
Symbolic dynamics, Markov partitions and
Sharkovskiy’s Theorem.

Andrei Markov (1856 - 1922) and Oleksander Sharkovsky (1936 - )



An example
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T : S1 → S1

x 7→ 3x mod 1

Partition S1 as J = {J0, J1, J2}

J0 J1 J2

Itinerary of x ∈ S1:

i (x)n =


0 T n(x) ∈ J0,

1 T n(x) ∈ J1,

2 T n(x) ∈ J2.•
x

i (x) = 001210 1210 1210 1210 1210 . . .︸ ︷︷ ︸
continues periodically

The (left-)shift σ : Σ→ Σ, x0x1x2x3 · · · 7→ x1x2x3 . . . makes the
diagram commute:

S1 T−→ S1

i ↓ ↓ i
Σ

σ−→ Σ

σ ◦ i = i ◦ T



Shift spaces
Let A = {0, 1, . . . ,N − 1} be a finite alphabet. Let

Σ := AN or AZ

be the space of one-sided (or two-sided) sequences of letters of the
alphabet.
Give Σ the product topology, i.e., the cylinder sets

Zanan+1...an+l−1 := {x ∈ Σ : xn = an, . . . , xn+l−1 = an+l−1}

are all open, and form a basis for the topology.
Remark: Every cylinder set is at the same time closed, because:

Zanan+1...an+l−1 := Σ \
⋃

bn...bn+l−1 6=an...an+l−1

Zbn...bn+l−1

The space Σ also has a metric (that induces the same topology):

dΣ(x , y) =

{
2−max{k : xi=yi ∀ |i |<k} if x 6= y ,

0 if x = y .



Is the itinerary map surjective?
Let T : X → X be a map, say on a compact metric space (X , d).
If the partition of {J0, . . . , JN−1} is such that T (Ji ) = X for each
i , then i : X → Σ is surjective (modulo a small set, see later).

This suggests way where symbolic dynamics can prove chaos in the
sense of Devaney (provided i is also injective and continuous):

I The periodic sequences Per are dense in Σ. Therefore
i−1(Per) is a dense set of periodic points in X .

I Suppose for simplicity N = #A = 3. Then the sequence

s = 0 1 2 00 01 02 10 11 12 20 21 22 000 001 . . .

has a dense σ-orbit. Hence i−1(s) has a dense T -orbit in X .
I σ has sensitive dependence on initial conditions:

Take δ = 1
2 , and s = s0s1s2 · · · ∈ Σ, ε > 0 arbitrary.

Let n ∈ N be so large that 2−n < ε.
Take t = (s0s1s2 . . . sn−1s

′
n . . . ) for s ′n 6= sn. Then

dΣ(σn(s), σn(t)) = dΣ(sn . . . , s
′
n . . . ) = 1 > δ.

Consequently, T has sensitive dependence on initial conditions



Is the itinerary map injective?

Definition: A map T : X → X on a metric space (X , d) is
expansive with expansivity constant δ, if for every x 6= y ∈ X there
is n ∈ Z such that d(T n(x),T n(y)) > δ.

Lemma: If Thas expansivity constant δ and the partition
{J0, . . . , JN−1} is such that diam(Ji ) ≤ δ for all i , then the
itinerary map i : X → Σ is injective.

Proof: Since d(T n(x),T n(y)) > δ for some n, T n(x) and T n(y)
cannot belong to the same Ji , so i (x)n 6= i (y)n.

For our example of the tripling map on the circle, T is expansive
and every δ < 1

3 is an expansivity constant. But diam(Ji ) = 1
3 .

However, if you take half-open intervals

J0 = [0,
1
3

), J1 = [
1
3
,
2
3

), J2 = [
2
3
, 1),

then i is injective.
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Is the itinerary map well-defined?
The problem with well-definedness is the boundary points of
∂J = ∪i∂Ji . Which symbol to give if x ∈ J i ∩ J j?

1. If J is a true partition, i.e., Ji ∩ Jj = ∅ for i 6= j , then there is
no ambiguity. But i is discontinuous at ∂J and i (X ) is not
closed (and i not surjective). E.g., for the tripling map

lim
x↗ 1

3

i (x) = 012222 · · · 6= 1000 · · · = i (
1
3

)

and there is no point x ∈ S1 with i (x) = 012222 . . .
2. Ignore the points x ∈ X that ever hit ∂J . This is usually a

small set (countable if X is one-dimensional), but clearly i is
not defined everywhere, and not surjective.

3. x ∈ Ji ∩ Jj gets both symbols i and j . Effectively you “double
the point” x into x− (with symbol i) and x+ (with symbol j).
This changes the topology of X , but can make i : X → Σ into
a homeomorphism. (Take care when orb(x) visits ∂J multiple
times.)



Is the itinerary map continuous?

Usually, i : X → Σ is discontinuous at every point x such that
orb(x) ∩ ∂J 6= ∅. But this is, in general, a small set and we can
ignore it in, for example, the verification of Devaney chaos.



One-dimensional horse-shoes
Definition: Let T : I → I a map on a one-dimensional space (e.g.,
the interval or the circle). If I0, . . . , IN−1 are disjoint subintervals
such that
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T (Ii ) ⊃
⋃N−1

j=0 Ij

I0 I1

I0

I1

then we say that T has an (N-fold) one-dimensional horse-shoe.

The restriction of T to

Λ = {x ∈ I : T n(x) ∈
N−1⋃
j=0

Ij for all n ≥ 0}

can be described symbolically by (Σ, σ). If T is also expansive,
then T : Λ→ Λ and σ : Σ→ Σ are conjugate.
In particular, T : Λ→ Λ is chaotic in the sense of Devaney.

Remark: For most purposes we can relax the definition and allow Ii
and Ij to intersect at their end-points. This brings ambiguity of i at
these intersections, but this affects only a countable set of points.



Markov partitions

Definition Let T : I → I be a one-dimensional map. A partition
J = {J0, . . . , JN−1} f X is called a Markov partition if

T (Ji ) ⊃ Jj whenever T (Ji ) ∩ Jj 6= ∅.

We can assign a transition matrix to this partition:

A = (aij)
N−1
i ,j=0 is an N × N matrix s.t. ai ,j =

{
1 if T (Ji ) ⊃ Jj ,

0 otherwise.
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J0 J1

A =

(
0 1
1 1

)
Example:
T (J0) = J1
T (J1) = J0 ∪ J1



Markov partitions, an example

If a Markov partition J = {J0, . . . , JN−1} is used to define the
itinerary map, then

i (X ) ⊃ ΣA := {s ∈ {0, . . . ,N1}N : asnsn+1 = 1 for all n ≥ 0}.

We call (ΣA, σ) as subshift of finite type (SFT) because a finite
number of words (of length 2) are forbidden, name snsn+1 with
asnsn+1 = 0; for the rest, everything is allowed.

Lemma: If T has a Markov partition with transition matrix A, then
the number of n-periodic orbits of T is ≥ trace(An).

In the example,

An =

(
Fn−1 Fn
Fn Fn+1

)
for the Fibonacci numbers
F0,F1,F2,F3,F4,F5 · · · = 0, 1, 1, 2, 3, 5 . . .



Period 3 implies chaos
Theorem (Li & Yorke 1975): Let T be any continuous map on R.
If T has a periodic point of period 3, then T has a periodic point
of period p for every p ≥ 1. In addition, T is Li-Yorke chaotic (i.e.,
has an uncountable scrambled set.)

Proof of existence of periodic orbits: If
T 3(x) = x < T (x) < T 2(x), then there are closed interval I0 and
I1 such that T (I0) ⊃ I1 and T (I1) ⊃ I0 ∪ I1:

•
x = T 3(x)

•
T (x)

•
T 2(x)

I0 I1

T T

T

Hence, symbolically, the restriction of T to

Λ = {x ∈ I : T n(x) ∈ I0 ∪ I1 for all n ≥ 0}

is the subshift of finite type ΣA with A =

(
0 1
1 1

)
.



Period 3 implies chaos: Proof continued

By the previous lemma, ΣA has periodic sequences of every period.
In fact, for n ≥ 2, choose an n-periodic sequence as

s = 0 11 . . . 1︸ ︷︷ ︸
n−1 times

0 11 . . . 1︸ ︷︷ ︸
n−1 times

0 11 . . . 1︸ ︷︷ ︸
n−1 times

. . .

There is a subinterval K = I011 . . . 1︸ ︷︷ ︸
n−1times

such that T i (K ) ⊂ Isi for

0 < i < n, and T n(K ) ⊃ K . This follows from the Intermediate
Value Theorem, which also gives the existence of an n-periodic
point in p ∈ K ⊂ I0. Because T i (p) ∈ I1 for 0 < i < n, the
smallest period is indeed n.

Finally, because T (I1) ⊃ I1, there must be a fixed point in I1 by the
Intermediate Value Theorem. This ends the proof.



Sharkovsky’s Theorem

Unbeknownst to Li & Yorke (1975), the Ukrainian mathematician
Sharkovsky had proved in 1963 a far more general result.

Theorem (Sharkovsky 1963): Consider the following order (called
Sharkovskiy order) on the positive integers:

3 � 5 � 7 � 9 � . . . odd numbers increasing
� 6 � 10 � 14 � 18 � . . . 2× odd numbers increasing
� 12 � 20 � 28 � 36 � . . . 4× odd numbers increasing

...
...

...
· · · � 16 � 8 � 4 � 2 � 1 powers of 2 decreasing.

If T be a continuous map on R has a periodic point of period p,
then T has a periodic point of period q for all q ≺ p.


