(n), where

τ : N → N is a bijection, is absolutely convergent and has the same limit.

Proof. Let s :=
∞∑

n=0

an.

Claim 1:
∞∑

n=0

aτ(n) is convergent with sum s

Let ε > 0 and choose N such that for all l ≥ N we have
l∑

k=N

|ak| <
ε

2
[Cauchy principle

for the convergent series
∑ |ak|]. Sending l → ∞ yields

∞∑

k=N

|ak| ≤
ε

2
and therefore for all
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m ≥ N also that
∣
∣
∣
∣
∣

m∑

k=0

ak −
N−1∑

k=0

ak

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

m∑

k=N

ak

∣
∣
∣
∣
∣
≤

m∑

k=N

|ak| ≤
∞∑

k=N

|ak| ≤
ε

2
.

Upon taking limits as m→ ∞ we find
∣
∣
∣
∣
∣
s−

N−1∑

k=0

ak

∣
∣
∣
∣
∣
≤ ε

2
.

Choose M ∈ N with M ≥ N and large enough to ensure {τ(0), τ(1), . . . , τ(M)} ⊃
{0, 1, . . . , N − 1}. [Since τ is a bijection of N such an M exists.] Then we have for
all m ≥ M

∣
∣
∣
∣
∣

m∑

k=0

aτ(k) − s

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

m∑

k=0

aτ(k) −
N−1∑

k=0

ak

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

N−1∑

k=0

ak − s

∣
∣
∣
∣
∣
≤

∞∑

k=N

|ak| +
ε

2
≤ ε

2
+
ε

2
= ε,

thus

∞∑

n=0

aτ(n) converges to s.

Claim 2:
∑ |aτ(n)| is convergent

This follows by application of Claim 1 to the series
∑
bn with bn := |an| (and its corre-

sponding sum s′ :=
∑
bn).

4.13. Remark: One can prove that absolute convergence of a series is, in fact,
equivalent to the property that all its rearrangements converge to the same limit. [cf.
[BF00]]

Now that we have established the importance of absolute convergence we come to the
question of how to determine wether a given series is absolutely convergent.

4.14. Proposition (Basic comparison test): (i) Let
∑
cn be convergent

with nonnegative terms cn ≥ 0. If |an| ≤ cn holds for almost all n, then
∑
an is absolutely

convergent. 〈∑ cn ist eine konvergente Majorante für
∑

an.〉
(ii) Let

∑
dn be divergent and have nonnegative terms dn ≥ 0. If an ≥ dn holds for almost

all n, then
∑
an is divergent. 〈∑ dn ist eine divergente Minorante für

∑
an.〉

Proof. (i) WLOG (= without loss of generality) we may assume that |an| ≤ cn holds for
all n.

∑ |ak| is a series with nonegative terms and for all m ∈ N

0 ≤
m∑

k=0

|ak| ≤
∞∑

k=0

cn
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proves that the partial sums are bounded. Thus the convergence of
∑ |an| follows from

[Proposition 4.4].

(ii) If
∑
an were convergent, then by (i)

∑
dn would converge — a contradiction � .

4.15. Examples: 1)

∞∑

n=1

1√
n

is divergent, since

∀n ≥ 1 :
1√
n
≥ 1

n
and

∞∑

n=1

1

n
diverges.

2) Let (an) be a sequence with |an| ≤ 1 for all n and let q ∈ ]0, 1[. Since |anq
n| ≤ qn and

the geometric sum
∑
qn is convergent, we deduce that

∞∑

n=0

anq
n is absolutely convergent.

4.16. Proposition (Root test 〈Wurzeltest〉): The series
∑
an is

(a) absolutely convergent, if there exist θ ∈ R with 0 ≤ θ < 1 and n0 ∈ N such that

∀n ≥ n0 : |an|1/n ≤ θ

(b) divergent, if
|an|1/n ≥ 1 for infnitely many n.

Proof. (a) Since |an| ≤ θn for almost all n and the geometric series
∑
θn is convergent, the

basic comparison test implies convergence of
∑ |an|.

(b) Since it follows that |an| ≥ 1 for infinitely many n, the sequence (an) does not tend to
0, thus

∑
an is divergent.

4.17. Remark: (i) There are variants of the above statement, for example [cf. [BF00]]:
Let α := lim sup |an|1/n, then

∑
an is

(a) absolutely convergent, if α < 1

(b) divergent, if α > 1.
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(ii) In practice, we often have that β := lim |an|1/n exists. Then β < 1 implies case (a) of the
root test, hence absolute convergence, and β > 1 implies condition (b), hence divergence.
(Note that also α = β in such situations.)

(iii) Note however, that achieving θ = 1 in condition (a) of the root test (or α = 1 or
β = 1) is not conclusive! For example,

∑ 1

n2
is convergent and

(
1

n2

)1/n

< 1,

∑ 1

n
is divergent and

(
1

n

)1/n

< 1.

4.18. Proposition (Ratio test 〈Quotiententest〉): Let an 6= 0 for almost all n.

The series
∑
an is

(a) absolutely convergent, if there exist θ ∈ R with 0 ≤ θ < 1 and n0 ∈ N such that

∀n ≥ n0 :

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
≤ θ

(b) divergent, if there exists n0 ∈ N such that

∀n ≥ n0 :

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
≥ 1.

Proof. (a) We obtain for all n ≥ n0

|an+1| ≤ θ|an| ≤ . . . ≤ θn−n0 |an0|,

where
∑
θn−n0|an0 | = |an0|θ−n0

∑
θn is convergent. Thus the comparison theorem implies

convergence of
∑ |an|.

(b) Let n1 ≥ n0 such that an1 6= 0 then the stated condition implies that |an| ≥ |an1 | > 0
for all n ≥ n1. Thus (an) cannot be a null sequence and therefore

∑
an diverges.

4.19. Remark: (i) Again, there exist variants of the ratio test [e.g., cf. [BF00]]: Let

α := lim sup
∣
∣
∣
an+1

an

∣
∣
∣ and γ := lim inf

∣
∣
∣
an+1

an

∣
∣
∣, then

∑
an is

(a) absolutely convergent, if α < 1

(b) divergent, if γ > 1.
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(ii) Suppose that β := lim an+1

an
exists. Then β < 1 implies case (a) of the ratio test,

hence absolute convergence, and β > 1 implies condition (b), hence divergence. (Note that
consequently α = β = γ.)

(iii) As with the root test, having θ = 1 in condition (a) of the ratio test (or α = 1 or γ = 1
or β = 1) is not conclusive! The same examples illustrate this:

∑ 1

n2
is convergent and

an+1

an

=
n2

(n+ 1)2
< 1,

∑ 1

n
is divergent and

an+1

an

=
n

n + 1
< 1.

(iv) One can prove that condition (a) of the ratio test implies that condition (a) of the
root test holds [cf. [BF00, Section 5.3]]. In other words, whenever the ratio test concludes
positively the root test is applicable as well. On the other hand, there are absolutely
convergent series for which the root test is successful, whereas the ratio test is inconclusive.
(We give an example below.)

4.20. Examples: 1)

∞∑

n=1

n2

2n
is absolutely convergent, since

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

(n+ 1)2 2n

2n+1 n2
=

1

2

(

1 +
1

n

)2

→ 1

2
(n→ ∞).

2) Consider

an =

{

2−n if n is even

3−n if n is odd.

Then
∑
an is absolutely convergent as can be seen by the root test:

|an|1/n ≤ max

(
1

2
,
1

3

)

≤ 1

2
∀n

showing that we may choose θ = 1/2. In this case the quotient test is not conclusive, since

a2k+1

a2k
=

1

3

(
2

3

)2k

→ 0,
a2k+2

a2k+1
=

1

2

(
3

2

)2k+1

→ ∞ (k → ∞).
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4.21. Decimal and b-adic expansion of real numbers: In everyday life
we are used to seeing rational numbers (e.g. purchase prices of certain products) expressed
as decimal numbers like 17,8041 (or 17.8041). The corresponding number x ∈ Q is in this
case determined by the expansion with basis 10 and decimal digits from {0, 1, 2, . . . , 9} as

x = 1 · 101 + 7 · 100 + 8 · 10−1 + 0 · 10−2 + 4 · 10−3 + 1 · 10−4

=
105 + 7 · 104 + 8 · 103 + 4 · 10 + 1

104
=

178041

10000
.

There are two immediate ideas to generalize such representations: The above expansion
has finitely many terms. Can this be extended to infinite sums of the same type and be
considered then as a representation of the limit? A very similar kind of expansion can be
defined with an integer basis other than 10.

Definition: Let b ∈ N, b ≥ 2, N ∈ Z and an ∈ {0, 1, 2, . . . , b − 1} (n ∈ Z, n ≥ N).
The series

±
∞∑

n=N

anb
−n

is called a b-adic expansion 〈b-adische Entwicklung〉 with digits 〈Ziffern〉 an (n ≥ −N).

Three questions arise:

1. Is every b-adic expansion convergent?

2. Can every x ∈ R be represented as the limit of such an expansion?

3. Are the digits of an expansion uniquely determined by x?

The answer to the third one is negative, as can be seen from the following simple example
with decimal expansions:

0, 999 . . . =
∞∑

n=1

9 ·10−n = 9 ·10−1
∞∑

n=0

(
10−1

)n
=

9

10
· 1

1 − 1/10
=

9

10
· 10

10 − 1
= 1 = 1, 000 . . .

But questions 1 and 2 can be shown to have positive answers.

Theorem: Let b ∈ N, b ≥ 2.

(i) Every b-adic expansion is convergent (in R).

(ii) Every real number x is the sum of a b-adic expansion (with a sequence of digits that
can be constructed recursively).

Proof. (i) Since |anb
−n| ≤ (b− 1)b−n for all n and (b− 1)

∑
b−n is convergent, this follows

from the basic comparison theorem.

(ii) It suffices to show this for the case x ≥ 0.
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By the Archimedian property there is m ∈ N such that x < bm+1. Let m0 be the minimum
of all m ∈ N such that 0 ≤ x < bm+1. Put N := −m0. We shall construct a sequence
(an)n≥N of integers an ∈ {0, 1, . . . , b− 1} inductively such that

(⋆) ∀n ≥ N ∃ξn with 0 ≤ ξn < b−n : x =
n∑

k=N

akb
−k + ξn.

Since by (⋆) lim ξn = 0, hence x =

∞∑

k=N

akb
−k, the assertion of the theorem will then follow.

Before we proceed, recall that the floor function ⌊ ⌋ : R → R is defined by ⌊y⌋ := max{l ∈
Z : l ≤ y}, and that 0 ≤ y − ⌊y⌋ < 1 holds.

Induction base, n = N : The definition of N implies 0 ≤ x · bN < b. We define aN ∈
{0, 1, . . . , b− 1} by

aN := ⌊xbN⌋ and ξN := (xbN − aN) · b−N

Then we clearly have

x = aNb
−N + ξN and 0 ≤ ξN < b−N .

Induction step, n→ n + 1: Property (⋆) yields 0 ≤ ξn · bn+1 < b. If we define an+1 ∈
{0, 1, . . . , b− 1} by

an+1 := ⌊ξnbn+1⌋ and ξn+1 := (ξnb
n+1 − an+1) · b−n−1,

then ξn = an+1b
−n−1 + ξn+1 and therefore

x =

n∑

k=N

akb
−k + an+1b

−n−1 + ξn+1,

where 0 ≤ ξn+1 < b−n−1. Thus (⋆) holds with n replaced by n+ 1.

Corollary: Every real number is the limit of a sequence of rational numbers.
(Q is dense in R. Compare with the variant of this statement in [0.7].)

Proof. Let x ∈ R have decimal expansion x =
∞∑

n=N

an10−n. For every m ≥ N the partial

sum sm :=
m∑

n=N

an10−n is a rational number and x = lim sm.
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Remark: Let x = ±∑∞
n=N anb

−n be a b-adic expansion. One can prove (cf. [AE02,
II.7]) that x is a rational number if and only if the sequence of digits is periodic from a
certain index m ≥ N onward, that is, with some p ∈ N \ {0} we have an+p = an for all
n ≥ m (including the case that almost all an vanish, which decsribes a finite sum).

4.22. The Cauchy product of absolutely convergent series:
We begin with a simple observation about the product of finite sums.

Let AN :=

N∑

n=0

an and BN :=

N∑

n=0

bn, then

AN · BN =

(
N∑

k=0

ak

)

·
(

N∑

l=0

bl

)

=
∑

0≤k≤N

∑

0≤l≤N

akbl.

For the investigation of convergence (as N → ∞) of such a double sum it is helpful to
introduce some notation and to illustrate rearrangements of the terms in a 2-dimensional
picture:

k
+
l =
N

∆N

l

k

(0, N)

k + l = 0

QN

(N,N)

k + l = 2N

(N, 0)

Here, QN := {(k, l) ∈ N2 : k ≤ N, l ≤ N} and ∆N := {(k, l) ∈ QN : k + l ≤ N}. Then the
above double sum can be rewritten as

AN ·BN =
∑

(k,l)∈QN

akbl =
∑

(k,l)∈∆N

akbl +
∑

(k,l)∈QN\∆N

akbl

=

N∑

n=0

∑

(k,l)∈∆N
k+l=n

akbl +
∑

(k,l)∈QN\∆N

akbl =

N∑

n=0

n∑

k=0

akbn−k +
∑

(k,l)∈QN\∆N

akbl.
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Proposition: Let
∑
an and

∑
bn be absolutely convergent series and define

cn :=
n∑

k=0

akbn−k (n ∈ N).

Then
∑
cn is absolutely convergent and

∞∑

n=0

cn =

(
∞∑

k=0

ak

)

·
(

∞∑

l=0

bl

)

.

Proof. We use the notation introduced above. Let SN :=
∑N

n=0 cn, then

AN · BN − SN =
∑

(k,l)∈QN\∆N

akbl.

Claim 1: lim
N→∞

SN =

(
∞∑

k=0

ak

)

·
(

∞∑

l=0

bl

)

Put A∗
N :=

N∑

n=0

|an| and B∗
N :=

N∑

n=0

|bn|, then A∗
NB

∗
N =

∑

(k,l)∈QN

|ak||bl|. Using Q⌊N/2⌋ ⊆

∆N ⊆ QN we obtain

(⋆) |ANBN − SN | ≤
∑

(k,l)∈QN\∆N

|ak||bl| ≤
∑

(k,l)∈QN\Q⌊N/2⌋

|ak||bl|

= A∗
NB

∗
N −A∗

⌊N/2⌋B
∗
⌊N/2⌋.

By hypothesis, (A∗
NB

∗
N)N∈N is convergent, hence a Cauchy sequence, which implies that

lim
N→∞

A∗
NB

∗
N −A∗

⌊N/2⌋B
∗
⌊N/2⌋ = 0. Since lim

N→∞
ANBN =

(
∞∑

k=0

ak

)

·
(

∞∑

l=0

bl

)

, the assertion

now follows from (⋆) .

Claim 2:
∑
cn is absolutely convergent

Let S∗
N :=

N∑

n=0

n∑

k=0

|ak||bn−k|, then an application of Claim 1 shows that (S∗
N)N∈N is conver-

gent. Since
∑ |cn| ≤ S∗

N the assertion follows.
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4.23. The exponential function: For every x ∈ R the series
∞∑

n=0

xn

n!
is absolutely

convergent, as can be verified by the ratio test: The terms an := xn/n! are all nonzero if
x 6= 0, and in this case

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

|x|n+1n!

|x|n(n+ 1)!
=

|x|
n+ 1

→ 0 (n→ ∞);

in the case x = 0 absolute convergence is clear.

We may thus define a real-valued function on R by assigning the value of the sum
∑

xn

n!
to

each x.

Definition: The exponential function 〈Exponentialfunktion〉 exp : R → R is defined by

exp(x) :=
∞∑

n=0

xn

n!
(x ∈ R).

The value e := exp(1) is called Euler’s number 〈Eulersche Zahl〉2.
Many important properties of the exponential function are a direct consequence of the
so-called functional equation of the exponential function, which we prove in the following
theorem. In fact, the exponential function can be characterized as the unique function
satisfying this particular equation on R and being bounded on some closed finite interval
[cf.[BF00, Section 7.5]].

Theorem (Functional equation for the exponential function):
For all x, y ∈ R

(4.3) exp(x+ y) = exp(x) · exp(y).

Proof. Both series
∑

xn

n!
and

∑ yn

n!
are absolutely convergent, hence the Cauchy product

[4.22] gives exp(x) exp(y) =
∑
cn, where

cn =
n∑

k=0

xk

k!

yn−k

(n− k)!
=

1

n!

n∑

k=0

(
n

k

)

xkyn−k =
[Binom. thm.]

(x+ y)n

n!
.

Thus we obtain

exp(x) exp(y) =

∞∑

n=0

cn =

∞∑

n=0

(x+ y)n

n!
= exp(x+ y).

2Leonhard Euler (1707–1783) ["leOnhaKt "OIl@5], Swiss mathematician and physicist, introduced many
of the modern mathematic’s symbols (e.g. e, π, i,

∑
, f(x) etc.).
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Corollary: (i) For all x ∈ R: exp(x) > 0 and exp(−x) =
1

exp(x)
.

(ii) For all n ∈ Z: exp(n) = en.

Proof. (i) The functional equation (4.3) implies

1 = exp(0) = exp(x− x) = exp(x) exp(−x),

which proves the second equation in the assertion. If x ≥ 0 then

exp(x) = 1 + x+
x2

2
+ . . . ≥ 1 > 0,

since all neglected terms are nonnegative. If x < 0 then exp(x) = 1/ exp(−x) > 0 by what
we have just proved.

(ii) Since exp(−n) = 1/ exp(n) it suffices to show this for n ∈ N. First, exp(0) = 1 = e0

and then inductively

exp(n+ 1) = exp(n) exp(1) = en · e1 = en+1.

Remark: The above Theorem and Corollary (i) show that exp is a group homomor-
phism of the additive group (R,+) into the multiplicative group (]0,∞[, ·).
Finally, we provide a (crude, but useful!) bound on the error of partial sum approximations
of the exponential function. (The error bound shall be improved on later as we learn more
about functions of a real variable and Taylor series.)

Proposition: Let N ∈ N. For all x ∈ R we have

(4.4) exp(x) =

N∑

n=0

xn

n!
+RN+1(x),

where the remainder term RN+1(x) satisfies the following estimate for all x ∈ R with
|x| ≤ 1 + N

2

(4.5) |RN+1(x)| ≤ 2
|x|N+1

(N + 1)!
.

Proof. The remainder term is

RN+1(x) := exp(x) −
N∑

n=0

xn

n!
=

∞∑

n=0

xn

n!
−

N∑

n=0

xn

n!
=

∞∑

n=N+1

xn

n!
,
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which is absolutely convergent. Therefore we have for all |x| ≤ 1+N/2 the following chain
of inequalities

|RN+1(x)| ≤
∞∑

n=N+1

|x|n
n!

=
|x|N+1

(N + 1)!

(

1 +
|x|

N + 2
+

|x|2
(N + 2)(N + 3)
︸ ︷︷ ︸

≤ |x|2

(N+2)2

+ . . .
)

≤ |x|N+1

(N + 1)!

∞∑

k=0

( |x|
N + 2

)k

≤
[|x|≤(N+2)/2]

|x|N+1

(N + 1)!

∞∑

k=0

(
1

2

)k

= 2 · |x|N+1

(N + 1)!
.

Example: Since e = exp(1) =
N∑

n=0

1

n!
+RN+1(1) and 1 ≤ 1 + N/2 for all N ∈ N, we

obtain for N = 2

e = 1 + 1 +
1

2
+R3(1), where 0 < R3(1) ≤ 2

1

3!
=

2

6
=

1

3
.

Therefore

2 <
5

2
< e ≤ 5

2
+

1

3
=

17

6
< 3.

As a matter of fact, the exponential series is numerically efficient. For example, one obtains
a value for e which is accurate up to 100 digits by summation of 73 terms; to give just the
first few digits

e ≈ 2,71828 . . .



CHAPTER II
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OF A REAL VARIABLE
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§5. CONTINUITY

In this section we study real (valued) functions1 on subsets of R, i.e., maps f : D → R,
where D ⊆ R. Recall that the graph 〈Graph〉 of f is defined as the following subset of R2:

G(f) := {(x, f(x)) ∈ R2 : x ∈ D}.

5.1. Examples: 1) Let c ∈ R arbitrary, then f : R → R, f(x) := c for all x ∈ R
defines a constant function.

y

x

c
G(f)

2) The identity map 〈identische Abbildung〉 on R is given by idR : R → R, x 7→ x.

y

x

y = x

G(idR)

Slightly more general are linear functions l : R → R, x 7→ a ·x, where a ∈ R gives the slope
of the graph:

y

x

G(l)

1The mathematical term, “function” (from the Latin functio, meaning performance, execution) was
first used by Leibniz in 1694 to describe curves.

46
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3) The absolute value (function) 〈Betragsfunktion oder Absolutbetrag〉 is defined by
abs : R → R, x 7→ |x|.

y

x

G(abs)

4) floor : R → R, x 7→ ⌊x⌋, where (as on page 39) ⌊x⌋ = max{n ∈ Z : n ≤ x}.

y

x

G(floor)

The floor function is sometimes called Gauß bracket2 〈Gaußklammer〉 and the values are
also denoted by [x] (x ∈ R).

5) The square root sqrt : [0,∞] → R, x 7→ √
x

x

y

2Carl Friedrich Gauß (1777–1855) [kaKl "fri:trIç gaUs], one of the most outstanding German mathemati-
cians
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6) The exponential function exp : R → R, x 7→ exp(x) as defined in 4.23.

x

y

1

7) Polynomial functions 〈Polynomfunktionen〉: Let m ∈ N and a0, a1, . . . , am ∈ R. We
define

p : R → R by p(x) := amx
m + am−1x

m−1 + . . . a1x+ a0 ∀x ∈ R.

The constants a0, . . . am are called the coefficients 〈Koeffizienten〉 of the polynomial function.
If am 6= 0 then p is said to be of degree m 〈vom Grad m〉.
For example, when m = 2 and a0 = 0, a1 = −1, a2 = 1 we obtain p(x) = x2 − x

x

y

8) Rational functions 〈rationale Funktionen〉: Let p and q be polynomial functions, that is

p(x) = amx
m + . . .+ a1x+ a0 and q(x) = bnx

n + . . .+ b1x+ b0

with given coefficients a0, . . . , am, b0, . . . bn ∈ R. Then a rational function is the quotient
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function with domain D := {x ∈ R : q(x) 6= 0}, defined by

r : D → R, x 7→ p(x)

q(x)
.

Note that polynomial functions are just rational functions with denominator q ≡ 1.

For example, here is the graph of the rational function r : R \ {1} → R, r(x) = x2/(x− 1)

x

y

9) Simple functions (or step functions) 〈Treppenfunktionen〉: Let a, b ∈ R with a < b. A
function ϕ : [a, b] → R is called a simple function (or step function), if there is a finite
partition a = t0 < t1 < . . . < tn−1 < tn = b of the interval [a, b] and coefficients c1, . . . cn ∈
R such that

ϕ(x) = ck when x ∈ ]tk−1, tk[ (1 ≤ k ≤ n).

Therefore ϕ is constant on each open subinterval ]tk−1, tk[ (1 ≤ k ≤ n) but the finitely
many values ϕ(tk) (0 ≤ k ≤ n) are arbitrary.

x

y

t0 = a t1 t2 t3 t4 b = t5
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Note that the restriction floor |[a,b] of the floor function provides an example of a simple
function.

10) The characteristic function of Q 〈charakteristische Funktion von Q〉 or Dirichlet function3

is given by

1Q : R → R, 1Q(x) =

{

1 x ∈ Q

0 x 6∈ Q.

In this case the graph is

G(1Q) = {(q, 1) : q ∈ Q} ∪ {(s, 0) : s ∈ R \ Q},

which would be somewhat hard to depict . . .

5.2. Review of basic operations with functions:

Let f, g : D → R be functions on D ⊆ R and λ ∈ R.

• Then the functions

f + g : D → R, λf : D → R, f · g : D → R

are defined in terms of the corresponding pointwise operations (with real numbers)
for all x ∈ D by

(f + g)(x) := f(x) + g(x),

(λf)(x) := λ · f(x),

(f · g)(x) := f(x) · g(x).

Remark: It is easy to check that the set F(D) := {f : D → R} of all real valued
functions on the set D together with the addition and scalar multiplication as defined
by the first two lines above forms a vector space over R.

• Let D′ := {x ∈ D : g(x) 6= 0}. The quotient function is defined by

f

g
: D′ → R, x→ f(x)

g(x)
.

• Let E ⊆ R such that f(D) ⊆ E and h : E → R. Recall that the composition of f
and h is given by

h ◦ f : D → R, (h ◦ f)(x) := h(f(x)) ∀x ∈ D.

3Johann Peter Gustav Lejeune Dirichlet (1805–1859) ["jo:han "pe:t@5 "gUstaf l@"Zœn diöi"kle], German
mathematician with Belgish origins (the French words Lejeune Dirichlet literally mean “the young chap
from Richelet”)
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Examples: 1) If q : R → R, q(x) = x2, then q = id · id.

2) More generally, if p is a polynomial function, given by

p(x) = amx
m + . . . a1x+ a0,

then

p = am · (id · id · · · id)
︸ ︷︷ ︸

m factors

+ . . . a1 · id +a0 · 1,

where 1 denotes the constant function 1(x) = 1 for all x ∈ R.

3) With q as in example 1) we have abs = sqrt ◦ q, since for all x ∈ R

(
sqrt ◦ q

)
(x) =

√
x2 = |x| = abs(x).

5.3. Continuity 〈Stetigkeit〉: The notion of continuity of a function is a precise way
to express an intuitive requirement, which is often implicitly made in model applications:
Namely, that small perturbations of a function argument should not result in extreme
changes of the function values.

How to specify such a property for a given function f near a point x0 of its domain?
It might seem practically desirable to first prescribe the acceptable tolerance around the
value f(x0) and then to look for a safety interval around the argument x0 on which function
values near f(x0) within tolerance are guaranteed. If the tolerance is given in terms of an
interval ]f(x0) − ε, f(x0) + ε[ with ε > 0 and the safety interval is sought in the form
]x0 − δ, x0 + δ[ with δ > 0 we obtain the following picture:

x

y

x0

f(x0)Uε(f(x0))

{

︸ ︷︷ ︸

Uδ(x0)

By requiring that for every tolerance ε > 0 — chosen arbitrarily small — an appropriate
safety guard δ > 0 can (in principle) be found we arrive at the notion of continuity.
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Definition: Let x0 ∈ D ⊆ R and f : D → R. The function f is continuous 〈stetig〉 at
x0 if

(5.1) ∀ε > 0 ∃δ > 0 : ∀x ∈ D : |x− x0| < δ =⇒ |f(x) − f(x0)| < ε.

Equivalently, upon recalling that ]x0 − δ, x0 + δ[ = Uδ(x0) and ]f(x0) − ε, f(x0) + ε[ =
Uε(f(x0)), we can define the continuity of f at x0 in terms of neighborhoods:

∀ε > 0 ∃δ > 0 : f
(
Uδ(x0) ∩D

)
⊆ Uε

(
f(x0)

)
.

The function f is said to be continuous (on D) if it is continuous at each point in D. If f
is not continuous at a point b ∈ D then f is said to be discontinuous 〈unstetig〉 at b.

Examples: 1) Clearly, a constant function f is continuous (at every point x0 in its
domain), since f(x) − f(x0) = 0 and therefore (5.1) is satisfied for all ε > 0 and δ > 0
arbitrary.

2) Every linear function f : R → R, x 7→ ax, is continuous (at every x0 ∈ R): If a = 0
this is clear from Example 1), hence consider a 6= 0. Let ε > 0. From the preparatory
observation |f(x) − f(x0)| = |a||x− x0| we learn that we can simply choose δ := ε/|a| to
achieve (5.1): Indeed, if |x− x0| < δ = ε/|a| then

|f(x) − f(x0)| = |a| |x− x0| < |a| δ = ε.

3) The exponential function exp : R → R is continuous: Let x0 ∈ R and ε > 0. By the
properties of the exponential function we have

| exp(x) − exp(x0)| = exp(x0) | exp(x− x0) − 1|,

where exp(x0) > 0. From (4.5) we obtain for |x− x0| ≤ 1 that

| exp(x− x0) − 1| ≤ 2|x− x0|.

Thus, putting δ := min(1, ε
4 exp(x0)

) and combining the above inequalities we obtain for all

x with |x− x0| < δ the required estimate

| exp(x) − exp(x0)| ≤ 2 exp(x0) |x− x0| < 2 exp(x0) δ < ε.

4) abs: R → R, x 7→ |x|, is continuous: Let x0 ∈ R and ε > 0. Put δ := ε then we have
for all x ∈ Uδ(x0)

| abs(x) − abs(x0)| = ||x| − |x0|| ≤ |x− x0| < δ = ε.

5) The Dirichlet function 1Q [Example 5.1, 10)] is discontinuous at every point in R: Let
x0 ∈ R and put ε = 1/2.
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If x0 ∈ R \ Q then 1Q(x0) = 0. By the density of Q in R, for every δ > 0 we might
choose the interval Uδ(x0) = ]x0 − δ, x0 + δ[ will always contain some (in fact, many)
rational number(s) r [cf. 0.7 or the Corollary in 4.21]. In other words, we can find r with
|r − x0| < δ but

|1Q(r) − 1Q(x0)| = |1 − 0| = 1 ≥ 1

2
= ε.

If x0 ∈ Q then 1Q(x0) = 1. Recall that also R \ Q is dense in R [cf. 0.7]. Hence for every
δ > 0 we can find s ∈ Uδ(x0) ∩ (R \ Q), which implies

|1Q(s) − 1Q(x0)| = |0 − 1| = 1 ≥ 1

2
= ε

while |s− x0| < δ.

Knowing that a specific value of a continuous function has positive distance to a certain
real number c already guarantees that the function values will stay away from c in a whole
neighborhood. In the following statement we formulate this for the special case with c = 0.
This can easily be adapted to the case c 6= 0 by a simple translation of the function graph.

xx0
︸ ︷︷ ︸

Uδ(x0)

5.4. Lemma: Let f : D → R be continuous at x0 ∈ D
and assume that f(x0) 6= 0. Then there is δ > 0 such that
for all x ∈ Uδ(x0) ∩D we have f(x) 6= 0.

Proof. Put ε := |f(x0)|/2. Then clearly ε > 0 and by con-
tinuity there exists some δ > 0 such that for all x ∈ D with
|x− x0| < δ we have |f(x) − f(x0)| < ε = |f(x0)|/2. Therefore x ∈ Uδ(x0) ∩D implies

|f(x)| = |f(x0) + f(x) − f(x0)| ≥ |f(x0)| − |f(x) − f(x0)| > |f(x0)| − ε =
|f(x0)|

2
> 0.

5.5. Continuity test by sequences:

Theorem: Let a ∈ D ⊆ R and f : D → R. The following are equivalent:

(i) f is continuous at a.

(ii) For every sequence (xn) with xn ∈ D we have: if lim xn = a then lim f(xn) = f(a),

i.e., f(lim xn) = lim f(xn) as an abbreviated slogan.
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Proof. (i) ⇒ (ii): Let xn ∈ D (n ∈ N) with lim xn = a and let ε > 0. Choose δ > 0 such
that the continuity condition (5.1) is satisfied. There exists n0 ∈ N such that |xn − a| < δ
holds for all n ≥ n0. Thus (5.1) implies

|f(xn) − f(a)| < ε ∀n ≥ n0,

which proves that lim f(xn) = f(a).

(ii) ⇒ (i): (proof by contradiction) Assume that (ii) holds but (5.1) is false. That is,

∃ε > 0 ∀δ > 0 : ∃x ∈ Uδ(a) ∩D : f(x) 6∈ Uε(f(a)).

In particular, with this same ε > 0, we can choose the δ-values to be 1/n (n ∈ N, n ≥ 1)
successively and obtain:

∀n ∈ N, n ≥ 1 : ∃xn ∈ D : |xn − a| < 1

n
, but |f(xn) − f(a)| ≥ ε.

Therefore lim xn = a whereas f(xn) 6→ f(a) (n→ ∞) — a contradiction � .

Example: The function floor: R → R, x 7→ ⌊x⌋ is continuous in R\Z and discontinuous
in all points a ∈ Z.

If a ∈ Z then ⌊a⌋ = a and the sequence xn := a − 1
n

(n ≥ 1) has limxn = a but
lim⌊xn⌋ = lim(a− 1) = a− 1 6= ⌊a⌋.
If a ∈ R \ Z then ⌊a⌋ < a < ⌊a⌋ + 1. Hence for every sequence (xn) with lim xn = a there
exists some n0 such that ⌊a⌋ < xn < ⌊a⌋ + 1 when n ≥ n0. Therefore ⌊xn⌋ = ⌊a⌋ for all
n ≥ n0, in particular lim⌊xn⌋ = ⌊a⌋.

5.6. Basic operations and continuity: The following results show that we do
not leave the class of continuous functions when applying the basic operations summarized
in 5.2 to continuous functions. In other words, we can generate many “new” continuous
functions from a set of given continuous functions simply by pointwise addition, scalar
multiplication, multiplication, division (when the denominator does not vanish), and com-
position (where the images and domains match appropriately).

Proposition: (i) Let a ∈ D ⊆ R and λ ∈ R. If f, g : D → R are continuous at a then
also

f + g : D → R, λf : D → R, f · g : D → R

are continuous at a. Furthermore, if a ∈ D′ := {x ∈ D : g(x) 6= 0} then

f

g
: D′ → R

is continuous at a.
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(ii) Let D ⊆ R, E ⊆ R and f : D → R, g : E → R such that f(D) ⊆ E. If f is continuous
at a ∈ D and g is continuous at b := f(a) ∈ E then the composition g ◦ f : D → R is
continuous at a.

Proof. (i) Let (xn) be a sequence in D, respectively D′, such that xn → a. Then by the
corresponding properties of basic operations with convergent sequences in 2.10 we obtain
that

(f + g)(xn) = f(xn) + g(xn) → f(a) + g(a) = (f + g)(a) (n→ ∞)

and similarly for the other types of operations. Thus Theorem 5.5 proves continuity at a.

(ii) Let (xn) be a sequence in D such that xn → a. Since f is continuous at a we have
yn := f(xn) → f(a) = b. Continuity of g at b implies g(yn) → g(b). Therefore

lim
n→∞

(g ◦ f)(xn) = lim g(f(xn)) = lim g(yn) = g(b) = g(f(a)) = (g ◦ f)(a)

and again by Theorem 5.5 the continuity at a follows.

Corollary: Polynomial functions and rational functions are continuous (on their
respective domains).

Proof. By 5.3, Examples 1) and 2), constant functions and the identity map id : R → R
are continuous. In 5.2, Example 2), we noted that polynomial functions are just finite
linear combinations of products of id by itself plus a constant function, thus the above
Proposition (i) shows continuity.

Rational functions are quotients of polynomial functions, defined where the denominator
does not vanish, and are therefore also continuous by the second part of (i) in the above
Proposition.

Example: 1) p(x) := −x2 defines a continuous function on R and exp is continuous
on R. Hence the function exp ◦ p : R → R, x 7→ exp(−x2) is continuous R → R.

2) The hyperbolic sine and cosine 〈hyperbolischer Sinus und Cosinus〉 are defined by

sinh(x) :=
exp(x) − exp(−x)

2
and cosh(x) :=

exp(x) + exp(−x)
2

(x ∈ R),

hence are continuous functions on R.

5.7. Limit of a function: Recall that a ∈ R is an adherent point of D ⊆ R if and
only if there exists a sequence (xn) in D (i.e., xn ∈ D for all n) such that xn → a (n→ ∞).
If a is an element of D then the latter condition is clearly satisfied by the constant sequence
xn = a for all n. In general, an adherent point of D need not be a member of the set D.
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Definition: Let f : D → R and a an adherent point of D. The function f has limit
c ∈ R as x tends to a, if every sequence (xn) in D such that xn → a (n → ∞) satisfies
lim

n→∞
f(xn) = c. A short-hand notation for this fact is

lim
x→a

f(x) = c or f(x) → c (x→ a).

We also define c ∈ R to be the limit of f at a from the right 〈rechtsseitiger Grenzwert〉

lim
xցa

f(x) = c, or also lim
x→a+

f(x) = c

if a is an adherent point of D ∩ ]a,∞[ and for all sequences (xn) with xn ∈ D and xn > a
such that xn → a we have lim f(xn) = c.
The notion of limit from the left 〈linksseitiger Grenzwert〉 lim

xրa
f(x), also denoted by lim

x→a−
f(x),

is defined analogously using ] −∞, a[∩D and xn < a instead.

Finally, we define limits of f at infinity as follows:

lim
x→∞

f(x) = c

means that D is unbounded from above and for every sequence (xn) with xn ∈ D and
xn → ∞ we have lim f(xn) = c.
We define lim

x→−∞
f(x) similarly when D is unbounded from below using xn → −∞.

Of course, we will often find it convenient to also use the above notions with improper
limits c = ±∞. The required adaptations of the definition should be routine and are left
to the reader.

Examples: 1) For the rational function f : R \ {1} → R, f(x) = (x2 − 1)/(x− 1), we
have

lim
x→1

f(x) = 2.

Indeed, if xn → 1 with xn 6= 1 then

f(xn) =
(xn − 1)(xn + 1)

xn − 1
= xn + 1 → 2 (n→ ∞).

2) lim
xց1

⌊x⌋ = 1, since ⌊xn⌋ = 1 when 1 < xn < 2. On the other hand, lim
xր1

⌊x⌋ = 0 as

⌊xn⌋ = 0 when 0 ≤ xn < 1.

We conclude that lim
x→1

⌊x⌋ does not exist, because otherwise the limits from the left and

from the right would have to be equal.

3) Let m ∈ N, m ≥ 1, and p : R → R be a polynomial function of the form

p(x) = xm + am−1x
m−1 + . . .+ a0.
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Then we have lim
x→∞

p(x) = ∞ and lim
x→∞

1

p(x)
= 0.

To see this, we first note that for all x > 0 we have the estimate

p(x) = xm
(
1 +

am−1

x
+ . . .+

a0

xm

)
≥ xm

(
1 − |am−1|

|x| − . . .− |a0|
|xm|

)
.

Let x ≥M := 2m · max(1, |am−1|, . . . , |a0|), then the above inequality implies

p(x) ≥ xm
(
1 −m · 1

2m

)
=
xm

2
(in particular, p(x) ≥ 1

2
).

Let xn → ∞ and choose n0 ∈ N such that xn ≥ M for all n ≥ n0. Then we obtain for
n ≥ n0

p(xn) ≥ xm
n

2
→ ∞ (n→ ∞),

therefore lim p(xn) = ∞, which proves the first assertion above. The second assertion
follows immediately from the first, if we note that 1/p(x) is defined for x ≥ M (since
p(x) ≥ 1/2 then, as noted above).

Remark: (i) Note that if a ∈ D and lim
x→a

f(x) exists then the limit has to be f(a) (since

xn = a is a special sequence in D converging to a).

(ii) An ε-δ-version for a function f : D → R to have limit c ∈ R reads as follows:

∀ε > 0 ∃δ > 0 : x ∈ D, |x− a| < δ =⇒ |f(x) − c| < ε.

Warning: The notion of ‘limit of a function’ is not used in exactly the same way as we do here

throughout the literature. Some texts (e.g. [Heu88]) require the admissible sequences (xn) in the

definition to be in D \ {a}, so that the special choice xn = a is excluded even in the case where a

belongs to D. If a is an adherent point of D and does not belong to D, both notions give the same

result concerning existence and value of the function limit. However, if a ∈ D the conclusions

may differ, as can be seen from the following example: Let D := R \{0} and define f : D → R by

f(x) := 1 if x 6= 0, and f(0) := 0. Then in the sense of our definition f does not have a limit at 0,

whereas we obtain for all sequences (xn) with xn 6= 0 and xn → 0 that lim f(xn) = 1 (note that

this value differs from f(0)), which would give existence of the limit of f at 0 in the alternative

definition.

Since the notion of ‘limit of a function’ is essentially a short-hand notation to describe
the way how a function translates converging sequences into sequences of corresponding
function values, we can rephrase the sequence test of continuity 5.5 in these terms.

Proposition: A function f : D → R is continuous at a point a ∈ D if and only if

lim
x→a

f(x) = f(a).

Proof. This is immediate from Theorem 5.5 and the remark made above.
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5.8. The intermediate value property 〈Zwischenwertsatz〉:

x

yTheorem: Suppose f : [a, b] → R is continuous and c ∈ R
lies between f(a) and f(b), that is f(a) ≤ c ≤ f(b) or f(b) ≤
c ≤ f(a). Then there exists x0 ∈ [a, b] such that f(x0) = c.

In other words, a continuous function on [a, b] attains every
value between f(a) and f(b) at least once — there are no gaps
in f([a, b]).

An important special case of the Theorem is the following: If f : [a, b] → R is continuous
and f(a) < 0 and f(b) > 0 (resp. f(a) > 0 and f(b) < 0), then f has a zero 〈Nullstelle〉 in
[a, b], i.e., ∃x0 ∈ [a, b]: f(x0) = 0.

Example of an Application: Let p : R → R be a polynomial function of odd
degree m = 2n+ 1 (with n ∈ N), say,

p(x) = b2n+1x
2n+1 + b2nx

2n + . . .+ b0 (x ∈ R),

where b2n+1 6= 0. Then p has at least one real zero.

To show this, we first write

p(x) = b2n+1 ·
(
x2n+1 +

b2n

b2n+1

x2n + . . .+
b0

b2n+1

)
= b2n+1 · q(x),

where the polynomial function q is of the form q(x) = x2n+1 + a2nx
2n + . . .+ a0

(with aj = bj/b2n+1 for j = 0, . . . , 2n).

By 5.7, Example 3), we have lim
x→∞

q(x) = ∞, hence there exists x+ > 0 such that q(x+) > 0.

Similarly, upon observing that

q(−x) = −x2n+1 + a2nx
2n − . . .+ a0 = −(x2n+1 − a2nx

2n + . . .− a0)

we obtain that lim
x→−∞

q(x) = −∞, hence there exists x− < 0 such that q(x−) < 0.

Since q |[x−,x+] : [x−, x+] → R is continuous and q(x−) < 0 < q(x+), the above Theorem
implies that there exists x0 ∈ [x−, x+] such that q(x0) = 0 (in fact, x− < x0 < x+, because
the values of q at x± are known to be nonzero). Therefore also p(x0) = b2n+1 q(x0) = 0.

Proof of the Theorem.

WLOG (:= without loss of generality) 〈OBdA (:= ohne Beschränkung der Allgemeinheit)〉 we
may assume that f(a) < c < f(b). [otherwise we just have to consider −f instead]

If c 6= 0 we can reduce the statement to that of the special case of a zero by putting
f1(x) := f(x) − c. Then f1(a) = f(a) − c < 0 and f1(b) = f(b) − c > 0 and the assertion
of the Theorem is equivalent to the existence of a zero x0 ∈ [a, b] of the function f1.
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So, again WLOG we may assume that c = 0 and f(a) < 0 < f(b). We have to show that
there is some x0 ∈ [a, b] such that f(x0) = 0.

We will find x0 by constructing a sequence of nested intervals in the fashion of a so-called
bisection method. To be more precise, we claim that we can define [an, bn] ⊆ [a, b] for all
n ∈ N with the following properties:

1. ∀n ∈ N, n ≥ 1: [an, bn] ⊆ [an−1, bn−1]

2. bn − an =
b− a

2n

3. f(an) < 0 and f(bn) ≥ 0.

Put a0 := a and b0 := b, then properties 2 and 3 are satisfied. We proceed inductively
and assume that [a0, b0], . . ., [an, bn] have been defined satisfying properties 1-3. Let m :=
(an + bn)/2 (this is the midpoint of [an, bn]) and distinguish two cases:

If f(m) ≥ 0 put an+1 := an and bn+1 := m

If f(m) < 0 put an+1 := m and bn+1 := bn.

Then properties 1–3 are valid for [an+1, bn+1] as well. By the principle of nested intervals we
obtain that (an) and (bn) converge to the same limit x0 ∈ [a, b], that is lim an = lim bn = x0.
Since f is continuous we have that

f(x0) = lim f(an) = lim f(bn).

By property 3 we obtain in addition

f(x0) = lim f(an) ≤ 0 ≤ lim f(bn) = f(x0),

which proves that f(x0) = 0.

Corollary: Let I ⊆ R be a nonempty interval and f : I → R be continuous. Then
f(I) ⊆ R is an interval as well.

Proof. Let A := inf f(I) and B := sup f(I), where we allow for the improper values
A = −∞ (unbounded below) and B = ∞ (unbounded above). If A = B then f(I)
contains just a single point, in which case the statement is true. So we henceforth assume
that A < B.

We assert that ]A,B[ ⊆ f(I): Let y ∈ ]A,B[, then there exist r, s ∈ I such that f(r) < y <
f(s). By the above Theorem we have some x0 ∈ I such f(x0) = y. Therefore y ∈ f(I).

To summarize, ]A,B[ ⊆ f(I) ⊆ [A,B], hence f(I) equals one of the intervals ]A,B[ or
]A,B] or [A,B[ or [A,B].
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5.9. Continuous functions on bounded closed intervals:

Definition: A function f : D → R is called bounded 〈beschränkt〉 if the image set
f(D) ⊆ R is bounded, i.e.,

∃M > 0 ∀x ∈ D : |f(x)| ≤M.

Theorem: Let f : [a, b] → R be continuous. Then f is bounded and attains maximum
and minimum values, i.e., there exist x1, x2 ∈ [a, b] such that

f(x1) = min f([a, b]) = min {f(x) : x ∈ [a, b]} (= inf f([a, b]))

f(x2) = max f([a, b]) = max {f(x) : x ∈ [a, b]} (= sup f([a, b])).

Remark: (i) In the hypothesis of this theorem it is essential that the interval [a, b],
where f is defined and continuous, is bounded (i.e., −∞ < a ≤ b < ∞) and closed (i.e.,
the boundary points a and b belong to the interval). Otherwise the statement is not true
in general as can be seen from the following examples: Consider the continuous functions

f1 : ]0, 1] → R, x 7→ 1

x
, f2 : ]0, 1[ → R, x 7→ x, f3 : [0,∞[ → R, x 7→ x.

Then f1 and f3 are unbounded and do not attain a maximum, f2 does neither attain a
maximum nor a minimum.

(ii) As is shown by the simple example of a constant function, the locations x1 and x2 of
a minimum or a maximum need not be unique.

Proof of the Theorem. It suffices to give the proof for boundedness from above and con-
cerning the maximum, the case of minimum and boundedness from below can be reduced
to the latter by switching to −f .

Let A := sup f([a, b]) ∈ R ∪ {∞}, then there exists a sequence (an) in [a, b] such that
f(an) → A (n→ ∞).

Since [a, b] is a bounded subset of R the Theorem of Bolzano-Weierstraß implies that there
is a convergent subsequence (ank

)k∈N. Let x2 := lim
k→∞

ank
∈ [a, b].

Since f is continuous we obtain that

R ∋ f(x2) = lim
k→∞

f(ank
) = A = sup f([a, b]).

In particular, f([a, b]) is bounded above and the supremum is a maximum, which is attained
by f at x2 ∈ [a, b].
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5.10. Uniform continuity: If we are to check continuity of a real valued function
f at a certain point x0 in its domain D, then for given ε > 0 we have to find δ > 0 such
that the condition |f(x) − f(x0)| < ε is met whenever x ∈ D satisfies |x − x0| < δ. We
observe that, in general, δ will dependend on ε > 0 as well as on the point x0. Consider the
following example, where the range of possible values for δ is strictly shrinking as ε gets
smaller or x0 varies: Let D =]0, 1] and f : D → R with f(x) = 1/x, which is continuous in
every point x0 ∈ D.

Fix some x0 ∈ D and ε > 0 arbitrarily and let
us test the allowed tolerance in varying the
argument in 0 < x ≤ x0 while maintaining
|f(x) − f(x0)| < ε. For every 0 < δ < x0 let
xδ := x0 − δ. Then

|f(xδ) − f(x0)| =
1

xδ
− 1

x0

=
x0 − xδ

x0 xδ
=

δ

x0 (x0 − δ)
.

Thus requiring |f(x) − f(x0)| < ε for all x ∈
]0, 1] with |x − x0| < δ implies ε > δ

x2
0−x0δ

.

Equivalently, εx2
0 − εx0δ > δ and hence

δ <
εx2

0

1 + ε x0

< εx2
0.

This shows that the smaller x0 > 0 is the
smaller we have to choose δ > 0 (even at fixed
value of ε > 0).

y

x0

1

x

1

1

︸︷︷︸

δ
︸︷︷︸

δ

We thus obtain a stronger form of continuity notion, if we require that for each ε > 0 a
suitable δ > 0 can be found which guarantees the typical ε-δ-estimate to hold for all pairs
of points in the domain of relative distance less than δ.

Definition: Let D ⊆ R. A function f : D → R is uniformly continuous 〈gleichmäßig

stetig〉 (in D), if the following holds:

∀ε > 0 ∃δ > 0 ∀x, x′ ∈ D : |x− x′| < δ =⇒ |f(x) − f(x′)| < ε.

Remark: It is immediate from the definition that every uniformly continuous function
is continuous (at every point in the domain). The converse is not true as is illustrated by
the example above with D = ]0, 1], f(x) = 1/x: If xn = 1/n and x′n = 1/(2n) (n ∈ N,
n ≥ 1) then

|xn − x′n| =
1

n
− 1

2n
=

1

2n
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is arbitrarily small when n is sufficiently large, but

|f(xn) − f(x′n)| = 2n− n = n

is unbounded, hence will never stay below a given ε-tolerance.

However, as the following theorem will show, there is no distinction between continuity
and uniform continuity if D is a bounded closed interval.

Theorem: If f : [a, b] → R is continuous then f is uniformly continuous (on [a, b]).

Proof. (by contradiction) If f is not uniformly continuous then

∃ε > 0 ∀n ∈ N, n > 0 ∃xn, x
′
n ∈ [a, b] : |xn − x′n| <

1

n
and |f(xn) − f(x′n)| ≥ ε.

The sequence (xn) is bounded, thus by the Theorem of Bolzano-Weierstraß possesses a
convergent subsequence (xnk

)k∈N. Let x0 := lim xnk
∈ [a, b].

Since |xnk
− x′nk

| < 1/nnk
→ 0 (k → ∞) we have that limx′nk

= lim xnk
= x0. Then the

continuity of f at x0 yields

0 < ε ≤ |f(xnk
) − f(x′nk

)| → 0 (k → ∞),

— a contradiction � .

5.11. Approximation by step (or simple) functions: As an application
of the above Theorem 5.10 we show that “the area under the graph of a continuous function”
can be approximated by sums over areas of small vertical rectangles. This will be used
later in the chapter on integration theory.

a b

ϕ

ψ

The rectangles can be represented as graphs of step or simple functions and the approxi-
mation result is stated in terms of these as a uniform approximation from above and from
below.
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Proposition: Let f : [a, b] → R be continuous. For every ε > 0 there exist simple
functions ϕ, ψ : [a, b] → R with the following properties valid for all x ∈ [a, b]:

(a) ϕ(x) ≤ f(x) ≤ ψ(x)

(b) |ψ(x) − ϕ(x)| = ψ(x) − ϕ(x) ≤ ε.

Proof. By Theorem 5.10 f is uniformly continuous on [a, b]. Therefore we can find δ > 0
such that

∀x, x′ ∈ [a, b] : |x− x′| < δ =⇒ |f(x) − f(x′)| < ε.

Choose n ∈ N large enough to ensure (b− a)/n < δ and define partition points

tk := a + k · b− a

n
(k = 0, . . . , n).

In this way we obtain an equidistant partition of [a, b]

a = t0 b = tn. . .

by t0 = a < t1 < . . . < tn = b with

tk − tk−1 =
b− a

n
< δ.

As heights of the approximating rectangles we choose the maximum or minimum values
of f on the corresponding subintervals [tk−1, tk] (k = 1, . . . , n) of the partition, that is we
define

ck := max{f(x) : tk−1 ≤ x ≤ tk}, c′k := min{f(x) : tk−1 ≤ x ≤ tk}.

By Theorem 5.9 there exist ξk, ξ
′
k ∈ [tk−1, tk] such that f(ξk) = ck and f(ξ′k) = c′k (k =

1, . . . , n). Since |ξk − ξ′k| < δ we have |ck − c′k| < ε from the uniform continuity property
noted in the beginning.

Finally, we define the simple functions ϕ, ψ : [a, b] → R as follows:

Let ϕ(a) := f(a) and ψ(a) := f(a),

for tk−1 < x ≤ tk we set ψ(x) := ck and ϕ(x) := c′k (k = 1, . . . , n).

Then the conditions (a) and (b) follow by construction of ϕ and ψ.
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5.12. Continuous inverse function: Let A,B ⊆ R. Assume that the function
f : A → B is bijective, then the inverse function f−1 : B → A exists. If we know that f is
continuous, does this imply that f−1 is also continuous? In general, the answer is ‘no’ (see
the exercises for an example).

It turns out that there is a positive answer to the above question under the two additional
hypotheses of strict monotonicity on f and that A is an interval.

Recall that f is strictly increasing (resp. decreasing) if x1 < x2 implies f(x1) < f(x2) (resp.
f(x1) > f(x2)) and that a strictly monotone function necessarily is injective.

Theorem: Let I ⊆ R be an interval and f : I → R be continuous and strictly increasing
(resp. decreasing). Then f maps the interval I bijectively onto the interval J := f(I) and
the corresponding inverse function J → I is also continuous and strictly increasing (resp.
decreasing).

(Strictly speaking, we deal here with the inverse of the map f̃ : I → J , x 7→ f(x); but
we will follow the common abuse of language and denote f̃ again by f and its inverse by
f−1 : J → I.)

Proof. We present the proof for the case that f is strictly increasing, the case where f is
strictly decreasing is reduced to this by considering −f instead.

Corollary 5.8 implies that J = f(I) is an interval. Since f is strictly increasing it is
injective, hence f is bijective as a map I → J . Let f−1 : J → I denote the inverse of this
map.

Note that for x1, x2 ∈ I the inequality f(x1) < f(x2) in turn implies x1 < x2 (since then
x1 = x2 is impossible with different function values and x1 > x2 contradicts the fact that
f increases), therefore we have

∀x1, x2 ∈ I : x1 < x2 ⇐⇒ f(x1) < f(x2),

which shows that f−1 is strictly increasing as well.

It remains to prove that f−1 is continuous at every point b ∈ J .

Case 1, if b ∈ J is not a boundary point of J : Let a := f−1(b) ∈ I. Then a is not a
boundary point of I (for otherwise by monotonicity b would have to be boundary point
of J). Choose ε > 0 so small that both a − ε and a + ε belong to I. Since f is strictly
increasing we have

f(a− ε) < f(a) = b < f(a+ ε).

Thus we can find δ > 0 such that

f(a− ε) < b− δ < b+ δ < f(a+ ε),

which simply means that
f−1(Uδ(b)) ⊆ Uε(f

−1(b))
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and therefore proves the continuity of f−1 at b.

Case 2, if b ∈ J is the left boundary point of J : Then a := f−1(b) has to be the left
boundary point of I (since f is strictly increasing). We can copy the proof of case 1 with
the only changes that we use Uδ ∩ J and Uε(f

−1(b))∩ I as neighborhoods and the chain of
inequalities reads f(a) = b < b+ δ < f(a+ ε).

Case 3, if b ∈ J is the right boundary point of J : Similarly to case 2.

I

I ′

Remark: The second part of the above proof shows,
in fact, the following result: If I ⊆ R is an interval and
f : I → R is strictly increasing (not necessarily contin-
uous!), then f−1 : f(I) → I is continuous. But f(I)
need not be an interval, if f is discontinuous:

Root functions: As an application of the above Theorem we consider for any
k ∈ N, k ≥ 1, the functions4

f2k : [0,∞[ → [0,∞[, x 7→ x2k, and f2k+1 : R → R, x 7→ x2k+1.

All these functions are continuous, strictly increasing, and bijective, therefore the corre-
sponding inverse functions

f−1
2k : [0,∞[ → [0,∞[ and f−1

2k+1 : R → R

are continuous and strictly increasing. We use the the following notation for their function
values (for x in the appropriate domain)

n ≥ 2 : n
√
x = x

1
n := f−1

n (x).

4Altough the origin of the radical symbol
√

is rather unclear, many believe that it is an abbreviation

of the Latin word radix (root). The symbol was first used in Germany in the 16th century without the
winkulum (i.e. the term

√
a + b was originally denoted by

√
(a + b))



§6. ELEMENTARY TRANSCENDENTAL FUNCTIONS

6.1. Proposition: The exponential function exp : R → R is continuous, strictly
increasing, and exp(R) = ]0,∞[. Its inverse function log : ]0,∞[ → R is continuous, strictly
increasing and is called the natural logarithm 〈natürlicher Logarithmus〉.1 Furthermore, the
following functional equation holds for all x, y ∈ ]0,∞[:

(6.1) log(x · y) = log(x) + log(y).

1

1

x

y
exp x

log x

1Logarithms have been introduced by the Scottish mathematician John Napier in 1614, the term loga-
rithm being derived from the Greek words λόγος (“proportion”) and ἀριθμός (“number”).
Nowadays, there are different notations used for logarithmic functions: While mathematicians often write
log(x) for the natural logarithm and logb(x) for the base-b logarithm, in many calculus textbooks a nota-
tions such as ln(x) can be found for the natural logarithm, lg(x) for the base-10 logarithm etc. In these
lecture notes we will always use log(x) to denote the natural logarithm and logb(x) for the base-b logarithm.
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Proof. The continuity of exp has already been established in the previous section.

Step 1: We show that exp is strictly increasing.

For every ξ > 0 we have

exp(ξ) = 1 + ξ +
∞∑

k=2

ξk

k!
> 1 + ξ > 1.

Let x1 < x2 then ξ := x2 − x1 > 0 and

exp(x2) = exp(x1 + ξ) = exp(x1) · exp(ξ) > exp(x1).

Step 2: We show that exp(R) = ]0,∞[.

Since exp(x) > 0 for all x ∈ R [4.23] we have exp(R) ⊆ ]0,∞[. To show the reverse inclusion
relation, it suffices to show that

lim
n→∞

exp(n) = ∞ and lim
n→∞

exp(−n) = 0,

since then by the intermediate value theorem all values in ]0,∞[ are indeed attained.

For n ∈ N we had shown exp(n) = en. Since e > 2 we therefore have en → ∞ (n → ∞),
which implies that

exp(−n) =
1

exp(n)
=

1

en
→ 0 (n→ ∞).

We may thus define the function f : R →]0,∞[, f(x) := exp(x), which is again continuous
and strictly increasing. Due to Theorem 5.12 the inverse function log := f−1 : ]0,∞[→ R
is also continuous and strictly increasing.

Step 3: We prove the functional equation (6.1).

Let x, y ∈ ]0,∞[ and put ξ := log(x), η := log(y). Then exp(ξ+η) = exp(ξ) · exp(η) = x · y
and therefore

log(x · y) = ξ + η = log(x) + log(y).

Remark: As a simple consequence we obtain

log(xk) = k log(x) for all x > 0 and k ∈ N.

6.2. Real powers and general exponentials: We can use the exponential
function and the logarithm to give a simple definition of expressions of the form rs when r >
0 and s ∈ R. Observe that if s is a natural number then rs = exp(log(rs)) = exp(s log(r)).
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Definition: (i) Let r > 0 and s ∈ R then

rs := exp(s log(r)) ∈ ]0,∞[.

As an immediate consequence of this definition we thus obtain the formula

log(rs) = s log(r) (r > 0, s ∈ R).

(ii) For any α ∈ R we define general power or root functions wα : ]0,∞[→ R by

x 7→ xα = exp(α log(x)).

(iii) The Exponential function with base a ∈ ]0,∞[ is given by

expa : R → R, expa(x) := ax = exp(x log(a)).

Note that exp(x) = expe(x) = ex for all x ∈ R.

We list basic properties of the exponential function with base a > 0, which are immediate
consequences of those for the exponential function and the logarithm.

Proposition: expa is continuous on R and we have the following:

(i) If a > 1 then expa is strictly increasing, if 0 < a < 1 then expa is strictly decreasing.

(ii) The functional equation: ax+y = ax · ay for all x, y ∈ R.

(iii) Let a > 0. For all m ∈ Z: expa(m) = am = a · a · · ·a (m factors).
(In other words, the notation am is consistent with the algebraically defined integer powers.)

(iv) Let a > 0. If p ∈ Z and q ∈ N, q ≥ 1, then a
p
q = q

√
ap = (ap)

1
q .

(Consistency with the root functions as defined in 5.12.)

(v) Let a > 0. For all x, y ∈ R: (ax)y = axy = (ay)x.

(vi) For all a > 0, b > 0, and x ∈ R: ax · bx = (a · b)x.

(vii) Let a > 0. For all x ∈ R: (
1

a
)x = a−x.

Proof. Immediate from the definition.

6.3. A collection of useful limits:

1) For all k ∈ N: lim
x→∞

ex

xk
= ∞.

We may assume that x > 0, which yields ex =
∞∑

n=0

xn

n!
>

xk+1

(k + 1)!
. Therefore

ex

xk
>

x

(k + 1)!
→ ∞ as x→ ∞.
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2) For all k ∈ N: lim
x→∞

xk

ex
= 0. (Follows directly from 1).)

3) For all k ∈ N: lim
xց0

xke1/x = ∞.

Writing y = 1/x gives lim
xց0

xke1/x = lim
y→∞

ey

yk
= ∞ (by 1)).

4) lim
x→∞

log(x) = ∞ and lim
xց0

log(x) = −∞.

Both assertions follows from Proposition 6.1, which implies that log : ]0,∞[→ R is strictly
increasing and bijective.

5) For all α > 0: lim
xց0

xα = 0 and lim
xց0

x−α = ∞.

The second assertion follows from the first. To prove the first we write x = e−y/α (equiva-
lently, y = −α log(x)) and compute

lim
xց0

xα = lim
y→∞

e−y = 0.

6) For all α > 0: lim
x→∞

log(x)

xα
= 0.

We may assume that x > 0 and write xα = ey (equivalently, y = α log(x)) to obtain

lim
x→∞

log(x)

xα
=

1

α
· lim

y→∞

y

ey
= 0.

7) For all α > 0: lim
xց0

xα log(x) = 0.

Upon writing x = 1/y (so that y → ∞) we have xα log(x) = − log(y)/yα, then use 6).

8) lim
x→0
x 6=0

ex − 1

x
= 1

The remainder term estimate (4.4), (4.5) for the exponential sum gives for all x with
|x| ≤ 3/2 that

|ex − (1 + x)| ≤ 2
|x|2
2!

= |x|2.

In other words, if 0 < |x| ≤ 3/2 then

|e
x − 1

x
− 1| =

|ex − 1 − x|
|x| ≤ |x| → 0 as x→ 0.
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6.4. The Landau-symbols2 — comparison of asymptotic growth:

Definition: (i) Let a ∈ R and f, g : ]a,∞[→ R. We write

f(x) = o(g(x)) (x→ ∞),

to mean that ∀ε ∃R > a: |f(x)| ≤ ε |g(x)| holds for all x ≥ R.
(“f(x) is a little-oh of g(x) as x tends to infinity”.)

We write
f(x) = O(g(x)) (x→ ∞),

to mean that ∃K > 0 ∃R > a: |f(x)| ≤ K |g(x)| holds for all x ≥ R.
(“f(x) is a big-oh of g(x) as x tends to infinity”.)

(ii) Let D ⊆ R and x0 be an adherent point of D and f, g : D → R. We write

f(x) = o(g(x)) (x→ x0, x ∈ D),

to mean that ∀ε > 0 ∃δ > 0: |f(x)| ≤ ε |g(x)| holds ∀x ∈ Uδ(x0) ∩D.

We write
f(x) = O(g(x)) (x→ x0, x ∈ D),

to mean that ∃K > 0 ∃δ > 0: |f(x)| ≤ K |g(x)| holds ∀x ∈ Uδ(x0) ∩D.

Remark: (i) If, for example, g(x) 6= 0 for all x near x0 and lim
x→x0

f(x)

g(x)
= 0, then f(x) =

o(g(x)) (x→ x0).

(ii) We will occasionally make use of a notation like

f(x) = h(x) +O(g(x))

to mean that f(x) − h(x) = O(g(x)).

Examples: 1) If α > 0 then log(x) = o(xα) (x→ ∞) [cf. 6.3.6)].

2) ex = 1 + x+O(x2) (x → 0), since |ex − 1− x| ≤ |x|2 when |x| ≤ 3/2 [as seen in 6.3.8)].

3) f(x) = f(x0) + o(1) (x→ x0) ⇐⇒ lim
x→x0

f(x) = f(x0) ⇐⇒ f is continuous at x0.

4) If p is a polynomial function of degree m, then p(x) = O(xm) (x→ ∞).

2Edmund Georg Hermann Landau (1877–1938) ["EdmUnt "ge;O5k "he5man "landaU], German mathemati-
cian
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6.5. A digression into basic analysis on C:

Let z = x + iy ∈ C, so that x = Re(z), y = Im(z) and z = x+ iy ∈ C. Then the product
zz = (x+ iy)(x− iy) = x2 +y2 always gives a non-negative real number and we may define
the absolute value of z by

|z| :=
√
zz =

√

x2 + y2 =
√

Re(z)2 + Im(z)2.

Note that, since real numbers x are embedded as complex numbers3 of the form x + i0,
the absolute value of x as a real number is the same as its absolute value as a complex
number.

Lemma: The absolute value as a map |.| : C → R has the following properties, valid for
all z, z1, z2 ∈ C:

(i) |z| ≥ 0 and |z| = 0 ⇔ z = 0

(ii) |z| = |z|
(iii) |z1 · z2| = |z1| · |z2|
(iv) |Re(z)| ≤ |z| and | Im(z)| ≤ |z|
(v) |z1 + z2| ≤ |z1| + |z2| (triangle inequality).

Proof. Let z = x+ iy, zk = xk + iyk (k = 1, 2).

(i): |z| ≥ 0 and |0| = 0 is immediate. If |z| = 0, then 0 ≤ x2 ≤ x2 + y2 = 0 as well as
0 ≤ y2 ≤ x2 + y2 = 0, hence x = 0 and y = 0.

(ii): Clear from the definition.

(iii): |z1z2|2 = (z1z2)(z1z2) = (z1z1)(z2z2) = |z1|2|z2|2.
(iv): |x|2 = x2 ≤ x2 + y2 and |y|2 = y2 ≤ x2 + y2.

(v): |z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + 2 Re(z1z2) + |z2|2 ≤ [by (iv)]
|z1|2 + 2|z1||z2| + |z2|2 = (|z1| + |z2|)2.

(a) Convergence in C:

Definition: (i) Let z0 ∈ C and ε > 0, then the ε-neighborhood Uε(z0) of z0 is defined
by

Uε(z0) := {z ∈ C : |z − z0| ≤ ε}.
In a planar representation of the complex numbers, Uε(z0) is an open disk with radius ε
around z0:

3Square roots of negative numbers were “invented” by the Italian mathematicians Gerolamo Cardano
and Raffaele Bombelli. In modern mathematics, complex numbers are generally denoted by z = a + bi or
sometimes z = a + bj.
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x

y

z0

ε

(ii) A sequence of complex numbers is a map c : N → C. We use the notation (cn)n∈N with
cn := c(n).

(iii) The complex sequence (cn) converges to z0 ∈ C, denoted by cn → z0 (n → ∞) or
lim

n→∞
cn = z0, if

∀ε > 0 ∃n0 ∈ N ∀n ≥ n : |cn − z0| < ε.

Equivalently, we may require that

∀ε > 0 ∃n0 ∈ N ∀n ≥ n : cn ∈ Uε(z0).

Proposition: Let (cn) be a complex sequence. Then the following are equivalent:

(i) (cn) is convergent (in C).

(ii) Both sequences (Re cn) and (Im cn) converge (in R).

In this case we have lim cn = lim Re cn + i lim Im cn.

Proof. Let an := Re cn, bn := Im cn (n ∈ N).

(i) ⇒ (ii): Let c := lim cn, a := Re c and b := Im c.

If ε > 0 is given arbitrarily, we can find n0 ∈ N such that |cn − c| < ε holds for all n ≥ n0.
Therefore we have for all n ≥ n0

|an − a| = |Re(cn − c)| ≤ |cn − c| < ε as well as |bn − b| = |Re(cn − c)| ≤ |cn − c| < ε,

which proves that an → a and bn → b.

(ii) ⇒ (i): Let ε > 0. Put a := lim an, b := lim bn, and c := a + ib. Choose n0 ∈ N such
that |an − a| < ε/2 and |bn − b| < ε/2 holds for all n ≥ n0. Then we have for n ≥ n0

|(an + ibn) − (a + ib)| = |(an − a) + i(bn − b)| ≤ |an − a| + |bn − b| < ε

2
+
ε

2
= ε,

thus cn → c (n→ ∞).
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Corollary: If (cn) is a convergent complex sequence, then lim cn = lim cn.

Proof. lim cn = lim Re cn − i lim Im cn = lim Re cn + i lim Im cn = lim cn.

Precisely as in the case of real sequences one proves the following rules for basic operations
with convergent sequences:

If (cn), (dn) are convergent complex sequences and λ ∈ C, then

lim(cn + dn) = lim cn + lim dn

lim(λcn) = λ lim cn

lim(cndn) = (lim cn)(lim dn)

lim
cn
dn

=
lim cn
lim dn

(if dn 6= 0 for almost all n).

Theorem (Completeness of C): A sequence (cn) of complex numbers con-
verges if and only if it is a Cauchy sequence, i.e.,

(6.2) ∀ε > 0 ∃n0 ∈ N ∀n,m ≥ n0 : |cn − cm| < ε.

Proof. (6.2) ⇔ both (Re cn) and (Im cn) are Cauchy sequences in R ⇔ both (Re cn) and
(Im cn) are convergent in R ⇔

[Prop.]
(cn) is convergent in C.

(b) Complex series:

Definition: Let (cn) be a sequence of complex numbers. The series

∞∑

k=0

ck is conver-

gent, if the corresponding sequence (sn) of partial sums sn :=

n∑

k=0

ck is convergent (in C).

The series

∞∑

k=0

ck is absolutely convergent, if the (real) series

∞∑

k=0

|ck| converges (in R).

Proposition: (i) Basic comparison test: Let (an) be a sequence with an ≥ 0 (thus,
real!) and such that

∑
an is convergent. If (cn) is a complex sequence with the property

∃n0 ∈ N ∀n ≥ n0 : |cn| ≤ an,

then the series
∞∑

n=0

cn is absolutely convergent.

(ii) The root test and the ratio test both are valid for complex sequences literally as stated
in Section 4. In particular, if a complex sequence (cn) with cn 6= 0 (for almost all n)
satisfies

∃θ ∈ [0, 1[:

∣
∣
∣
∣

cn+1

cn

∣
∣
∣
∣
≤ θ,

then the series

∞∑

n=0

cn is absolutely convergent.



74

(iii) The Proposition concerning the Cauchy product for absolutely convergent series holds
literally as stated in Section 4.

Proof. Can be literally copied from those of the corresponding statements about real series.

(c) Continuity of functions of a complex variable:

Definition: Let D ⊆ C, z0 ∈ D. A function f : D → C is continuous at z0, if

∀ε > 0 ∃δ > 0 ∀z ∈ D : |z − z0| < δ =⇒ |f(z) − f(z0)| < ε,

or equivalently
∀ε > 0 ∃δ > 0 : f(Uδ(z0) ∩D) ⊆ Uε(f(z0)).

f is said to be continuous on D, if f is continuous at all points in D.

Remark: As in the case of functions on R, continuity can be tested by sequences (the
proof is also a literal translation of that in the real case): f : D → C is continuous at
w ∈ D if and only if or all sequences (zn) with zn ∈ D and zn → w (n→ ∞) we have that
lim f(zn) = f(w). We also express the latter fact by lim

z→w
f(z) = f(w).

6.6. The complex exponential function:

Theorem: (i) For all z ∈ C the series
∞∑

k=0

zk

k!
is absolutely convergent. We thus define

the complex exponential function exp : C → C by

exp(z) = ez :=
∞∑

k=0

zk

k!
(z ∈ C).

When restricted to R it coincides with the exponential function defined in Section 4. We
will continue to use the same notation for both functions.

(ii) For all N ∈ N

exp(z) =

N∑

k=0

zk

k!
+RN+1(z),

where

|RN+1(z)| ≤ 2
|z|N+1

(N + 1)!
(z ∈ C, |z| ≤ 1 +

N

2
).

(iii) We have the functional equation

∀z1, z2 ∈ C : exp(z1 + z2) = exp(z1) · exp(z2).
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(iv) For all z ∈ C: exp(z) = exp(z).

(v) For all z ∈ C: exp(z) 6= 0.

(vi) lim
z 6=0,z→0

ez − 1

z
= 1.

(vii) exp : C → C is continuous (at all points of C).

Proof. (i): If z = 0 the assertion is trivial. If z 6= 0 we apply the ratio test with cn = zk/k!.
For all n ≥ 2|z| we have

∣
∣
∣
∣

cn+1

cn

∣
∣
∣
∣
=

∣
∣
∣
∣

zn+1n!

zn(n+ 1)!

∣
∣
∣
∣
=

|z|
n + 1

≤ 1

2
< 1,

which proves absolute convergence.

If we temporarily use the notation expR for the (real) exponential function defined in

Section 4, then for x ∈ R we have exp(x+ i0) =
∑∞

k=0
xk

k!
= expR(x).

(ii), (iii): Literally as in the corresponding proofs in Section 4.

(iv): Let sn(z) :=
∑n

k=0 z
k/k! and use 6.5(a): exp(z) = lim sn(z) = lim sn(z) = exp(z).

(v): The functional equation gives exp(z) exp(−z) = exp(z − z) = exp(0) = 1, hence
exp(z) 6= 0.

(vi): By (ii) we have |ez − 1 − z| ≤ 2 |z|2

2
= |z|2 for all |z| ≤ 3/2, hence

∣
∣
∣
∣

ez − 1

z
− 1

∣
∣
∣
∣
≤ |z| → 0 (z → 0).

(vii): By (vi) we have ez −1 = O(z) (z → 0). Therefore limz→0 exp(z) = 1 = exp(0), which
shows continuity of exp at 0.

Let w ∈ C arbitrary and assume that (zn) is a sequence in C such that zn → w (n→ ∞).
Then zn − w → 0, thus

1 = exp(0) = lim
n→∞

exp(zn − w) = lim
n→∞

exp(zn) exp(−w),

which implies that lim exp(zn) = exp(w), hence the continuity of exp at w.
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6.7. Trigonometric functions 〈trigonometrische Funktionen oder Winkelfunktionen〉4:

Definition: We define the cosine (function) 〈Cosinus (Funktion)〉 by

cos: R → R, cos(x) := Re(exp(ix)) = Re(eix),

and the sine (function) 〈Sinus (Funktion)〉 by

sin : R → R, sin(x) := Im(exp(ix)) = Im(eix).

Basic properties: (i) Since eix = Re(eix) + i Im(eix) we obtain Euler’s formula

(6.3) ∀x ∈ R : eix = cos(x) + i sin(x).

Furthermore, cos and sin are continuous R → R, since exp(ixn) → exp(ia) if and only if
Re(exp(ixn)) → Re(exp(ia)) and Im(exp(ixn)) → Im(exp(ia)).

(ii) Geometric interpretation: Since any real t gives |eit|2 = eit · (eit) = eite−it = e0 = 1, we
obtain

|eit| = 1 ∀t ∈ R.

Therefore every number of the form eit lies on the unit circle

S1 := {z ∈ C : |z| = 1} ∼= {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1}

and (cos(t), sin(t)) represents the (Cartesian) coordinates in the plane. In particular, we
have the relation

(6.4) cos2(x) + sin2(x) = 1 ∀x ∈ R.

cos x

si
n

x

eix

4These so-called trigonometric functions have a very long history: They were first used by the Babylo-
nians in around 1900 BC and later in the Hellenistic world, in medieval India, in the Islamic Persia and
in the medieval Europe. The terms sine and cosine (from the Latin sinus, i.e. “arch ”) were introduced by
the German mathematician Georg von Peuerbach.
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Remark: Note that we avoided any reference to notions like arc length 〈Bogenlänge〉 or angle

〈Winkel〉 in defining the trigonometric functions for reasons of a deductive presentation. Arc

length will be introduced rigorously, and in more generality, later during the course (based on

the notion of integrals along curves), but it certainly is useful to have the intuitive meaning at

hand already as suggested by the above geometric interpretation.

(iii) Recall that for any complex number w the real and imaginary part can be obtained
from Re(w) = (w + w)/2 and Im(w) = (w − w)/2i. Therefore we have

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
,

which in turn implies

cos(−x) = cos(x) and sin(−x) = − sin(x),

telling that cos is an even 〈gerade〉 function (the graph is symmetric with respect to the
vertical axis) and sin is an odd 〈ungerade〉 function (the graph is reflected by lines through
the origin (0, 0)).

(iv) The fundamental relations for the addition of arguments (“angles”) 〈Additionstheoreme〉
are the following: For all x, y ∈ R

cos(x+ y) = cos(x) cos(y) − sin(x) sin(y)

sin(x+ y) = cos(x) sin(y) + sin(x) cos(y)

and

cos(x) − cos(y) = −2 sin
x+ y

2
sin

x− y

2

sin(x) − sin(y) = 2 cos
x+ y

2
sin

x− y

2
.

Proof. The first two equations are obtained by taking real and imaginary parts in the
relation

ei(x+y) = eix · eiy.

The third (resp. fourth) equation follows from the first (resp. second) equation upon setting
u = (x+ y)/2 and v = (x− y)/2 (⇔ x = u+ v, y = u− v):

cos(x) − cos(y) = cos(u+ v) − cos(u− v)

= cos(u) cos(v) − sin(u) sin(v) −
(
cos(u) cos(v) + sin(u) sin(v)

)

= −2 sin(u) sin(v) = −2 sin
x+ y

2
sin

x− y

2
,

and similarly for the last equation.
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(v) The natural integer powers of i show a simple repetitive pattern: Since i2 = −1,
i3 = i2i = −i, i4 = i3i = −i2 = 1, we have for n ∈ N that

in =







1 if n = 4m for some m ∈ N (⇔ n ≡ 0 mod 4)

i if n = 4m+ 1 for some m ∈ N (⇔ n ≡ 1 mod 4)

−1 if n = 4m+ 2 for some m ∈ N (⇔ n ≡ 2 mod 4)

−i if n = 4m+ 3 for some m ∈ N (⇔ n ≡ 3 mod 4).

Therefore we obtain for all x ∈ R

cos(x) + i sin(x) = eix =
∞∑

n=0

(ix)n

n!
=

∞∑

n=0

inxn

n!

=
∞∑

k=0

(−1)k x2k

(2k)!
︸ ︷︷ ︸

Re(eix)

+ i ·
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
︸ ︷︷ ︸

Im(eix)

,

which proves the following series expansions for cosine and sine:

cos(x) =
∞∑

k=0

(−1)k x2k

(2k)!
, sin(x) =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!
.

(vi) Suppose we are to use the above series expansions to approximate cosine and sine
for small x by simply dropping all terms that contain x to quadratic or higher order. If
justified, this would give the following simple heuristic relations when |x| is small:

cos(x) ≈ 1 and sin(x) ≈ x.

As a matter of fact, we have the limit equations

lim
x 6=0,x→0

cos(x) − 1

x
= 0, lim

x 6=0,x→0

sin(x)

x
= 1.

Proof. By Theorem 6.6(vi) we have that

1 + i · 0 = lim
x→0

eix − 1

ix
= lim

x→0
Re(

eix − 1

ix
) + i · lim

x→0
Im(

eix − 1

ix
).

Therefore we have for x ∈ R as x→ 0

cos(x) − 1

x
= − Im(

cos(x) − 1 + i sin(x)

ix
) = − Im(

eix − 1

ix
) → 0

sin(x)

x
= Re(

cos(x) − 1 + i sin(x)

ix
) = Re(

eix − 1

ix
) → 1.
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6.8. Definition of π: We will show that cos is strictly decreasing on the interval
[0, 2] and possesses a unique zero x0 in that interval. We will define π as the value of 2x0.
We postpone the precise identification of π with half the (length of the) circumference of
the unit circle until integration theory allows us to provide a simple calculation.5

Lemma: (i) cos(0) = 1 and cos(2) ≤ −1/3.

(ii) If 0 < x ≤ 2 then sin(x) > 0.

(iii) cos is strictly decreasing on [0, 2].

cos

1
2

x0 x

cos 2 < 0

Proof. (i): We clearly have cos(0) = Re(ei0) = 1. The series expansion for the cosine
function gives the alternating sum

cos(2) = 1 − 22

2!
+

∞∑

k=2

(−1)k 22k

(2k)!
= −1 + r,

where r represents the error when approximating cos(2) by the partial sum s1 = −1. Thus
the error estimate (4.2) from the Leibniz criterion tells that |r| is bounded by the absolute
value of the first neglected term. Therefore we have

cos(2) ≤ −1 + |r| ≤ −1 +
24

4!
= −1 +

16

24
= −1 +

2

3
= −1

3
.

(ii): Let 0 < x ≤ 2. We have the alternating sum for the sine function

sin(x) = x+

∞∑

k=1

(−1)k x2k+1

(2k + 1)!
= x+ r(x),

where r(x) now denotes the error when approximating sin(x) by the partial sum s1(x) = x.
We apply again the estimate (4.2), which now reads

|r(x)| ≤ x3

3!
= x · x

2

6
≤ x · 4

6
=

2x

3
,

and therefore

sin(x) ≥ x− |r(x)| ≥ x− 2x

3
=
x

3
> 0.

(iii): Let 0 ≤ x1 < x2 ≤ 2, then we have 0 < (x1 +x2)/2 ≤ 2 as well as 0 < (x2−x1)/2 ≤ 2.
By 6.7(iv) and property (ii) proved above we obtain

cos(x2) − cos(x1) = −2 · sin x2 + x1

2
︸ ︷︷ ︸

>0

· sin x2 − x1

2
︸ ︷︷ ︸

>0

< 0,

hence cos(x2) < cos(x1).

5This constant was first named “π” by the Welsh scientist William Jones in 1706 because it is the first
letter of the Greek words περιφερεία (“periphery”) and περίμετρος (“circumference”). This notation was
later adopted by Euler.
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Proposition: There exists a unique x0 ∈ [0, 2] such that cos(x0) = 0.

Proof. By the above lemma, cos is strictly decreasing on [0, 2], hence cos |[0,2] is injective.
Furthermore, the same lemma gives that cos(0) > 0 and cos(2) < 0. Since cos is continuous,
the intermediate value theorem implies the existence of a zero x0 ∈ [0, 2]. This zero must
be unique, since cos is injective on that interval.

Definition: Let x0 denote the unique zero of cos in the interval [0, 2] (according to
the above proposition). Then the real number π is defined by π := 2x0.

The properties of cos and sin established above can now be reformulated in more familiar
terms: For example, we obtain that

cos(x) > 0 for 0 ≤ x <
π

2
, cos(

π

2
) = 0, cos(x) < 0 for

π

2
< x ≤ 2.

Since sin2(π
2
) = 1 − cos2(π

2
) = 1 and sin(π

2
) > 0 (by the above lemma), we have

sin(
π

2
) = 1 and ei π

2 = cos(
π

2
) + i sin(

π

2
) = i.

Im

Re

eix = cosx+ i sin x

Taking integer powers for all k ∈ Z we obtain eik π
2 =

(
ei π

2

)k
= ik. In particular,

ei 0 = 1 = cos(0) + i sin(0), ei π
2 = i = cos(

π

2
) + i sin(

π

2
), eiπ = −1 = cos(π) + i sin(π),

ei 3π
2 = −i = cos(

3π

2
) + i sin(

3π

2
), ei2π = 1 = cos(2π) + i sin(2π),

which is summarized in the table

x 0 π
2

π 3π
2

2π

sin(x) 0 1 0 −1 0
cos(x) 1 0 −1 0 1
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6.9. Further properties of the trigonometric functions: For all x ∈ R
we have the following properties:

(a) cos and sin are periodic 〈periodisch〉 with period 〈Periode〉 of 2π, i.e.,

cos(x+ 2π) = cos(x), sin(x+ 2π) = sin(x).

This follows from 6.7(iv) and the fact that cos(2π) = 1, sin(2π) = 0:

cos(x+ 2π) = cos(x) cos(2π) − sin(x) sin(2π) = cos(x).

(b) Since cos(x + π) = cos(x) cos(π) − sin(x) sin(π) = − cos(x), and a similar calculation
for sin, we have

cos(x+ π) = − cos(x), sin(x+ π) = − sin(x).

(c) By sin(π
2
−x) = sin(π

2
) cos(−x)+ cos(π

2
) sin(−x) = cos(x), and a similar calculation for

cos, we obtain

sin(
π

2
− x) = cos(x), cos(

π

2
− x) = sin(x).

(d) sin(x) = 0 ⇐⇒ x ∈ πZ := {k π : k ∈ Z}

Proof. By 2π-periodicity it suffices to show the assertion for x ∈ [0, 2π[.

Let 0 < x < π arbitrary, then π
2
− x ∈ ] − π

2
, π

2
[ and therefore sin(x) = cos(π

2
− x) > 0.

Furthermore, note that ]π, 2π[= {r + π : 0 < r < π} and sin(x+ π) = − sin(x) < 0.

Thus, 0 and π are the only zeros of sin in the interval [0, 2π[, which proves the assertion.

(e) cos(x) = 0 ⇐⇒ x ∈ {π
2
} + πZ := {π

2
+ k π : k ∈ Z}

Proof. Use cos(x) = − sin(x− π
2
) and apply (d).

(f) eix = 1 ⇐⇒ x ∈ 2πZ := {2k π : k ∈ Z}

Proof. We have eix − 1 = ei x
2 ·
(
ei x

2 − e−i x
2

)
= 2i ei x

2 sin x
2

and 2i ei x
2 6= 0. Therefore

eix = 1 ⇐⇒ sin(
x

2
) = 0 ⇐⇒ x

2
∈ πZ ⇐⇒ x ∈ 2πZ.

Using the above list of basic properties of cos and sin we can get a good qualitative picture
of their graphs. Note in particular the following features: a shift of the graph of cos by π

2

along the horizontal axes gives the graph of sin; cos is even and strictly decreasing on [0, π]
(thus increasing on [−π, 0]), sin is odd and strictly increasing on [−π

2
, π

2
]; besides the zeros
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we can read off locations of maximum and minimum values, where each functions changes
monotonicity type from increasing to decreasing or vice versa.

cos

sin

−2π −3π

2
−π −π

2

π

2
π

3π

2
2π

−1

x

Definition: (i) The tangent (function)6 〈Tangens (-Funktion)〉 tan: R \ (π
2

+ πZ) → R
is given by

tan(x) :=
sin(x)

cos(x)
.

(ii) The cotangent (function) 〈Cotangens (-Funktion)〉 cot : R \ πZ → R is given by

cot(x) :=
cos(x)

sin(x)
.

A geometric interpretation of tan(x), when −π
2
< x < π

2
, is easy by comparing the right-

angled triangles in the following illustration:

cosx

si
n

x

eix 




tanx

6The term tangent was first used by the Danish mathematician Thomas Fincke in 1583.
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Here is the part of the graph of tan above the interval ] − π
2
, π

2
[, whose basic qualitative

features can be derived from the properties of cos and sin:

π

2
−π

2

Note that tan(x + π) = sin(x+π)
cos(x+π)

= − sin(x)
− cos(x)

=

tan(x), so that the complete graph of tan
can be obtained from shifts of the basic part
on ] − π

2
, π

2
[ by integer multiples of π.

6.10. Inverse trigonometric functions 〈Arcusfunktionen〉:
Arc cosine: We assert that cos is strictly decreasing on [0, π] and cos([0, π]) = [−1, 1].

Indeed, that cos is strictly decreasing on [0, π
2
] follows from the

Lemma in 6.8; since cos(π − x) = − cos(x) the same follows
for the interval [π

2
, π]; by continuity and injectivity, cos([0, π]) =

[cos(π), cos(0)] = [−1, 1].

Thus cos is continuous, strictly decreasing, and bijective as a map
[0, π] → [−1, 1], hence possesses a strictly decreasing continuous
inverse function

arccos : [−1, 1] → [0, π],

called the arc cosine (function) 〈Arcus Cosinus〉.
We have for all x ∈ [0, π] that arccos(cos(x)) = x and cos(arccos(y)) = y for all y ∈ [−1, 1].

Of course we could have constructed similar inverses on any interval of strict monotonicity
for cos. Unless stated otherwise we will usually refer to the one constructed above as
arccos.

Arc sine: Using sin(x) = cos(π
2
−x) and (i) we deduce the following:

sin is strictly increasing on [−π
2
, π

2
] and sin([−π

2
, π

2
]) = [−1, 1]. The

corresponding inverse function

arcsin : [−1, 1] → [−π
2
,
π

2
],

called the arc sine (function) 〈Arcus Sinus〉, is continuous and strictly
increasing.
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Arc tangent: We claim that tan is strictly increasing on ]− π
2
, π

2
[ and tan(]− π

2
, π

2
[) = R.

Proof. Since

tan(−x) =
sin(−x)
cos(−x) =

− sin(x)

cos(x)
= − tan(x),

it suffices to consider the subinterval [0, π
2
[. If 0 ≤ x < x′ < π

2
then sin(x) < sin(x′) and

cos(x) > cos(x′) > 0, hence

tan(x) =
sin(x)

cos(x)
<

sin(x′)

cos(x′)
= tan(x′).

Note that cos(x)
sin(x)

> 0 for all x ∈ ]0, π
2
[ and that

lim
xրπ

2

cos(x)

sin(x)
=

cos(π
2
)

sin(π
2
)

= 0.

Therefore we obtain that tan(x) → ∞ as xր π
2

and by the intermediate value theorem (tan
is continuous!) that tan([0, π

2
[) = [0,∞[. By symmetry of tan we obtain that tan(]−π

2
, π

2
[) =

] −∞,∞[.

We conclude that the restriction of tan to ]− π
2
, π

2
[ has a continuous and strictly increasing

inverse function arctan: R →] − π
2
, π

2
[, called arc tangent (function) 〈Arcus Tangens〉.
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6.11. Polar coordinates7 for complex numbers: If z = x + iy ∈ C we
may interpret the absolute value |z| =

√

x2 + y2 as the distance of z to the origin in the
plane:

x

y

|z| x+ iy

eiϕ

1

How do we obtain information on the direction towards
z as seen from the origin with respect to the positive real
axis (the x-axis)?

Recall that for any ϕ ∈ R we have |eiϕ| = 1 and eiϕ =
cos(ϕ) + i sin(ϕ).

Furthermore, the points where the unit circle S1 inter-
sects the Cartesian axes are given by ei0 = 1, ei π

2 = i,
eiπ = −1, ei 3π

2 = −i and we have 2π-periodicity

ei(ϕ+2π) = eiϕ.

Let z 6= 0 and set w := z
|z|

. Then w lies on the unit circle and can be written in the form

w = ξ + i η, where ξ, η ∈ R are such that 1 = |w|2 = ξ2 + η2.

Therefore ξ ∈ [−1, 1] and α := arccos(ξ) ∈ [0, π] and we have

sin2(α) = 1 − cos2(α) = 1 − ξ2 = η2,

hence sin(α) = η or sin(α) = −η. If we define

ϕ :=

{

α if sin(α) = η

−α if sin(α) = −η,

then we obtain w = cos(ϕ) + i sin(ϕ) = eiϕ, which in turn yields the polar representation
〈Polardarstellung〉 of z in the form

z = |z| · eiϕ.

In this representation ϕ, the so-called the argument 〈Argument〉 of z, ϕ = arg(z), is unique
up to an addition of integer multiples of 2π.

7The history of polar coordinates is about as long as the one of trigonometry. The term polar coordinates
was introduced by 18th-century Italian mathematicians.
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§7. DIFFERENTIABILITY AND DERIVATIVE

7.1. Definition: Consider V ⊆ R, f : V → R, and let x ∈ V be an accumulation
point of V . Then f is said to be differentiable at x 〈differenzierbar in x〉 if the limit

(7.1) f ′(x) := lim
ξ→x

ξ∈V \{x}

f(ξ) − f(x)

ξ − x

exists. The value f ′(x) is the derivative of f at x 〈Ableitung von f an der Stelle x〉. The
function f is called differentiable in V , if f is differentiable at all points x ∈ V .

7.2. Remark: (i) An alternative expression to (7.1) is

(7.2) f ′(x) := lim
h→0

x+h∈V,h6=0

f(x+ h) − f(x)

h

(We will often supress the additional conditions on h in the specification of the limit.)

(ii) Geometric interpretation: Let V be an interval and consider the graph of f of a
differentiable function f : V → R.

x ξ

f(x)

f(ξ)

︸ ︷︷ ︸

ξ − x

}

f(ξ) − f(x)

87



88

The difference quotient 〈Differenzenquotient〉

f(ξ) − f(x)

ξ − x

gives the slope of the straight line, the so-called secant 〈Sekante〉, through the points
(x, f(x)) and (ξ, f(ξ)). As ξ is getting closer and closer to x, the slopes of the corre-
sponding secant lines approach the limit f ′(x), which therefore can be thought of being
the slope of the tangent 〈Tangente〉 to the graph of f at the point (x, f(x)).1

(iii) A common notation for f ′(x) is the differential quotient 〈Differenzialquotient〉 df(x)

dx
,

which however is not a quotient but merely a reminder of the fact that f ′(x) is the limit

of the difference quotients
∆f(x)

∆x
=
f(ξ) − f(x)

ξ − x
.

(iv) If f is differentiable in V then the derivative of f defines a function f ′ : V → R,
x 7→ f ′(x).

7.3. Examples: 1) Let c ∈ R. The constant function f : R → R, f(x) = c, is
differentiable in R and has derivative

f ′(x) = lim
h→0
h6=0

f(x+ h) − f(x)

h
= lim

h→0
h6=0

c− c

h
= 0.

2) Let c ∈ R and n ∈ N with n ≥ 1. The function f : R → R, x 7→ cxn, is differentiable in
R and has derivative

f ′(x) = lim
06=h→0

c(x+ h)n − cxn

h
= c lim

06=h→0

(x+ h)n − xn

h

= c lim
06=h→0

xn +
∑n

k=1

(
n
k

)
hkxn−k − xn

h
= c lim

06=h→0

h ·∑n
k=1

(
n
k

)
hk−1xn−k

h

= c lim
06=h→0

((
n

1

)

xn−1 +
n∑

k=2

(
n

k

)

hk−1xn−k

)

= c n xn−1.

In particular, we have (cx)′ = cx0 = c and (x2)′ = 2x.

3) f : R \ {0} → R, x 7→ 1
x
, is differentiable at every x 6= 0 and

f ′(x) = lim
h→0

1

h

(
1

x+ h
− 1

x

)

= lim
h→0

1

h
· −h
x(x+ h)

= lim
h→0

−1

x(x+ h)
= − 1

x2
.

1This solution of the so-called “tangent problem” was developed independently by Isaac Newton and
Gottfried Wilhelm Leibnitz in the 17th century, thereby inventing modern calculus.
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4) The exponential function is differentiable and

exp′(x) = lim
h→0

exp(x+ h) − exp(x)

h
= exp(x) lim

h→0

exp(h) − 1

h
=

[6.6(vi)]
exp(x) · 1 = exp(x).

5) sin : R → R is differentiable and

sin′(x) = lim
h→0

sin(x+ h) − sin(x)

h
=

[6.7(iv)]
lim
h→0

2 cos(x+ h
2
) sin(h

2
)

h

= lim
h→0

cos(x+
h

2
)

︸ ︷︷ ︸

[cos continuous]

sin(h/2)

h/2
︸ ︷︷ ︸

[→1 by 6.7(vi)]

= lim
h→0

cos(x+
h

2
) · lim

h→0

sin(h/2)

h/2
= cos(x).

Similarly, one can show that cos is differentiable and cos′(x) = − sin(x) (left as an exercise).

6) abs : R → R, x 7→ |x|, is differentiable for all x 6= 0. This follows easily from the fact
that abs |]0,∞[= id and abs |]−∞,0[= − id.

x

But abs′(0) does not exist: Let hn := (−1)n/n, then limhn = 0 and the difference quotients
do not converge

abs(0 + hn) − abs(0)

hn

=
1/n

(−1)n/n
= (−1)n.

Thus abs is a continuous function on R but not differentiable at the point 0.

7.4. One-sided derivatives: Let x be an accumulation point of V ⊆ R such that
x ∈ V . f : V → R is differentiable from the right 〈rechtsseitig differenzierbar〉 at x ∈ V , if

f ′
+(x) := lim

ξցx
ξ∈V \{x}

f(ξ) − f(x)

ξ − x

exists. f is differentiable from the left 〈linksseitig differenzierbar〉 at x ∈ V , if

f ′
−(x) := lim

ξրx
ξ∈V \{x}

f(ξ) − f(x)

ξ − x

exists.

For example, abs′−(0) = −1 and abs′+(0) = 1. (Compare with the graph!)
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7.5. Proposition: If f : V → R is differentiable at x ∈ V , then f is continuous at x.

Proof. Let V ∋ ξ 6= x, then we have

f(ξ) − f(x) =
f(ξ) − f(x)

ξ − x
· (ξ − x) → f ′(x) · 0 = 0 (ξ → x).

7.6. Proposition: Let f, g : V → R be differentiable in x ∈ V .

(i) If λ, µ ∈ R then λf + µg is differentiable at x and

(λf + µg)′(x) = λf ′(x) + µg′(x).

(ii) Leibniz or product rule: f · g is differentiable at x and

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x).

(iii) Quotient rule: If g(ξ) 6= 0 for all ξ ∈ V then
f

g
: V → R is differentiable at x and

(
f

g

)′

(x) =
f ′(x)g(x) − f(x)g′(x)

g(x)2
.

Proof. (i) Follows from the basic rules for limits.

(ii) Let h 6= 0 such that x+ h ∈ V . Then we have

f(x+ h)g(x+ h) − f(x)g(x)

h
=

1

h

(

f(x+ h)
(
g(x+ h) − g(x)

)
+
(
f(x+ h) − f(x)

)
g(x)

)

= f(x+ h) · g(x+ h) − g(x)

h
+
f(x+ h) − f(x)

h
· g(x)

−→
(h→0)

f(x) · g′(x) + f ′(x) · g(x)

since f is continuous at x by Proposition 7.5.

(iii) Consider first the case that f(ξ) = 1 for all ξ ∈ V . Then we have with h 6= 0 such
that x+ h ∈ V

1
g(x+h)

− 1
g(x)

h
=
g(x) − g(x+ h)

hg(x)g(x+ h)
−→ − g′(x)

g(x)2
(h→ 0).

Thus (1/g)′(x) = −g′(x)/g(x)2 and the general case now follows from the product rule:
(
f

g

)′

(x) =

(

f · 1

g

)′

(x) = f ′(x)
1

g(x)
− f(x)

g′(x)

g(x)2
=
f ′(x)g(x) − f(x)g′(x)

g(x)2
.
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7.7. Examples: 1) Let n ∈ N, n ≥ 1 and f : R \ {0} → R, x 7→ 1/xn:

f ′(x) =

(
1

xn

)′

=
−nxn−1

x2n
= − n

xn+1
,

in other words, (x−n)′ = −nx−n−1.

2) tan: R \ (π
2

+ πZ) → R is differentiable and

(tanx)′ =

(
sin(x)

cos(x)

)′

=
cos(x) cos(x) − sin(x)(− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)
=

1

cos2(x)
= 1 + tan2(x).

7.8. The derivative as linear approximation: Let V ⊆ R and x0 ∈ V be
an accumulation point of V . Suppose that f : V → R is differentiable at x0. We have seen
that in a geometric interpretation the tangent to the graph of f at the point (x0, f(x0) has
slope f ′(x0). Thus we define the tangent 〈Tangente〉 to the graph of f at (x0, f(x0)) as the
straight line given by the following linear equation for (x, y) ∈ R2

(7.3) y = f(x0) + f ′(x0)(x− x0).

Intuitively, if f is sufficiently “well-behaved” then the tangent, considered as the affine
linear function x 7→ f(x0) + f ′(x0)(x− x0), should give a reasonable approximation of the
function values when x is close to x0, i.e., f(x) ≈ f(x0) + f ′(x0)(x − x0) as x → x0. The
following statement makes this more precise.

Theorem: The following statements are equivalent:

(i) f is differentiable at x0.

(ii) There exist a constant c ∈ R and a function r : V → R with lim
x→x0
x 6=x0

r(x)

x− x0
= 0 such that

(7.4) f(x) = f(x0) + c · (x− x0) + r(x) ∀x ∈ V.

In this case c = f ′(x0).

Note that, in particular, r(x) = o(|x− x0|) (x→ x0).

Proof. (i) ⇒ (ii): Put r(x) := f(x) − f(x0) − f ′(x0)(x − x0) and let x ∈ V with x 6= x0.
Then

r(x)

x− x0
=
f(x) − f(x0)

x− x0
− f ′(x0) −→ f ′(x0) − f ′(x0) = 0 (x→ x0).
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(ii) ⇒ (i): Let x ∈ V with x 6= x0. Then (7.4) implies

f(x) − f(x0)

x− x0
= c+

r(x)

x− x0
−→ c+ 0 (x→ x0).

Thus f is differentiable at x0 and f ′(x0) = c.

Example: Consider sin : R → R with sin′(0) =
cos(0) = 1. We obtain the relation

sin(x) = sin(0) + sin′(0)(x− 0) + r(x)

= 0 + 1 · x+ r(x) = x+ r(x),

where r(x) = sin(x) − x = o(x) (x→ 0).

y = x

sin

7.9. The chain rule:

Theorem: Let V,W ⊆ R and f : V → R, g : W → R such that f(V ) ⊆W .
If f is differentiable at x ∈ V and g is differentiable at y := f(x) ∈W , then the composition
g ◦ f : V → R is differentiable at x and

(g ◦ f)′(x) = g′(f(x)) · f ′(x).

Idea of the proof: We will need a little extra technical finesse to make use of the following
heuristics: for ξ ∈ V with ξ 6= x

g(f(ξ))− g(f(x))

ξ − x
=
g(f(ξ))− g(f(x))

f(ξ) − f(x)
· f(ξ) − f(x)

ξ − x
≈ g′(f(x)) · f ′(x);

note that we cannot guarantee that f(ξ) − f(x) 6= 0.

Proof. Define the modified difference quotient g∗ : W → R of g at y by

g∗(η) :=

{
g(η)−g(y)

η−y
if η 6= y

g′(y) if η = y.

Since limη→y g
∗(η) = g′(y) = g∗(y) we deduce that g∗ is continuous. Furthermore, by

construction we have for all η ∈W

g(η) − g(y) = g∗(η) (η − y).
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Therefore we obtain for ξ ∈ V with ξ 6= x

g(f(ξ))− g(f(x))

ξ − x
=
g∗(f(ξ)) (f(ξ)− f(x))

ξ − x
= g∗(f(ξ)) · f(ξ) − f(x)

ξ − x

−→
(ξ→x)

g∗(y) · f ′(x) = g′(f(x)) · f ′(x).

Application: Let D,W ⊆ R and f : D → W be a bijective map. Suppose that f is
differentiable at x ∈ D and that f−1 is differentiable at y := f(x) ∈ W as well. Then the
chain rule applied to f−1 ◦ f = idD yields

(f−1)′(f(x)) · f ′(x) = id′(x) = 1.

In particular, this implies f ′(x) 6= 0 and thus we may rewrite the above relation with
y = f(x) in the form

(f−1)′(y) =
1

f ′(f−1(y))
.

7.10. Differentiability and derivative of the inverse function: Let
I, J ⊆ R be intervals and f : I → J be bijective, continuous, and strictly increasing with
(therefore continuous!) inverse function f−1 : J → I.

Theorem: Under the assumptions stated above: If f is differentiable at x ∈ I with
f ′(x) 6= 0, then f−1 is differentiable at y := f(x) ∈ J and

(7.5) (f−1)′(y) =
1

f ′(f−1(y))
.

Proof. Let (ηn) be a sequence with ηn ∈ J \{y} (for all n ∈ N) such that ηn → y (n→ ∞).

If we put ξn := f−1(ηn) then ξn ∈ I \ {x} and ξn → x as n→ ∞ (by continuity of f−1 [cf.
5.12]). Therefore

f−1(ηn) − f−1(y)

ηn − y
=

ξn − x

f(ξn) − f(x)
−→ 1

f ′(x)
(n→ ∞),

which proves that f−1 is differentiable at y and (f−1)′(y) equals 1/f ′(f−1(y)).

7.11. Examples: 1) Let x > 0 then

log′(x) =
1

exp′(log(x))
=

1

exp(log(x))
=

1

x
.
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A simple application of this result proves a famous limit relation: Since log′(1) = 1 we
have (using the continuity of exp)

1 = lim
n→∞

log(1 + 1
n
) − log(1)
1
n

= limn · log(1 +
1

n
) = lim log(1 +

1

n
)n

= log exp lim log(1 +
1

n
)n = log(lim(1 +

1

n
)n)

and upon exponentiation

(7.6) lim
n→∞

(

1 +
1

n

)n

= exp(1) = e.

2) If x ∈ ] − 1, 1[ then

arcsin′(x) =
1

sin′(arcsin(x))
=

1

cos(arcsin(x))
=

[cos=
√

1−sin2]

1√
1 − x2

.

3) arctan′(x) =
1

tan′(arctan(x))
=

1

1 + tan2(arctan(x))
=

1

1 + x2
.

4) If f : R → R is differentiable and a, b ∈ R then g(x) := f(ax + b) is differentiable and
by the chain rule

g′(x) = f ′(ax+ b) (ax+ b)′ = a f ′(ax+ b).

5) For α ∈ R the function x 7→ xα, ]0,∞[→ R is differentiable and

(xα)′ = (exp(α log(x)))′ = exp′(α log(x)) (α log(x))′

= exp(α log(x))α log′(x) = xα α
1

x
= αxα−1.

7.12. Higher derivatives: Let f : V → R be differentiable and f ′ : V → R be its
derivative. If f ′ is differentiable in x ∈ V , then

f ′′(x) := (f ′)′(x)

is called the second derivative 〈zweite Ableitung〉 of f at x. A classical notation for f ′′(x)

is also
d2f(x)

dx2
.

Suppose that f ′ is differentiable in Uε(x)∩V . Then we can consider the function f ′′ : Uε(x)∩
V → R and investigate its differentiability properties in turn. In this way, we can define
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the property of a function f to be k times differentiable at x (k ∈ N, k ≥ 2) inductively,
if there exists ε > 0 such that f |Uε(x)∩V is (k − 1) times differentiable (in all points of
Uε(x) ∩ V ) and the (k − 1)st derivative f (k−1) is differentiable at x. In this case we set

f (k)(x) := (f (k−1))′(x).

It is common to put f (0)(x) = f(x). A function f : V → R is called infinitely (often)
differentiable 〈unendlich oft differenzierbar〉 at x if it is k times differentiable for all k ∈ N.2

Example: sin is infinitely (often) differentiable on all of R. We have sin′ = cos, sin′′ =
− sin, sin(3) = − cos, and sin(4) = sin etc.

Let ω ∈ R be a constant (frequency). Then u(x) := sin(ω x) is infinitely differentiable
on R. We have u′(x) = ω cos(ω x) and u′′(x) = −ω2 sin(ω x) = −ω2 u(x). Therefore u
satisfies the differential equation of the isochronous pendulum

u′′ + ω2 u = 0.

2Note that the case k = 1 is not included in the above definition and that mere differentiability of a
function at a point does not imply differentiability in a whole ε-neighborhood. For example, consider the
function f : R → R, defined as f(x) = x2 when x ∈ Q and f(x) = 0 otherwise. Then f is discontinuous at
every x 6= 0 but differentiable in x = 0.



§8. BASIC PROPERTIES OF DIFFERENTIABLE

FUNCTIONS

8.1. Definition: Let f : ]a, b[→ R. A point x ∈ ]a, b[ is a local maximum 〈lokales
Maximum〉 (resp. local minimum 〈lokales Minimum〉) of f , if

∃ε > 0 ∀ξ ∈ Uε(x) : f(x) ≥ f(ξ) (resp. f(x) ≤ f(ξ)).

If f(x) > f(ξ) (resp. f(x) < f(ξ)) for all ξ ∈ Uε(x) with ξ 6= x, then x is a strict local
maximum (resp. minimum) 〈striktes lokales Maximum (bzw. Minimum)〉. In either case x is
called a local extreme 〈lokles Extremum〉 of f .

x

y

a b
x

f
loc. max.

︸︷︷︸

Uε(x)

Geometrically, if f is differentiable we
expect that the graph of f has a horizontal
tangent in a local extreme, which means that
the slope f ′(x) must be 0.

x

loc. max.

96
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8.2. Proposition: Suppose that f : ]a, b[→ R has a local extreme in x and is differ-
entiable at x. Then f ′(x) = 0.

Proof. Let x be a local maximum of f (the case of a local minimum is analogous). There
is ε > 0 such that

∀ξ ∈ Uε(x) : f(x) ≥ f(ξ).

Since f is differentiable at x we deduce that

lim
ξցx

f(ξ) − f(x)

ξ − x
︸ ︷︷ ︸

≤0

= f ′(x) = lim
ξրx

f(ξ) − f(x)

ξ − x
︸ ︷︷ ︸

≥0

and therefore 0 ≤ f ′(x) ≤ 0, hence f ′(x) = 0.

x

x38.3. Remark: (i) The above proposition gives a
necessary condition, namely f ′(x) = 0, for a local ex-
treme at a point x where f is differentiable. This con-
dition is, in general, not sufficient as the following sim-
ple example shows: Let f : ] − 1, 1[→ R, x 7→ x3; then
f ′(0) = 0, but x = 0 is neither a local maximum nor a
local minimum.

Thus a solution of the equation f ′(x) = 0 merely provides a candidate for a local extremum.

0 = a b = 1

Max

(ii) Let f : [a, b] → R be continuous. By the results in
Section 5 we know that f possesses a (global) maximum
and a minimum in the closed interval [a, b]. Such an
extreme point can lie at the boundary, i.e., x = a or
x = b, in which case the derivative need not vanish. For
example, the function f : [0, 1] → R, f(x) = x, has a
maximum in x = 1, but f ′(1) = 1 6= 0.
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8.4. Example: Consider the function sin : R → R.

We already deduced from its strict
monotonicity properties on the in-
tervals [k π

2
, (k + 1)π

2
] that we have

strict maxima at the points π
2

+ 2kπ
and strict minima at the points π

2
+

(2k + 1)π (k ∈ Z). And indeed we
have sin′(π

2
+kπ) = cos(π

2
+kπ) = 0. Min

Max

Min

Max

−π
2

π

2

3π

2

5π

2

8.5. The mean value theorem of differential calculus: In the following
statements we suppose that f : [a, b] → R is continuous and differentiable in ]a, b[.1

Proposition (Rolle’s theorem): If f(a) = f(b) then there exists ξ ∈ ]a, b[
such that f ′(ξ) = 0.2

b

b

a b

f(a)
f(b)

f ′(ξ) = 0

x

Proof. If f is a constant function the assertion is trivial, hence we may assume that f
is not constant. Then there exists x0 ∈ ]a, b[ such that f(x0) > f(a) = f(b) or f(x0) <
f(a) = f(b). Thus the maximum or minimum of f must be attained at some ξ ∈ ]a, b[.
Since ξ has to be a local extreme as well we obtain that f ′(ξ) = 0.

Mean value theorem: There exists ξ ∈ ]a, b[ such that

(8.1)
f(b) − f(a)

b− a
= f ′(ξ)

1In case you are wondering about the relation between the two conditions ’continuity on the closed
interval [a, b]’ and ’differentiability in the open interval ]a, b[’ or their implying ’differentiability on the
closed interval [a, b]’: First, recall that continuity at a point x does not imply differentiablity at x; second,
consider the examples f1 : [0, 1] → R, f1(x) =

√
x and f2 : ]0, 1] → R, f2(x) = 1/x; then f1 is continuous

on [0, 1], differentiable in ]0, 1[, but not differentiable at 0 and f2 is differentiable in ]0, 1] but has no
continuous extension to [0, 1].

2Michel Rolle (1652–1719) [mi"SEl öOl], French mathematician
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a b

f(a)

f(b)
f ′(ξ) 




f(b) − f(a)

Proof. Define g : [a, b] → R by g(x) := f(x) − f(b) − f(a)

b− a
· (x− a).

Then g is continuous on [a, b], differentiable in ]a, b[, and g(a) = f(a) = g(b). Therefore
Rolle’s theorem implies that there is some ξ ∈ ]a, b[ such that

0 = g′(ξ) = f ′(ξ) − f(b) − f(a)

b− a
,

which proves the assertion.

Corollary: (i) If f ′ is bounded, i.e., there are m,M ∈ R such that m ≤ f ′(ξ) ≤ M
holds for all ξ ∈ ]a, b[, then we have for all x1, x2 ∈ [a, b] with x1 ≤ x2

m (x2 − x1) ≤ f(x2) − f(x1) ≤M (x2 − x1).

In particular, f is Lipschitz continuous 〈Lipschitz-stetig〉 with Lipschitz constant L :=
max(|m|, |M |), that is

|f(x2) − f(x1)| ≤ L |x2 − x1| ∀x1, x2 ∈ [a, b].

(ii) If f ′(x) = 0 for all x ∈ ]a, b[ then f is constant.

Proof. (i) Apply (8.1) to each interval [x1, x2].

(ii) follows from (i) with m = M = 0.

Application: Let c ∈ R and f : R → R be differentiable. If f satisfies the differential
equation

f ′(x) = c · f(x) ∀x ∈ R,

then f has to be of the form f(x) = f(0) exp(c x).

To prove this we put g(x) := f(x) exp(−cx) and observe that

g′(x) = −ce−cx f(x) + e−cx f ′(x) = −ce−cx f(x) + e−cx c f(x) = 0.

Thus g(x) = g(0) = f(0) for all x, which implies f(x) = f(0) exp(c x).
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8.6. Proposition: Suppose f : [a, b] → R is continuous and differentiable in ]a, b[.

(i) If f ′(x) ≥ 0 (resp. f ′(x) > 0) for all x ∈ ]a, b[ then f is increasing (resp. strictly
increasing) on [a, b].

(ii) If f is increasing on [a, b] then f ′(x) ≥ 0 for all x ∈ [a, b].

Corresponding statements hold for decreasing functions.

Proof. (i) Proof by contradiction: If f is not increasing (resp. strictly increasing) there are
x1, x2 ∈ [a, b], x1 < x2 such that f(x1) > f(x2) (resp. f(x1) ≥ f(x2)). By the mean value
theorem there is a ξ ∈ ]x1, x2[ such that

f ′(ξ) =
f(x2) − f(x1)

x2 − x1
,

which implies that f ′(ξ) < 0 (resp. f ′(ξ) ≤ 0) — a contradiction � .

(ii) Since f is increasing we have for all x, ξ ∈ ]a, b[ with x 6= ξ that

f(ξ) − f(x)

ξ − x
≥ 0.

Thus f ′(x) ≥ 0.

Remark: Note that strict monotonicity does not imply that the derivative is strcitly
greater or smaller than 0: For example, f : [−1, 1] → R, f(x) = x3, is strictly increasing
whereas f ′(0) = 0.

8.7. Corollary (Sufficient condition for a local extreme): Let f : ]a, b[→
R be differentiable. Suppose that x ∈ ]a, b[ and that f is twice differentiable at x. If

f ′(x) = 0 and f ′′(x) > 0 (resp. f ′′(x) < 0)

then x is a strict local minimum (resp. maximum) of f .

Proof. Assume that f ′(x) = 0 and f ′′(x) > 0 (the case f ′′(x) < 0 is analogous.)

We obtain that

0 < f ′′(x) = lim
x 6=ξ→x

f ′(ξ) − f ′(x)

ξ − x
.

Hence there exists ε > 0 such that for all ξ with 0 < |ξ − x| < ε

f ′(ξ)

ξ − x
=
f ′(ξ) − f ′(x)

ξ − x
> 0.

From this we deduce the following: If ξ ∈ ]x− ε, x[ then f ′(ξ) < 0 and if ξ ∈ ]x, x+ ε[ then
f ′(ξ) > 0. Therefore f is strictly decreasing in [x−ε, x] and strictly increasing in [x, x+ε],
which implies that x is a strict local minimum for f .
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8.8. Examples: 1) We already know that sin : R → R has strict local maxima at the
points π

2
+2kπ and strict local minima at π

2
+(2k+1)π, where k ∈ Z. We can now confirm

this earlier observation by observing sin′(π
2

+ lπ) = cos(π
2

+ lπ) = 0 for all l ∈ Z

and that sin′′(π
2

+ 2kπ) = − sin(π
2

+ 2kπ) = −1 < 0,

sin′′(π
2

+ (2k + 1)π) = − sin(π
2

+ (2k + 1)π) = 1 > 0.

2) The function f : ] − 1, 1[→ R, f(x) = x4, has a strict (global) minimum at 0 since
f(x) = x4 > 0 for all x 6= 0 and f(0) = 0. But we also have f ′′(0) = 0.

x

This example illustrates that the condition f ′′(x) > 0 is sufficient but not necessary for a
strict local extreme.

8.9. Convexity:

Definition: Let I ⊆ R be an interval and f : I → R. The function f is convex
〈konvex〉 if for all x1, x2 ∈ I and for all λ ∈ [0, 1]

(8.2) f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

f is said to be concave 〈konkav〉 if −f is convex.

When the parameter λ runs through [0, 1] the
corresponding point x = λx1 + (1 − λ)x2 ∈ I
runs through the closed interval with bound-
ary points x1 and x2. The inequality (8.2)
means that the points (x, f(x)) of the graph
of f do not lie above the secant line through
(x1, f(x1) and (x2, f(x2)).

xx1 x2

f(x1)

f(x2)

f

Remark: A subset B of a real vector space W is convex 〈konvex〉 if for all u, v ∈ B the

entire line segment {λu + (1 − λ)v : 0 ≤ λ ≤ 1} connecting u and v belongs to B. In the

definition given above the convexity of a function f : I → R corresponds to convexity of the

subset B := {(x, y) ∈ R2 : x ∈ I, y ≥ f(x)} ⊆ R2 that lies above the graph of f .
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Proposition: Let I ⊆ R be an open interval and f : I → R twice differentiable. Then

f ′′(x) ≥ 0 ∀x ∈ I ⇐⇒ f is convex.

Proof.
�

�

�

�
⇒ When checking (8.2) we may assume that x1 < x2 and 0 < λ < 1. If x :=

λx1 + (1 − λ)x2 then x1 < x < x2.

By the Proposition in 8.5 f ′ is increasing and the mean value theorem provides us with
ξ1 ∈ ]x1, x[ and ξ2 ∈ ]x, x2[ such that

(⋆)
f(x) − f(x1)

x− x1
= f ′(ξ1) ≤ f ′(ξ2) =

f(x2) − f(x)

x2 − x
.

Since x− x1 = (1 − λ)(x2 − x1) > 0 and x2 − x = λ(x2 − x1) > 0 we obtain from (⋆) that

f(x) − f(x1)

1 − λ
≤ f(x2) − f(x)

λ
,

which implies

f(x) ≤ λf(x1) + (1 − λ)f(x2),

thus the convexity of f .
�

�

�

�
⇐ (Proof by contradition) Suppose there is an x0 ∈ I such that f ′′(x0) < 0.

Let ϕ(x) := f(x) − f ′(x0)(x − x0) (x ∈ I). Then ϕ : I → R is twice differentiable and ϕ′(x0) =
f ′(x0)−f ′(x0) = 0. Since ϕ′′(x0) = f ′′(x0) < 0 we deduce that ϕ possesses a strict local maximum
at x0.

Therefore we have ε0 > 0 (sufficiently small) such that ϕ(x) < ϕ(x0) holds for all x ∈ Uε(x0) ⊆ I.
In particular, we obtain for 0 < ε < ε0 that ϕ(x0 − ε) < ϕ(x0) and ϕ(x0 + ε) < ϕ(x0), which in
turn yields

f(x0) = ϕ(x0) >
1

2

(
ϕ(x0 − ε) + ϕ(x0 + ε)

)
=

1

2

(
f(x0 − ε) + f(x0 + ε)

)
.

If we put λ := 1/2, x1 := x0−ε, and x2 := x0+ε, the latter inequality means f(λx1+(1−λ)x2) >

λf(x1) + (1 − λ)f(x2) — a contradiction � to the convexity of f .

Examples: 1) Consider the quadratic polynomial function f : R → R, f(x) = ax2 +
bx+ c, where a, b, c ∈ R are constants, a 6= 0. Since f ′′(x) = 2a we have:

f is convex if and only if a > 0

f is concave if and only if a < 0

2) exp′′ = (exp′)′ = exp′ = exp > 0, hence exp is convex.

3) log′(x) = 1/x (x > 0) and log′′(x) = −1/x2 < 0, hence log : ]0,∞[→ R is concave.
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An interesting application of the concavity of log is the following: Let p, q ∈ ]1,∞[ such

that
1

p
+

1

q
= 1. For all x, y > 0 we have that x/p + y/q = x/p + (1 − 1/p) y is a convex

combination and thus

log(
1

p
x+

1

q
y) ≥ 1

p
log(x) +

1

q
log(y) = log(x1/p) + log(y1/q) = log(x1/p · y1/q).

Upon applying the exponential function we obtain the following inequality

(8.3)
x

p
+
y

q
≥ x1/p · y1/q (x, y > 0; p, q > 1 and

1

p
+

1

q
= 1).

As a special case with p = q = 2 we have proved the inequality between the arithmetic
and the geometric mean 〈Ungleichung zwischen arithmetischem und geometrischem Mittel〉

(8.4)
x+ y

2
≥ √

xy (x, y ≥ 0).

8.10. Generalized mean value theorem and de l’Hospital’s rules:

Lemma: Let f, g : [a, b] → R continuous and differentiable in ]a, b[. Then there exists
ξ ∈ ]a, b[ such that

(
f(b) − f(a)

)
g′(ξ) =

(
g(b) − g(a)

)
f ′(ξ).

(Generalized mean value theorem.)

Proof. Define h : [a, b] → R by

h(x) :=
(
f(b) − f(a)

)
g(x) −

(
g(b) − g(a)

)
f(x).

Then h is continuous on [a, b] and differentiable in ]a, b[. Furthermore, h(a) = f(b)g(a) −
g(b)f(a) = h(b) implies that there is some ξ ∈ ]a, b[ such that 0 = h′(ξ) = (f(b) −
f(a)) g′(ξ) − (g(b) − g(a)) f ′(ξ), which proves the assertion.

Proposition (Rules of de l’Hospital3): Let −∞ ≤ a < b ≤ ∞ and
f, g : ]a, b[→ R be differentiable functions such that g′(x) > 0 for all a < x < b (resp.
g′(x) < 0 for all a < x < b). Suppose that the following limit exists

(8.5) η := lim
xրb

f ′(x)

g′(x)
.

3Guillaume François Antoine, Marquis de l’Hospital (1661–1704) [gijo:m föÃswa maö"ki d@ lopi"tal] was
a French mathematician. He is the author of the first known textbook on differential calculus, l’Analyse
des Infiniment Petits pour l’Intelligence des Lignes Courbes, published in 1696. It includes the lectures of
his teacher, Johann Bernoulli, who was paid 300 Francs a year to tell de L’Hospital about his discoveries
which, including the above rule, were then published under the Marquis’ name.
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(i) If in addition limxրb f(x) = limxրb g(x) = 0, then g(x) 6= 0 for all a < x < b and

lim
xրb

f(x)

g(x)
= η.

(ii) If in addition limxրb g(x) = ±∞, then there is some x0 ∈ ]a, b[ such that g(x) 6= 0 for
all x0 < x < b and

lim
xրb

f(x)

g(x)
= η.

Analogous statements hold for the limits xց a.

Remark: The exact same statement is true if the limit in (8.5) is improper (cf. [Heu88,
Abschnitt 50]).

Proof. (i) Since g′ is positive (resp. negative) g is strictly increasing (resp. decreasing),
hence g is injective. Therefore limxրb g(x) = 0 implies that g(x) 6= 0 for all x (since
g(x0) = 0 with x0 < b would contradict the strict monotonicity).

Let ε > 0. By (8.5) we may choose β ∈ ]a, b[ such that f ′(r)/g′(r) ∈ Uε(η) for all β < r < b.

Let x, y ∈ ]β, b[, x 6= y. By the above Lemma there is some ξ between x and y such that

f(x) − f(y)

g(x) − g(y)
=
f ′(ξ)

g′(ξ)
∈ Uε(η).

In other words,

∣
∣
∣
∣

f(x) − f(y)

g(x) − g(y)
− η

∣
∣
∣
∣
< ε. Since g(x) 6= 0 we may send y → b while keeping

x fixed and obtain ∣
∣
∣
∣

f(x)

g(x)
− η

∣
∣
∣
∣
≤ ε,

which in turn shows that f(x)/g(x) → η as x→ b.

(ii) There is some x0 ∈ ]a, b[ such that |g(x)| ≥ 1 for all x ≥ x0. In particular, g(x) 6= 0 for
x ≥ x0.

Let ε > 0 and choose β ∈ ]x0, b[ such that

∀r ≥ β :
f ′(r)

g′(r)
∈ Uε(η) and |g(r)| ≥ 1

ε
.

Let (xn) be a sequence in ]β, b[ such that lim xn = b. For each n ∈ N the above Lemma
provides some yn between β and xn such that

f(xn) − f(β)

g(xn) − g(β)
=
f ′(yn)

g′(yn)
∈ Uε(η).
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Thus we have
f(xn)

g(xn)
=
g(xn) − g(β)

g(xn)
· f

′(yn)

g′(yn)
+
f(β)

g(xn)

and
∣
∣
∣
∣

f(xn)

g(xn)
− η

∣
∣
∣
∣
≤
∣
∣
∣
∣

g(xn) − g(β)

g(xn)
· f

′(yn)

g′(yn)
− η

∣
∣
∣
∣
+

∣
∣
∣
∣

f(β)

g(xn)

∣
∣
∣
∣

=

∣
∣
∣
∣

g(xn) − g(β)

g(xn)

(
f ′(yn)

g′(yn)
− η

)

+

(
g(xn) − g(β)

g(xn)
− 1

)

η

∣
∣
∣
∣
+

∣
∣
∣
∣

f(β)

g(xn)

∣
∣
∣
∣

≤
∣
∣
∣
∣

g(xn) − g(β)

g(xn)

∣
∣
∣
∣

∣
∣
∣
∣

f ′(yn)

g′(yn)
− η

∣
∣
∣
∣
+

∣
∣
∣
∣

g(xn) − g(β)

g(xn)
− 1

∣
∣
∣
∣
|η| +

∣
∣
∣
∣

f(β)

g(xn)

∣
∣
∣
∣

=

∣
∣
∣
∣
1 − g(β)

g(xn)

∣
∣
∣
∣

∣
∣
∣
∣

f ′(yn)

g′(yn)
− η

∣
∣
∣
∣
+

∣
∣
∣
∣
− g(β)

g(xn)

∣
∣
∣
∣
|η| +

∣
∣
∣
∣

f(β)

g(xn)

∣
∣
∣
∣

≤ (1 + ε |g(β)|) ε+ ε |g(β)||η|+ ε |f(β)|
=
(
1 + ε |g(β)|+ |g(β)||η|+ |f(β)|

)
· ε ≤ K ε,

for some K > 0 if ε stays less than 1, say. Therefore f(xn)/g(xn) → η as n→ ∞.

Examples: 1) We can give an alternative proof for 6.3,6): lim
x→∞

log(x)

xα
= 0 (α > 0).

With f(x) := log(x) → ∞, g(x) := xα → ∞, f ′(x) = 1/x, and g′(x) = αxα−1 we obtain
that

f ′(x)

g′(x)
=

1

αxα
→ 0 =: η (x→ ∞),

hence Proposition (i) proves the above limit assertion.

2) lim
xց0

(
1

sin x
− 1

x

)

= ?

Note that
1

sin(x)
− 1

x
=
x− sin x

x sin x
, hence we attempt to apply the Proposition with f(x) :=

x− sin x→ 0 and g(x) := x sin x→ 0 as x→ 0.

We have

f ′(x) = 1 − cosx→ 0 and g′(x) = sin x+ x cosx→ 0 as x → 0

f ′′(x) = sin x→ 0 and g′′(x) = cosx+ cos x− x sin x→ 2 as x→ 0.

At this point we may observe that de l’Hospital’s rule is applicable with f replaced by f ′

and g replaced by g′. Therefore we may summarize as follows

lim
xց0

(
1

sin x
− 1

x

)

= lim
xց0

f(x)

g(x)
= lim

xց0

f ′(x)

g′(x)
= lim

xց0

f ′′(x)

g′′(x)
=

0

2
= 0.
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