Symbolic dynamics, Markov partitions and Sharkovskiy's Theorem.

Andrei Markov (1856-1922) and Oleksander Sharkovsky (1936-)

An example

$T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ $x \mapsto 3 x \bmod 1$

Partition \mathbb{S}^{1} as $\mathcal{J}=\left\{J_{0}, J_{1}, J_{2}\right\}$
Itinerary of $x \in \mathbb{S}^{1}$:
$\boldsymbol{i}(x)_{n}= \begin{cases}0 & T^{n}(x) \in J_{0}, \\ 1 & T^{n}(x) \in J_{1}, \\ 2 & T^{n}(x) \in J_{2} .\end{cases}$

$$
\boldsymbol{i}(x)=001210 \underbrace{1210121012101210 \ldots}_{\text {continues periodically }}
$$

The (left-)shift $\sigma: \Sigma \rightarrow \Sigma, \quad x_{0} x_{1} x_{2} x_{3} \cdots \mapsto x_{1} x_{2} x_{3} \ldots$ makes the diagram commute:

\[

\]

Shift spaces

Let $\mathcal{A}=\{0,1, \ldots, N-1\}$ be a finite alphabet. Let

$$
\Sigma:=\mathcal{A}^{\mathbb{N}} \text { or } \mathcal{A}^{\mathbb{Z}}
$$

be the space of one-sided (or two-sided) sequences of letters of the alphabet.
Give Σ the product topology, i.e., the cylinder sets

$$
Z_{a_{n} a_{n+1} \ldots a_{n+l-1}}:=\left\{x \in \Sigma: x_{n}=a_{n}, \ldots, x_{n+l-1}=a_{n+l-1}\right\}
$$

are all open, and form a basis for the topology.
Remark: Every cylinder set is at the same time closed, because:

$$
Z_{a_{n} a_{n+1} \ldots a_{n+l-1}}:=\Sigma \backslash \bigcup_{b_{n} \ldots b_{n+l-1} \neq a_{n} \ldots a_{n+l-1}} Z_{b_{n} \ldots b_{n+l-1}}
$$

The space Σ also has a metric (that induces the same topology):

$$
d_{\Sigma}(x, y)= \begin{cases}2^{-\max \left\{k: x_{i}=y_{i} \forall|i|<k\right\}} & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

Is the itinerary map surjective?

Let $T: X \rightarrow X$ be a map, say on a compact metric space (X, d). If the partition of $\left\{J_{0}, \ldots, J_{N-1}\right\}$ is such that $T\left(J_{i}\right)=X$ for each i, then $\boldsymbol{i}: X \rightarrow \Sigma$ is surjective (modulo a small set, see later).
This suggests way where symbolic dynamics can prove chaos in the sense of Devaney (provided \boldsymbol{i} is also injective and continuous):

- The periodic sequences Per are dense in Σ. Therefore $\boldsymbol{i}^{-1}($ Per $)$ is a dense set of periodic points in X.
- Suppose for simplicity $N=\# \mathcal{A}=3$. Then the sequence

$$
s=012000102101112202122000001 \ldots
$$

has a dense σ-orbit. Hence $\mathbf{i}^{-1}(s)$ has a dense T-orbit in X.

- σ has sensitive dependence on initial conditions:

Take $\delta=\frac{1}{2}$, and $s=s_{0} s_{1} s_{2} \cdots \in \Sigma, \varepsilon>0$ arbitrary.
Let $n \in \mathbb{N}$ be so large that $2^{-n}<\varepsilon$.
Take $t=\left(s_{0} s_{1} s_{2} \ldots s_{n-1} s_{n}^{\prime} \ldots\right)$ for $s_{n}^{\prime} \neq s_{n}$. Then

$$
d_{\Sigma}\left(\sigma^{n}(s), \sigma^{n}(t)\right)=d_{\Sigma}\left(s_{n} \ldots, s_{n}^{\prime} \ldots\right)=1>\delta .
$$

Consequently, T has sensitive dependence on initial conditions

Is the itinerary map injective?

Definition: A map $T: X \rightarrow X$ on a metric space (X, d) is expansive with expansivity constant δ, if for every $x \neq y \in X$ there is $n \in \mathbb{Z}$ such that $d\left(T^{n}(x), T^{n}(y)\right)>\delta$.

Lemma: If T has expansivity constant δ and the partition $\left\{J_{0}, \ldots, J_{N-1}\right\}$ is such that $\operatorname{diam}\left(J_{i}\right) \leq \delta$ for all i, then the itinerary map i: $X \rightarrow \Sigma$ is injective.
Proof: Since $d\left(T^{n}(x), T^{n}(y)\right)>\delta$ for some $n, T^{n}(x)$ and $T^{n}(y)$ cannot belong to the same J_{i}, so $\boldsymbol{i}(x)_{n} \neq \boldsymbol{i}(y)_{n}$.

Is the itinerary map injective?

Definition: A map $T: X \rightarrow X$ on a metric space (X, d) is expansive with expansivity constant δ, if for every $x \neq y \in X$ there is $n \in \mathbb{Z}$ such that $d\left(T^{n}(x), T^{n}(y)\right)>\delta$.

Lemma: If T has expansivity constant δ and the partition $\left\{J_{0}, \ldots, J_{N-1}\right\}$ is such that $\operatorname{diam}\left(J_{i}\right) \leq \delta$ for all i, then the itinerary map i: $X \rightarrow \Sigma$ is injective.

Proof: Since $d\left(T^{n}(x), T^{n}(y)\right)>\delta$ for some $n, T^{n}(x)$ and $T^{n}(y)$ cannot belong to the same J_{i}, so $\boldsymbol{i}(x)_{n} \neq \boldsymbol{i}(y)_{n}$.

For our example of the tripling map on the circle, T is expansive and every $\delta<\frac{1}{3}$ is an expansivity constant. But $\operatorname{diam}\left(J_{i}\right)=\frac{1}{3}$. However, if you take half-open intervals

$$
J_{0}=\left[0, \frac{1}{3}\right), \quad J_{1}=\left[\frac{1}{3}, \frac{2}{3}\right), \quad J_{2}=\left[\frac{2}{3}, 1\right),
$$

then \boldsymbol{i} is injective.

Is the itinerary map well-defined?

The problem with well-definedness is the boundary points of $\partial \mathcal{J}=\cup_{i} \partial J_{i}$. Which symbol to give if $x \in \bar{J}_{i} \cap \bar{J}_{j}$?

1. If \mathcal{J} is a true partition, i.e., $J_{i} \cap J_{j}=\emptyset$ for $i \neq j$, then there is no ambiguity. But \boldsymbol{i} is discontinuous at $\partial \mathcal{J}$ and $\boldsymbol{i}(X)$ is not closed (and \boldsymbol{i} not surjective). E.g., for the tripling map

$$
\lim _{x \backslash \frac{1}{3}} \boldsymbol{i}(x)=012222 \cdots \neq 1000 \cdots=\boldsymbol{i}\left(\frac{1}{3}\right)
$$

and there is no point $x \in \mathbb{S}^{1}$ with $\boldsymbol{i}(x)=012222 \ldots$
2. Ignore the points $x \in X$ that ever hit $\partial \mathcal{J}$. This is usually a small set (countable if X is one-dimensional), but clearly \boldsymbol{i} is not defined everywhere, and not surjective.
3. $x \in \overline{J_{i}} \cap \overline{J_{j}}$ gets both symbols i and j. Effectively you "double the point" x into x^{-}(with symbol i) and x^{+}(with symbol j). This changes the topology of X, but can make $\boldsymbol{i}: X \rightarrow \Sigma$ into a homeomorphism. (Take care when $\operatorname{orb}(x)$ visits $\partial \mathcal{J}$ multiple times.)

Is the itinerary map continuous?

Usually, $\boldsymbol{i}: X \rightarrow \Sigma$ is discontinuous at every point x such that $\operatorname{orb}(x) \cap \partial \mathcal{J} \neq \emptyset$. But this is, in general, a small set and we can ignore it in, for example, the verification of Devaney chaos.

One-dimensional horse-shoes

Definition: Let $T: I \rightarrow I$ a map on a one-dimensional space (e.g., the interval or the circle). If I_{0}, \ldots, I_{N-1} are disjoint subintervals such that

$$
T\left(I_{i}\right) \supset \bigcup_{j=0}^{N-1} I_{j}
$$

then we say that T has an (N-fold) one-dimensional horse-shoe.
The restriction of T to

$$
\Lambda=\left\{x \in I: T^{n}(x) \in \bigcup_{j=0}^{N-1} l_{j} \text { for all } n \geq 0\right\}
$$

can be described symbolically by (Σ, σ). If T is also expansive, then $T: \Lambda \rightarrow \Lambda$ and $\sigma: \Sigma \rightarrow \Sigma$ are conjugate. In particular, $T: \Lambda \rightarrow \Lambda$ is chaotic in the sense of Devaney.
Remark: For most purposes we can relax the definition and allow I_{i} and l_{j} to intersect at their end-points. This brings ambiguity of \boldsymbol{i} at these intersections, but this affects only a countable set of points.

Markov partitions

Definition Let $T: I \rightarrow I$ be a one-dimensional map. A partition $\mathcal{J}=\left\{J_{0}, \ldots, J_{N-1}\right\} f X$ is called a Markov partition if

$$
T\left(J_{i}\right) \supset J_{j} \text { whenever } T\left(J_{i}\right) \cap J_{j} \neq \emptyset .
$$

We can assign a transition matrix to this partition:
$A=\left(a_{i j}\right)_{i, j=0}^{N-1}$ is an $N \times N$ matrix s.t. $a_{i, j}= \begin{cases}1 & \text { if } T\left(J_{i}\right) \supset J_{j}, \\ 0 & \text { otherwise. }\end{cases}$

Example:
$T\left(J_{0}\right)=J_{1}$
$T\left(J_{1}\right)=J_{0} \cup J_{1}$

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Markov partitions, an example

If a Markov partition $\mathcal{J}=\left\{J_{0}, \ldots, J_{N-1}\right\}$ is used to define the itinerary map, then

$$
\boldsymbol{i}(X) \supset \Sigma_{A}:=\left\{s \in\left\{0, \ldots, N_{1}\right\}^{\mathbb{N}}: a_{s_{n} s_{n+1}}=1 \text { for all } n \geq 0\right\}
$$

We call $\left(\Sigma_{A}, \sigma\right)$ as subshift of finite type (SFT) because a finite number of words (of length 2) are forbidden, name $s_{n} s_{n+1}$ with $a_{s_{n} s_{n+1}}=0$; for the rest, everything is allowed.

Lemma: If T has a Markov partition with transition matrix A, then the number of n-periodic orbits of T is $\geq \operatorname{trace}\left(A^{n}\right)$.

In the example,
$A^{n}=\left(\begin{array}{cc}F_{n-1} & F_{n} \\ F_{n} & F_{n+1}\end{array}\right) \quad \begin{array}{r}\text { for the Fibonacci numbers } \\ F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5} \cdots=0,1,1,2,3,5 \ldots\end{array}$

Period 3 implies chaos

Theorem (Li \& Yorke 1975): Let T be any continuous map on \mathbb{R}. If T has a periodic point of period 3 , then T has a periodic point of period p for every $p \geq 1$. In addition, T is Li-Yorke chaotic (i.e., has an uncountable scrambled set.)

Proof of existence of periodic orbits: If
$T^{3}(x)=x<T(x)<T^{2}(x)$, then there are closed interval I_{0} and I_{1} such that $T\left(I_{0}\right) \supset I_{1}$ and $T\left(I_{1}\right) \supset I_{0} \cup I_{1}$:

Hence, symbolically, the restriction of T to

$$
\Lambda=\left\{x \in I: T^{n}(x) \in I_{0} \cup I_{1} \text { for all } n \geq 0\right\}
$$

is the subshift of finite type Σ_{A} with $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$

Period 3 implies chaos: Proof continued

By the previous lemma, Σ_{A} has periodic sequences of every period. In fact, for $n \geq 2$, choose an n-periodic sequence as

$$
s=0 \underbrace{11 \ldots 1}_{n-1 \text { times }} 0 \underbrace{11 \ldots 1}_{n-1 \text { times }} 0 \underbrace{11 \ldots 1}_{n-1 \text { times }} \cdots
$$

There is a subinterval $K=I_{0} \underbrace{11 \ldots 1}_{n-1 \text { times }}$ such that $T^{i}(K) \subset l_{s_{i}}$ for
$0<i<n$, and $T^{n}(K) \supset K$. This follows from the Intermediate Value Theorem, which also gives the existence of an n-periodic point in $p \in K \subset I_{0}$. Because $T^{i}(p) \in I_{1}$ for $0<i<n$, the smallest period is indeed n.

Finally, because $T\left(I_{1}\right) \supset I_{1}$, there must be a fixed point in I_{1} by the Intermediate Value Theorem. This ends the proof.

Sharkovsky's Theorem

Unbeknownst to Li \& Yorke (1975), the Ukrainian mathematician Sharkovsky had proved in 1963 a far more general result.

Theorem (Sharkovsky 1963): Consider the following order (called Sharkovskiy order) on the positive integers:

$$
\begin{aligned}
& 3 \succ 5 \succ 7 \succ 9 \succ \ldots \\
& \succ 6 \succ 10 \succ 14 \succ 18 \succ \ldots \\
& \quad \succ 12 \succ 20 \succ 28 \succ 36 \succ \ldots
\end{aligned}
$$

$$
\cdots \succ 16 \succ 8 \succ 4 \succ 2 \succ 1
$$

odd numbers increasing
$2 \times$ odd numbers increasing
$4 \times$ odd numbers increasing
powers of 2 decreasing.

If T be a continuous map on \mathbb{R} has a periodic point of period p, then T has a periodic point of period q for all $q \prec p$.

