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Abstract. Iterated quadratic polynomials give rise to a rich collection of different
dynamical systems that are parametrized by a simple complex parameter c. The
different dynamical features are encoded by the kneading sequence which is an infinite
sequence over {0, 1}. Not every such sequence actually occurs in complex dynamics.
The set of admissible kneading sequences was described by Milnor and Thurston for
real quadratic polynomials, and by the authors in the complex case. We prove that
the set of admissible kneading sequences has positive Bernoulli measure within the
set of sequences over {0, 1}.

1. Introduction

One of the reasons why holomorphic dynamics is a successful subject is because
the rigidity of the complex structure makes it possible to describe many properties
in terms of symbolic dynamics. One of the most important concepts is that of the
kneading sequence. In its simplest form, for real quadratic polynomials, it is a sequence
of symbols “left” and “right” describing the location of the critical orbit with respect
to the point of symmetry (the critical point). Milnor and Thurston [MT] gave a
precise criterion which possible left/right-sequences occur as kneading sequences of
real quadratic polynomials, or equivalently of any unimodal real map (but they write
their combinatorics in a slightly different equivalent way, keeping track of whether the
map is locally increasing or decreasing).

Kneading sequences have a natural generalization to complex quadratic polynomials,
normalized as z 7→ z2 + c. To see this, suppose the dynamic ray at angle ϑ lands at the
critical value, so that the rays at angles ϑ/2 and (1 + ϑ)/2 land at the critical point.
Then the kneading sequence ν(ϑ) = ν1ν2ν3 · · · ∈ {0, 1}N

∗
of the angle ϑ can be defined

as follows:

νk ∈ {0, 1}N
∗
, νi =

 1 if 2(i−1)ϑ ∈ (ϑ/2, (ϑ+ 1)/2 ) ;
0 if 2(i−1)ϑ ∈ ( (ϑ+ 1)/2, ϑ/2 ) ;
? if 2(i−1)(ϑ) ∈ {ϑ/2, (ϑ+ 1)/2} .

Since our quadratic polynomials are monic (have leading coefficient 1), we define dy-
namic rays in the canonical way so that every ray at angle ϑ approaches ∞ at angle
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2πϑ. Then it is easy to see that the Milnor-Thurston kneading sequence of a real
quadratic polynomial with the ϑ-ray landing at the critical value equals the kneading
sequence ν(ϑ) (identifying “left” by 1 and “right” by 0). But this latter definition ap-
plies to all angles ϑ ∈ S1 = R/Z and thus to all complex polynomials (at least those for
which some dynamic ray lands at the critical value; but this question does not matter
from a combinatorial point of view).

Some technical remarks: The entry ? occurs (at position n) if and only ϑ is periodic
of period n; this boundary case happens in the Milnor-Thurston case also for periodic
critical points. And it may happen that several dynamic rays land at the critical value,
defining a kneading sequence for each. It turns out that the resulting kneading sequence
is independent of this choice (this is related to the fact that, at least for postcritically
finite polynomials, the critical value is always an endpoint of the connected hull of the
critical orbit within the Julia set).

If the filled-in Julia set is locally connected and has no interior (so the Julia set
is a dendrite), then it turns out that the kneading sequence alone allows one to give
a complete topological description of the Julia set and its dynamics. It may happen
that different complex quadratic polynomials have the same kneading sequence. In the
dendrite case, this happens if and only if different Julia sets are topologically conjugate
(by a conjugacy not necessarily respecting the embedding into the complex plane), and
this is related to certain symmetries of the Mandelbrot set that are best described in
terms of internal addresses (compare [S]). (If the main conjecture about quadratic
polynomials holds — local connectivity of the Mandelbrot set, or equivalently, combi-
natorial rigidity — then the only conjugacy that respects the embedding into the plane
is the identity.)

In [LS] the question was raised which sequences in {0, 1}N∗ occur as kneading se-
quences of complex quadratic polynomials or equivalently as kneading sequences of
angles; we call such kneading sequences complex admissible. This extension of the
Milnor-Thurston characterization from the real to the complex case was answered in
[BS, Theorem 4.2] in terms of a necessary and sufficient combinatorial condition in-
volving internal addresses: see Definition 2.3.

In this note we prove the following result.

1.1. Theorem (Positive Measure for Admissible Kneading Sequences)
The set of admissible kneading sequences has positive (1

2
-1
2
)-product measure as subset

of {0, 1}N∗.

In fact, the same result holds for any (p, 1− p)-product measure with p ∈ (0, 1).
The admissibility condition is so that the non-complex admissible kneading sequences

form a countable union of cylinders in {0, 1}N∗ (a n-cylinder is the set of sequences with
common first n entries). It thus suffices to discuss admissibility of periodic sequences.

The fundamental tool for characterizing complex admissible kneading sequences is
the fact (shown in [BKS]) that every periodic kneading sequence ν has an associated
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abstract Hubbard tree which is a finite topological tree that satisfies all properties of
Hubbard trees of quadratic polynomials, except that it may possibly not have an
embedding into the plane that is respected by the dynamics. But it is a finite tree
T with a continuous surjective map f : T → T of degree at most two, with a single
critical point which has a finite orbit that contains all endpoints of T , and subject to a
certain expansitivity condition. Such a tree gives much more structure to a kneading
sequence, and it can be decided relatively easily whether or not it has an embedding
compatible with the dynamics, and thus whether or not the given kneading sequence
is complex admissible. The only obstruction is a periodic branch point where the first
return map does not permute all local branches transitively (and not even with the
same period); we call such a branch point evil. We have a precise condition if a given
kneading sequence ν has an evil branch points of any period m: see Definition 2.3; if
this happens, we say that ν fails the admissibility condition for period m. A kneading
sequence ν (periodic or not) is complex admissible if and only if it does not fail the
kneading sequence for any period m.

The simplest ?-periodic kneading sequence that is not complex admissible is ν =
10110?; the associated Hubbard is shown in Figure 1.1. The sequence ν fails the
admissibility condition for period 3, corresponding to an evil branch point of period
3 in the tree. The entire 6-cylinder of sequences starting with 101100 . . . fails the
admissibility condition for period m = 3.
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Figure 1.1. The Hubbard tree with kneading sequence 10110? con-
tains an orbit of evil branch points of period 3: the first return map
interchanges two arms and fixes the third. We write ci = f ◦i(0).

Further properties on Hubbard trees, including the precise construction, properties
and connections to external rays, quadratic laminations etc., can be found in [DH, M,
Po, BS, BKS, K].
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2. Basic definitions and properties

By convention, a kneading sequence starts with 1. We say that a sequence ν is
?-periodic of period n if ν = ν1 . . . νn−1? with ν1 = 1 and νi ∈ {0, 1} for 1 < i < n. Let

Σ := {0, 1}N∗ ,
Σ1 := {ν ∈ Σ: the first entry in ν is 1} ,
Σ? := Σ1 ∪ {all ?-periodic sequences except ?} ,

In order to avoid silly counterexamples, ? is not considered to belong to Σ?. All
sequences in Σ? will be called kneading sequences.

While kneading sequences are just binary sequences, they have a “human-readable”
recoding in terms of internal addresses, which are strictly increasing sequences of in-
tegers starting with 1 (and which give an elegant description of the corresponding
parameters within the Mandelbrot setM: taking a path inM from the main cardioid
to some parameter c, the successive entries of the internal address give the lowest pe-
riods of the hyperbolic components that one encounters on this path, see [LS]). The
conversion algorithm is bijective and is based on the following function.

2.1. Definition (ρ-Function and Internal Address)
For a sequence ν ∈ Σ?, define

ρν : N∗ → N∗ ∪ {∞}, ρν(n) = inf{s > n : νs 6= νs−n}.
We usually write ρ for ρν and call orbρ(s) = {ρ◦i(s)}i≥0 the ρ-orbit of s. The case
s = 1 is the most important one; this is the internal address of ν and we denote it as

1 = S0 → S1 → S2 → . . .

with Sk+1 = ρ(Sk). If ρ◦k+1(1) = ∞, then we say that the internal address is finite:
1→ ρ(1)→ . . .→ ρ◦k(1).

The map from kneading sequences in Σ1 to internal addresses is injective. In fact,
the algorithm of this map (originally from [LS, Algorithm 6.2]) can easily be inverted:

2.2. Algorithm (From Internal Address to Kneading Sequence)
The following inductive algorithm turns internal addresses into kneading sequences in
Σ1: the internal address S0 = 1 has kneading sequence 1, and given the kneading
sequence νk associated to 1 → S1 → . . . → Sk, the kneading sequence associated to
1 → S1 → . . . → Sk → Sk+1 consists of the first Sk+1 − 1 entries of νk, then the
opposite to the entry Sk+1 in ν (switching 0 and 1), and then repeating these Sk+1

entries periodically.

Proof. The kneading sequence 1 has internal address 1. If νk has internal address
1 → S1 . . . → Sk and ν is the internal address of period Sk+1 as constructed in the
algorithm, then the internal address of ν clearly starts with 1 → S1 → . . . → Sk, and
ρν(Sk) = Sk+1, so the internal address of ν is 1→ S1 . . .→ Sk → Sk+1. 2
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The ρ-function is of fundamental importance in the work of Penrose [Pe] under the
name of non-periodicity function; the internal address is called principal non-periodicity
function.

It is by means of the ρ-function that evil periodic branch points can be detected.
This leads to the condition given in [BS, Definition 4.1]:

2.3. Definition (The Admissibility Condition)
A kneading sequence ν ∈ Σ? fails the admissibility condition for period m (which is the
period of the corresponding evil branch point) if the following three conditions hold:

(1) the internal address of ν does not contain m;
(2) if s < m divides m, then ρ(s) ≤ m;
(3) ρ(m) <∞ and if r ∈ {1, . . . ,m} is congruent to ρ(m) modulo m, then orbρ(r)

contains m.

A kneading sequence fails the admissibility condition if it does so for some m ≥ 1.
An internal address fails the admissibility condition if its associated kneading sequence
does.

A kneading sequence (periodic or not) is called admissible unless it fails this condition
for any period m.

3. The measure of admissible kneading sequences

We equip the space Σ1 of all 0-1-sequences starting with 1 with the product topology
and the (1

2
-1
2
)-product measure µ, normalized so that µ(Σ1) = 1.

3.1. Definition (n-Admissible Cylinders and Kneading Sequences)
Let E ⊂ Σ1 be the set of all sequences which satisfy the Admissibility Condition 2.3
for every m (the set of admissible kneading sequences). For n ≥ 1, a finite word
ν1 . . . νn with νi ∈ {0, 1} and ν1 = 1 is called an admissible n-word if there is a ν ∈ E
which begins with ν1 . . . νn. An admissible n-cylinder is an n-cylinder that contains an
admissible sequence. Finally, let En be the union of the admissible n-cylinders; this is
the set of n-admissible kneading sequences.

Whether or not ν ∈ Σ1 fails the admissibility condition for period m depends only
on the first ρν(m) entries in ν, so if ν fails the condition for period m, then an entire
ρν(m)-cylinder is non-admissible. Thus E = ∩n≥1En is a decreasing intersection of sets
which are simultaneously open and compact.

3.2. Lemma (Admissible Kneading Sequences Form Cantor Set)
The set E ⊂ Σ1 of admissible kneading sequences forms a Cantor set so that Σ1 \E is
dense in Σ1. In particular, E is measurable with respect to µ.

Proof. Any violation of the admissibility condition for period m discards an entire
cylinder subset of Σ1. The set of non-admissible kneading sequences is a union of such
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cylinder sets and hence open. As a closed subset of the compact set Σ1, the set E is
compact. Clearly, E is totally disconnected because Σ1 ⊃ E is.

Recall from Algorithm 2.2 that if Sk = ρ◦kν (1) is an element of the internal address
of ν then νk is the Sk-periodic kneading sequence that coincides with ν for Sk entries.
If ν ∈ E, then νk ∈ E. We can always extend admissible kneading sequences via direct
bifurcations, so for any admissible internal address 1 → . . . → Sk and any p > 1,
the internal address 1 → S1 → . . . → Sk → pSk is admissible. Since k and p are
arbitrary, ν is not an isolated point. Finally, non-admissible sequences are dense in
Σ1 because any finite word can be continued into a non-admissible one. Indeed, given
any ν = ν1ν2ν3 · · · ∈ Σ1 and any prime m > ρν(1), define a sequence ν ′ = ν ′1ν

′
2 . . . with

ν ′k = νk unless m divides k, choosing ν ′m so that m is not in the internal address of ν ′,
and ν ′2m 6= ν ′m. Then ρν′(m) = 2m and ν ′ fails the admissibility condition for period m:
the first and third conditions are clearly satisfied, and the second one is void because
m is prime. 2

3.3. Corollary (Admissible Periodic Sequences)
Let Rk be the number of admissible periodic kneading sequences of period k in Σ1. Then

lim
k→∞

Rk

2k−1
= µ(E) .

Proof. We have µ(Ek) = Rk2
−(k−1) and µ(E) = limk→∞ µ(Ek). 2

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix n1 := 100 and define a sequence of integers {ni}i≥1 so that
ni+1 is the largest integer less than 3

2
ni for which ni+1 − ni is divisible by 2i (this

gives 100, 148, 220, 328, 488,. . . ). Let mi := (ni+1 − ni)/2. Then one can check that
(1.45)i < mi. Clearly, ni+1 <

3
2
ni < ni + 3

4
ni−1 < ni + ni−1 and mi < ni/4.

Let F1 be some cylinder of length n1 containing an admissible sequence so that no
block of 40 consecutive 0′s appears among the first n1 entries. For i ≥ 1, define

Fi+1 :=


ν ∈ Fi : every k ≤ ni+mi has an s ∈ orbρν (k)∩orbρν (1)

with ni +mi < s ≤ ni+1

and the entries ni, ni + 1, . . . , ni+1 − 1 in ν do
not contain a block of bni/8c zeroes.


For every ν ∈ Fi+1, every k ≤ ni + mi satisfies ρν(k) ≤ ni+1, so every Fi+1 is a union
of cylinder sets of length ni+1.

Claim. The second condition for Fi+1 implies that for all N ≤ ni+1, the first N entries
in any ν ∈ Fi+1 do not contain a contiguous block of bN/4c zeroes.

Indeed, for any nj < N , the longest block of consecutive zeroes among entries nj
. . .nj+1− 1 has length less than nj/8; if these are near the end, they can be continued
by less than nj+1/8 further zeroes, yielding a total number of consecutive zeroes of less
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than nj/8 + nj+1/8 < (5/16)nj, and they end at entry number (9/8)nj+1 < (27/16)nj,
so among the first (27/16)nj entries there are no more than (5/16)nj < (27/16)nj/4
consecutive zeroes.

The two main steps in the proof are E ⊃ ∩iFi and µ(Fi+1) ≥ ciµ(Fi) for numbers
ci > 0 with

∏
i ci > 0, from which the conclusion will follow.

(1) Admissibility of cylinders Fi and E ⊃
⋂
i Fi. By induction over i ≥ 1,

we show that all ν ∈ ∩jFj are ni-admissible for all i. They are n1-admissible by
hypothesis. Suppose ν ∈ ∩jFj is ni-admissible but not ni+1-admissible; then ν fails
the Admissibility Condition 2.3 for some period m with ni < ρ(m) ≤ ni+1. Let
r ∈ {1, 2, . . . ,m} be congruent to ρ(m) modulo m.

If m ≤ ni−1 +mi−1, then by definition of Fi−1, there is an s ∈ orbρ(m)∩orbρ(1) with
s ≤ ni; since m /∈ orbρ(1), we have ρ(m) ≤ s ≤ ni, which is a contradiction. Hence
m > ni−1 +mi−1.

If r ≥ ni−1 + mi−1, then ρ(m) ≥ m + r > 2ni−1 + 2mi−1 = ni + ni−1 > ni+1, again
a contradiction. Thus r < ni−1 + mi−1, and there is an s ∈ orbρ(r) ∩ orbρ(1) with
s ≤ ni. By the admissibility condition, m ∈ orbρ(r) and m /∈ orbρ(1), hence s > m.
Thus s ∈ orbρ(m) and ρ(m) ≤ s ≤ ni in contradiction to ni-admissibility of ν. This
final contradiction shows that E ⊃ ∩iFi as claimed.

(2) A bound on the number of jumps of ρ. Given ν and an integer r, let
Jν(r) = {k ≤ r : ρ(k) > r}. Obviously, Jν(r) depends only on the first r entries of ν.

Claim. For each i ≥ 1,

if ν ∈ Fi and ni +mi ≤ r < ni+1 then #Jν(r) < i/2 + 150 . (?)

Indeed, if k ∈ Jν(r), then νk+1 . . . νr = ν1 . . . νr−k. Suppose that r − k > n2. Then
there is a unique j ≥ 1 with nj+2 ≥ r − k > nj+1, and the hypothesis r < ni+1 implies
j < i. Since all k′ ∈ {1, 2, . . . , nj +mj} have ρ(k′) ≤ nj+1 < r−k by definition of Fj+1,
it follows that all k′ ∈ {k+ 1, k+ 2, . . . , k+ nj +mj} have ρ(k′) ≤ k+ nj+1 < r, hence
k′ /∈ Jν(r).

We turn this into an inductive argument: write Jν(r) = {k1, k2, k3, . . . , kS} with
ks < ks+1 for all s. Let js be so that njs+2 ≥ r−ks > njs+1. Then ks+1 > ks+njs +mjs ,
hence

nj(s+1)+1 < r − ks+1 < r − ks − njs −mjs ≤ njs+2 − njs −mjs

= njs + 2mjs + 2mjs+1 − njs −mjs = mjs + 2mjs+1

< njs/4 + njs+1/2 < njs ,

so js+1 + 1 < js or js+1 ≤ js− 2. Since we started with r− k1 < r < ni+1, after s turns
of this argument we have r− ks+1 < njs with js ≤ i+ 1− 2s, and for s ≤ (i− 1)/2 we
have js ≤ 2, so r − ks+1 < n2 or ks+1 > r − n2, and there are at most n2 such values
of ks. “ It follows that #Jν(r) ≤ (i− 1)/2 + 1 + n2 < i/2 + 150 as claimed.
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(3) Separate treatment of sub-blocks. Now we begin the proof that µ(Fi+1) is
not too small compared to µ(Fi). Suppose i ≥ 40, which implies blog2(i/2+150)c+1 ≤
bi/4c. Let C be any ni + mi-cylinder in Fi and pick ν ∈ C. Divide the integer
interval [ni + mi + 1, ni+1] into mi/i blocks B1, B2, . . . of length i. By Equation (?),
#Jν(ni+mi) < i/2+150, and there are 2i different possibilities for B1 which extend C.
We claim that at least 2i/2 of them are barriers in the sense that for all k ∈ Jν(ni+mi),
we have ni +mi + 2bi/4c ∈ orbρ(k). This is useful in view of the first condition of the
definition of Fi. To construct these barriers, divide B1 into three subblocks: the first
two of length bi/4c each, the last of length i− 2bi/4c ≥ i/2.

In the second subblock, every entry is 0. The third subblock is filled arbitrarily with
0 and 1, for which there are at least 2i/2 possibilities. The first subblock needs more
care.

In the first subblock of B1, choose the first entry (at position ni + mi + 1) so that
ni + mi + 1 ∈ orbρ(k) for at least half of the elements k ∈ Jν(ni + mi); choose the
second entry so that ni + mi + 2 ∈ orbρ(k) for at least half of the remaining elements
in Jν(ni + mi), and so on. The first blog2(i/2 + 150)c + 1 entries in B1 suffice so
that for every k ∈ Jν(ni + mi), orbρ(k) contains at least one of these positions. Since
blog2(i/2 + 150)c+ 1 ≤ bi/4c, we have used only positions within the first subblock of
B1. Fill the remaining entries within the first subblock of B1 arbitrarily.

Since the first N entries of ν do not contain a contiguous block of bN/4c zeroes, it
follows that the orbit of every k ∈ Jν(ni + mi) visits an entry in the second subblock
of B1, and orbρ(k) contains the last position in the second subblock of B1, which is
ni +mi + 2bi/4c ∈ orbρ(k).

An analogous construction can be repeated for all the other blocks B2, B3,. . . . Sup-
pose that at least a single block Bj has a barrier as above. Then the construction yields
ni+1-cylinders which satisfy the first condition for Fi+1: for k ≤ ni+mi, we either have
ρ(k) ≤ ni + mi and we consider ρ(k) instead of k, or k ∈ Jν(ni + mi + (j − 1)i) and
orbν(k) visits ni+mi+2bi/4c+(j−1)i. Therefore ni+mi+2bi/4c+(j−1)i ∈ orbν(k)
for every k ≤ ni +mi + 2bi/4c, in particular for k = 1.

(4) Estimating the relative loss of measure. Given the ni + mi-cylinder C,
there are 2i continuations into ni + mi + i-cylinders in Fi+1, and at least 2i/2 of them
have a barrier in B1 as constructed above, so at most a relative proportion of 1− 2−i/2

has no barrier within B1. The same bound for the relative proportions holds for B2,
B3, . . . . We find that the proportion of ni+1-cylinders in C with no barrier at any block
Bj for j = 1, . . . ,mi/i is (1− 2−i/2)mi/i. We have mi > (1.45)i > 2i/2, so mi2

−i/2 > αi

with α > 1. Therefore

(1− 2−i/2)mi/i <
(
exp(−2−i/2)

)mi/i
= exp

(
−2−i/2

mi

i

)
< exp(−αi/i) < i/αi,

and the relative proportion of ni+1-cylinders in Fi+1 satisfying the first condition is at
least 1− i/αi.
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We still have to take care of the second condition for Fi+1. Among the 22mi con-
tinuations from any ni-cylinder into an ni+1-cylinder, there are 22mi−bni/8c which have
bni/8c contiguous entries 0 beginning at any given position ni, ni+1, . . . , ni+1−bni/8c,
and less than 2mi2

2mi−bni/8c which have bni/8c contiguous 0’s between entries ni and
ni+1 − 1 (inclusively). The proportion of ni+1-cylinders in Fi which do not contain
bni/8c consecutive 0’s is thus at least 1− 2mi2

−bni/8c > 1− 1
2
ni2
−bni/8c.

Therefore

µ(Fi+1) ≥
[
1−

(
1− 2−i/2

)mi/i] [
1− 1

2
ni2
−bni/8c

]
µ(Fi)

>

[
1− i

αi

] [
1− ni

2 · 2bni/8c
]
µ(Fi)

for i ≥ 40. Since
∑

i i/α
i <∞ and

∑
i ni/2

bni/8c <∞, it follows

µ(E) ≥ µ

(⋂
i

Fi

)
≥ µ(F40)

∏
i≥40

[
1− i

αi

] [
1− ni

2 · 2bni/8c
]
> 0

because F40 contains at least one cylinder set. This proves the theorem. 2

Remark. A similar proof shows that µp(E) > 0 for the (p, 1−p)-product measure µp.

A computation (shown in Table 1) suggests that about 80 percent of Σ1 is admissible.
Unfortunately, the convergence is too slow to make precise estimates for µ(E). Let us
discuss some examples from this table: for n = 6, the 25 total cylinders of length 6
are the binary words of length 6 starting with 1, and the only non-admissible cylinder
is 101100 (the only non-admissible ?-periodic sequence is 10110?, but the cylinder
101 101 is admissible). For n = 7, the two non-admissible cylinders are the two
continuations of 101100; for n = 8, we have four continuations, as well as the new
cylinders 1001 1000, 1101 1100 and 1011 1100.

References

[BS] Henk Bruin, Dierk Schleicher, Admissibility of kneading sequences and structure of Hubbard
trees for quadratic polynomials, J. London. Math. Soc. 8 (2009), 502–522.

[BKS] Henk Bruin, Alexandra Kaffl, Dierk Schleicher, Existence of quadratic Hubbard trees, Fund.
Math. 202 (2009), 251–279.

[DH] Adrien Douady, John Hubbard, Études dynamique des polynômes complexes I & II, Publ.
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