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Abstract. A point c in the Mandelbrot set is called biaccessible if
two parameter rays land at c. Similarly, a point x in the Julia set of a
polynomial z 7→ z2 + c is called biaccessible if two dynamic rays land at
x. In both cases, we say that the external angles of these two rays are
biaccessible as well.

In this paper we describe a purely combinatorial characterization of
biaccessible (both dynamic and parameter) angles, and use it to give
detailed estimates of the Hausdorff dimension of the set of biaccessible
angles.

1. Introduction

Dynamic rays and their landing properties are a key tool to understand-

ing (the topology of) Julia sets of polynomials. In particular, the structure

of the Julia set is determined by rays that land at a common point: at least

in good cases (under the assumption of local connectivity), the knowledge of

which rays land together gives a homeomorphic model for the Julia set that

is known as Douady’s pinched disk model [D]. Very similarly, Thurston de-

veloped his concept of invariant laminations [Th1] that provides a uniform

topological model at least of quadratic polynomials, based upon a single

quantity, the external angle, which determines which rays land together (at

least combinatorially). Analogous statements hold for the Mandelbrot set,

the parameter space of quadratic polynomials with connected Julia sets:

there is a simple topological model, the quadratic minor lamination, that

describes the Mandelbrot set in terms of which rays (should) land together.

In all these cases, a point in C is called biaccessible if it is the landing point

of two or more rays.
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Biaccessibility is of interest from several more points of view. For in-

stance, mating constructions [R, Sh, Ta2] and certain constructions of space-

filling curves [Si1, Si2] also rely on the biaccessibility of external angles (and

rays).

It is of interest to quantify “how many” rays land together. The biacces-

sibility dimension is defined as the Hausdorff dimension of those external

angles for which the corresponding rays land together with some other ray.

Thurston observed [Th2] that at least for postcritically finite parameters

the biaccessibility dimension equals (up to a factor of log 2) the core en-

tropy of the polynomial, i.e., the topological entropy of the restriction to

the Hubbard tree. This relation holds true in greater generality, for instance

for postcritically infinite parameters with a compact Hubbard tree [Ti1]. For

an appropriately extended definition of core entropy for arbitrary quadratic

polynomials with connected Julia set, this relation is in fact true in full

generality; see Jung’s appendix in [DS]. Inspired by questions of Thurston

and Hubbard, the question of continuity of core entropy is a topic of core

interest: see [Th2, CT, Ti1, J, Ta3] and the recent papers [Ti2, DS].

Biaccessible angles have been studied in terms of Lebesgue measure on

S1, in particular by Smirnov [Sm] and Zdunik [Zd]. For any polynomial

Julia set that is not an interval, the set of biaccessible angles on S1 has 1-

dimensional Lebesgue measure zero. In other words, the biaccessible points

have harmonic measure zero. This was strengthened in [MS] proving that the

biaccessibility dimension (the Hausdorff dimension of the set of biaccessible

dynamic angles) is strictly less than 1 (except, of course, when the Julia set

is an interval). For further results on different aspects of biaccessibility, see

for instance Zakeri [Za] and [SZ].

In this paper, we will take a purely combinatorial point of view. That

is, we express combinatorial biaccessibility in terms of external angles, the

angle doubling map, and their itinerary with respect to the partition of S1

defined by ϑ/2 and (1+ϑ)/2, where ϑ is the parameter angle. We denote by

Biacϑ the set of combinatorially biaccessible ϕ ∈ S1, and since this condition

carries over to parameter space, we can define Biac analogously as the set

of combinatorially biaccessible parameter angles ϑ ∈ S1. To summarize our

main results, we

• give detailed estimates of dimH(Biacϑ) (Section 6) and dimH(Biac)
(Section 7);

• treat the case of real parameters c ∈ M ∩ R, and conclude that

dimH(Biac) = 1, which is due to the angle ϑ = 1
2
: away from any
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neighborhood of ϑ = 1
2
, the dimension is strictly smaller than 1 (see

the remark below Theorem 2.5);

• describe exactly those angles ϑ for which dimH(Biacϑ) = 0.

We give precise statements of these results in Section 2. The necessary

combinatorial language will be developed in Section 3; in particular, we

relate topological and combinatorial biaccessibility.

We emphasize that the Hausdorff dimension estimates obtained in this

paper are for sets of external angles, i.e., subsets of S1. As far as we are

aware, there is no direct relation to the dimension of the set of biaccessible

points either in Jc or in M. For instance, Lyubich [Ly2] showed that the

parameters inM∩R representing infinitely renormalizable maps form a set

of Hausdorff dimension at least 1
2
. In contrast, the Hausdorff dimension of

infinitely renormalizable parameter angles is zero (see Section 2.4).

Taking a purely combinatorial approach bypasses the complications of

non-locally connected Julia sets (and potentially the Mandelbrot set). Julia

sets and the Mandelbrot set are possibly not locally connected, in which

case some external rays may not land, or not land where they are “combi-

natorially” supposed to land. We will show in Proposition 3.6 that this has

no impact on the Hausdorff dimension of the angles of biaccessible points.

Acknowledgement. The authors thank Wolf Jung and Marten Fels for

their critical reading of this text and related manuscripts, and the referee(s)

for their insightful comments. Also, we would like to thank the Erwin-

Schrödinger-Institut in Vienna (specifically, the workshop “Ergodic Theory

and Holomorphic Dynamics” September–October 2015) for their support

during an important phase of this work.

2. Statements of Main Results

2.1. Rays and biaccessibility. We start by giving a quick review of rays

and their landing properties, before we relate this, in later subsections,

to combinatorial questions. We will only consider quadratic polynomials

pc(z) = z2 + c on the Riemann sphere C. In this setting, ∞ is a super-

attractive fixed point. All points that converge to∞ under iteration of pc be-

long to the basin A(∞); the remaining points belong to the filled-in Julia set

Kc = C\A(∞). The Julia set Jc is the common boundary of Kc and A(∞).

IfKc is connected, then there is a unique Riemann map ψc : C\Kc → C\D
with ψc(∞) = ∞ and ψc(z)/z → 1 as z → ∞. Böttcher coordinates on

A(∞) are defined as preimages of polar coordinates on C\D: every z ∈ C\Kc
has its potential |ψc(z)| and its external angle argψc(z)/2π (so that external
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angles are measured in terms of full turns, where the full circle has measure

1, not 2π in radians).

The Böttcher map ψc conjugates pc to the map z 7→ z2 as follows:

(ψc(z))2 = ψc ◦ pc(z) for all z ∈ A(∞). Given an angle ϕ ∈ [0, 1), the

dynamic ray at angle ϕ is the set Rc(ϕ) := ψ−1c ({re2πiϕ : r > 1}), and the

ray is said to land if limr→1 ψ
−1
c (re2πiϕ) exists; this limit is called the landing

point (it is always in Jc). An external angle is called biaccessible if there is

another external angle so that the associated rays have the same landing

points.

The situation in parameter space is analogous. The Mandelbrot set M
is defined as the set of parameters c for which the filled-in Julia set Kc is

connected. There is a Riemann map ψ : C \M → C \ D for the exterior of

the Mandelbrot set; in these terms, we can define parameter rays R(ϑ) :=

ψ−1({re2πiϑ : r > 1}) and study their landing points and biaccessibility.

The Riemann map ψ and parameter rays were introduced by Douady and

Hubbard in their Orsay Notes [DH].

2.2. Itineraries, sequences and the ρ-function. Our starting point is

an angle ϑ ∈ S1 = R/Z that we view as external parameter. It is used

to partition S1 and define symbolic dynamics for the angle doubling map

D : S1 → S1, ϕ 7→ 2ϕ (mod 1).

Definition 2.1. (Itinerary and Kneading Sequence of External Angle).

Given an external angle ϑ ∈ S1, we associate to each ϕ ∈ S1 its itinerary

νϑ(ϕ) = ν1ν2 . . . with νk ∈ {0, 1, ?} by:

νk :=





0 if D◦k−1(ϕ) ∈
(
1+ϑ
2
, ϑ
2

)
,

1 if D◦k−1(ϕ) ∈
(
ϑ
2
, 1+ϑ

2

)
,

? if D◦k−1(ϕ) ∈
{
ϑ
2
, 1+ϑ

2

}
,

where the intervals are interpreted with respect to cyclic order. The kneading

sequence ν(ϑ) of ϑ is its itinerary with respect to itself: ν(ϑ) := νϑ(ϑ); see

Figure 1.

Finally, for ϕ ∈ S1 we say that Step(ϕ) = k if D◦k(ϕ) = ϑ and k ≥ 0 is

minimal with this property.

Note that in the definition of the kneading sequence, a change in ϑ

amounts to a change in the orbit orbD(ϑ), as well as a change in the partition

itself. Our definition involves the convention that every kneading sequence

ν(ϑ) starts with the symbol 1, except for ϑ = 0.

A kneading sequence ν contains a ? at position n if and only if ϑ is

periodic with period n; the exact period of ϑ may divide n. (There are also
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Definition 2.1 (Itinerary and Kneading Sequence of External Angle).
Given an external angle # 2 S1, we associate to each ' 2 S1 its itinerary ⌫#(') =
⌫1⌫2 . . . with ⌫i 2 {0, 1, ?} by:

⌫i :=

8
><
>:

0 if D�k�1(') 2
�

1+#
2

, #
2

�
,

1 if D�k�1(') 2
�
#
2
, 1+#

2

�
,

? if D�k�1(') 2
�

#
2
, 1+#

2

 
,

where the intervals are interpreted with respect to cyclic order. The kneading sequence
⌫(#) of # is its itinerary with respect to itself: ⌫(#) := ⌫#(#); see Figure ??.

Finally, for ' 2 S1 we say that Step(') = k if D�k(') = # and k is minimal with
this property.

1

0

1

0

Figure 1. Left: the kneading sequence of an external angle # (here
# = 1/6) is defined as the itinerary of the orbit of # under angle doubling,
taken with respect to the partition formed by the angles #/2 and (# +
1)/2. Right: in the dynamics of a polynomial for which the #-ray lands
at the critical value, an analogous partition is formed by the dynamic
rays at angles #/2 and (# + 1)/2, which land together at the critical
point.

Figure 1. Left: the kneading sequence of an external angle
ϑ (here ϑ = 1/6) is defined as the itinerary of the orbit of
ϑ under angle doubling, taken with respect to the partition
formed by the angles ϑ/2 and (ϑ+1)/2. Right: in the dynam-
ics of a polynomial for which the ϑ-ray lands at the critical
value, an analogous partition is formed by the dynamic rays
at angles ϑ/2 and (ϑ+1)/2, which land together at the critical
point.

non-periodic angles that yield periodic kneading sequences without ?.) We

say that a sequence ν is ?-periodic of period n if ν = ν1 . . . νn−1? with ν1 = 1

and νi ∈ {0, 1} for 1 < i < n; this happens if and only if ϑ is periodic of

exact period n. Write N = {0, 1, 2, 3, . . . } and N∗ = {1, 2, 3, . . . }. Let

Σ := {0, 1}N∗ ,
Σ1 := {ν ∈ Σ: the first entry in ν is 1} ,
Σ? := Σ1 ∪ {all ?-periodic sequences except ?} .

The metric on Σ is d(x, y) =
∑∞

i=1 2−i|xi − yi|. In order to avoid silly coun-

terexamples, ? is not considered to belong to Σ?. All sequences in Σ? will

be called kneading sequences, regardless of whether or not they occur as the

image of an angle ϑ ∈ S1.

To compress the information of the kneading sequence ν, it is useful to

introduce the ρ-function.
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Definition 2.2. (ρ-Function and Internal Address1).

For a sequence ν ∈ Σ?, define

ρν : N∗ → N∗ ∪ {∞}, ρν(n) = inf{k > n : νk 6= νk−n}.

We usually write ρ for ρν and call orbρ(k) = {ρ◦i(k)}i≥0 the ρ-orbit of k.

The case k = 1 is the most important one; this is the internal address of ν

and we denote it as

1 = S0 → S1 → S2 → . . .

The name internal address is motivated by the fact that if ϑ is the parameter

angle of c ∈ ∂M and γ ⊂ M is a (combinatorial) arc connecting 0 to c,

then the periods of the hyperbolic components of M intersecting γ having

a lower period than any later hyperbolic component intersecting γ form

precisely the entries of the internal address, see [LS, Sch1].

The map from kneading sequences in Σ1 to internal addresses is injective.

In fact, the algorithm of this map can easily be inverted:

Algorithm 2.3. (From Internal Address to Kneading Sequence).

The following inductive algorithm turns internal addresses into kneading

sequences in Σ1: the internal address S0 = 1 has kneading sequence 1, and

given the kneading sequence νk associated to 1 → S1 → . . . → Sk, the

kneading sequence associated to 1→ S1 → . . .→ Sk → Sk+1 consists of the

first Sk+1 − 1 entries of νk, followed by the opposite to the entry Sk+1 in ν

(switching 0 and 1), and then repeating these Sk+1 entries periodically.

Proof. The kneading sequence 1 has internal address 1. If νk has internal

address 1 → S1 . . . → Sk and ν is the kneading sequence of period Sk+1 as

constructed in the algorithm, then the internal address of ν clearly starts

with 1 → S1 → . . . → Sk, and ρν(Sk) = Sk+1, so the internal address of ν

is 1→ S1 → . . .→ Sk → Sk+1. �

2.3. Hausdorff Dimension of Biaccessible Angles. Our results are

about biaccessible points both in Julia sets and in the Mandelbrot set. If

K ⊂ C is compact, then a point z ∈ ∂K is topologically biaccessible if there

are two curves γ1, γ2 : [0, 1]→ C with γi(0) =∞, γi(1) = z, γi([0, 1)) ⊂ C\K
(for i = 1, 2) and so that γ1 and γ2 are not homotopic in C \K fixing end-

points. We will translate this into a combinatorial setting in Section 3 but

1The ρ-function is of fundamental importance in the work of Penrose [P] under the
name of non-periodicity function; the internal address is called principal non-periodicity
function.
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first state our main results here. These results will be given in terms of two

quantities N and S that we define first.

(i) For a kneading sequence ν = 1ν2ν3ν4 · · · ∈ Σ1, let

(2.1) N = N(ν) := 1 + min{i > 1: νi = 1},
so that N(ν) − 1 is the position of the second 1 in ν (and N(ν) = ∞ if

ν = 10); hence N(ν) ≥ 3. Set M := bN/2c − 1 and

U1(N) := 1− 1

2N log 2N
and(2.2)

L1(N) :=





1− 1
2M log 2M

if N ≥ 6

1/2 if N = 5,
0 if N ∈ {3, 4}.

(2.3)

Finally, set L1(N) = U1(N) = 1 if N =∞.

(ii) For a kneading sequence ν with internal address 1→ S1 → S2 → . . . ,

let

(2.4) κ = κ(ν) := sup{k ≥ 1 : Sj is a multiple of Sj−1 for all 1 ≤ j ≤ k} .
We define L2(Sκ+1) and U2(Sκ+1) as follows:

(a) if κ =∞, then Sκ+1 =∞ by default and L2(Sκ+1) = U2(Sκ+1) = 0;

(b) if κ < ∞ and ν is periodic of period Sκ, then Sκ+1 = ∞ by default

and again L2(Sκ+1) = U2(Sκ+1) = 0;

(c) otherwise (i.e., if κ < ∞ and ν is not periodic of period Sκ, hence

Sκ+1 <∞), we set

(2.5) L2(Sκ+1) := 1/Sκ+1, U2(Sκ+1) :=
√

7/Sκ+1 .

With these definitions, define the interval

(2.6) I(N,S) :=
[

max
{
L1(N), L2(S)

}
, min

{
U1(N), U2(S)

} ]
.

We define combinatorial biaccessibility in Definition 3.3; this leads to the

following two sets (for the dynamical planes respectively parameter space)

that we will investigate:

Biacϑ = {ϕ ∈ S1 : ϕ is combinatorially biaccessible with respect to ϑ},
and

Biac = {ϑ ∈ S1 : ϑ is combinatorially biaccessible}.
With these definitions, our first main result is as follows.

Theorem 2.4. (Hausdorff Dimension of Biaccessible Angles).

For every parameter angle ϑ ∈ S1,

dimH(Biacϑ) ∈ I(N,S)
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for N = N(ν(ϑ)) and S = Sκ+1(ν(ϑ)). In particular, the set of biaccessible

external dynamic angles has Hausdorff dimension less than 1 unless ϑ =

1/2.

This implies that the harmonic measure of the biaccessible points in

quadratic Julia sets is zero, unless ϑ = 1
2
; this was of course known earlier

[Sm, Za, Zd]. Our result that the Hausdorff dimension of biaccessible angles

is less than 1 except when the Julia set is an interval (which, in the quadratic

case, means ϑ = 1/2) was later generalized to all degrees in [MS].

The similarity of Theorem 2.4 and the next one underlines the similarity

of the structure of Jc and the local structure of M near c as in [Ta1].

Theorem 2.5. (Hausdorff Dimension of Biaccessible Parameter Angles).

For any N,S ≥ 3, we have

dimH

(
Biac ∩

{
ϑ ∈ S1 : N(ν(ϑ)) = N and Sκ+1(ν(ϑ)) = S

})
∈ I(N,S).

Remark 2.6. The estimate [L2(Sκ+1), U2(Sκ+1)] is best where the biac-

cessibility dimension is small. In every case we either have L2(Sκ+1) =

U2(Sκ+1) = 0 or U2(Sκ+1) > L2(Sκ+1) > 0, so that we specify exactly

in which situation the biaccessibility dimension is zero: this happens if and

only if the parameter is on the closed main molecule (see Proposition 2.11).

Our result implies continuity of the biaccessibility dimension on the closed

main molecule of M: if (cn) is a sequence of parameters in M that con-

verges to the main molecule and with associated external angles ϑn, then

dimH(Biacϑn)→ 0.

Similarly, the estimate [L1(N), U1(N)] is especially good near parameters

where the biaccessibility dimension is maximal, that is near the “antenna

tip” at c = −2. Again, we have L1(N) = U1(N) = 1 or L1(N) < U1(N) < 1,

so we specify exactly in which situation the dimension is 1: this happens if

and only if c = −2, which was generalized in [MS]. Again our result implies

continuity in the approach to this point.

Remark 2.7. Since, as mentioned before, core entropy (appropriately de-

fined for all polynomials in M) equals biaccessibility dimension times by

log 2, these results give a different proof for continuity of the core entropy

at the main molecule and at c = −2 (i.e., for parameters with core entropy

in {0, log 2}) with precise estimates. (Of course, continuity everywhere was

proved in [Ti2, DS].)

Remark 2.8. In particular, the set of biaccessible parameter angles has

Hausdorff dimension 1 but Lebesgue measure zero: outside of every neigh-

borhood of 1
2

they have Hausdorff dimension less than 1. The same holds
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for the set of parameter angles with landing point on the real antenna

M∩ R. This follows because the collection of kneading sequences ν of the

form used in our proof (formula (6.1) to be precise) has the property that

orbρ(1) ∩ orbρ(N − 1) = ∅. According to [Thn], this means that ν is the

kneading sequence of a real quadratic map, so the part of the proof below

that refers to (6.1) (i.e., biaccessible parameter angles close to 1
2
) automat-

ically gives that set of “real” parameter angles has indeed Hausdorff di-

mension 1. We would also like to mention recent work by Tiozzo especially

on the kneading sequences and external angles on M∩ R [Ti1]: for every

c ∈M∩ R, the set of external angles of M that lands on [c, 0] ⊂ (M∩ R)

has the same Hausdorff dimension as the set of all biaccessible angles of Jc.

2.4. Renormalizable Angles. Now we draw some direct consequences of

the methods of the main results that have to do with renormalization.

Definition 2.9. (Renormalizable).

A quadratic polynomial pc : z 7→ z2 + c is M-renormalizable for M ≥ 2 if

there exist neighborhoods U ⊂ V of the critical point 0, with U compactly

contained in V , such that p◦Mc : U → V is a degree 2 branched covering

such that p◦iMc (0) ∈ U for all i ≥ 1. The integer M is called the period of

renormalization. The set KU := {z ∈ U : p◦Mi
c (z) ∈ U for all i ≥ 0} is called

the little filled-in Julia set of the renormalization. The renormalization is

called simple if KU ∩ p◦ic (KU) does not disconnect KU for i = 1, . . . ,M − 1;

otherwise it is called a crossed renormalization.

If pc is simple renormalizable of period M , then M = Sk is an entry in

the internal address and all successive entries Sj, j ≥ k, are multiples of M ,

and conversely [LS, Sch1]. The corresponding kneading sequence has the

form

(2.7) ν = ν(ϑ) = ν1ν2 . . . νM−1νMν1ν2 . . . νM−1ν2Mν1ν2 . . . νM−1ν3M . . .

where either νMν2Mν3M . . . or its opposite sequence ν ′Mν
′
2Mν

′
3M . . . (where

ν ′i = 1− νi) is the kneading sequence of the renormalization p◦Mc .

We recover a result by Manning on external angles [Man, page 523] and

extend it to kneading sequences as follows.

Proposition 2.10. (Dimension of Renormalizable Angles and Kneading

Sequences).

For any M ≥ 2, the Hausdorff dimension of the set of simple M-renormalizable

parameter angles as well as of the set of simple M-renormalizable kneading
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sequences is at most 1/M . The Hausdorff dimension of infinitely renor-

malizable parameter angles as well as of infinitely renormalizable kneading

sequences is 0.

Let some angle ϑ have internal address 1 → S1 → S2 → . . . or 1 →
S1 → S2 → . . . → Sk (if it is finite). If Sj is a multiple of Sj−1 for all

1 ≤ j < ∞ (or 1 ≤ j ≤ k), then we say that ϑ is associated to the main

molecule of the Mandelbrot set. The angle may be non-renormalizable (if

the internal address is just the single entry 1), finitely renormalizable (if

the internal address has finitely many entries, but at least 2), or infinitely

renormalizable (if the internal address is infinite).

The best known example of an infinitely renormalizable map from the

main molecule is the Feigenbaum-Coullet-Tresser map pc with c = −1.4011551890...,

where Sj = 2j.

Proposition 2.11. (Main Molecule Angles).

The following two conditions are equivalent for a parameter angle ϑ:

• dimH(Biacϑ) = 0;

• ϑ is associated to the main molecule of M.

Propositions 2.10 and 2.11 will be proven in Section 8.

3. The Combinatorial Approach

3.1. The Hubbard Tree and non-admissible kneading sequences.

The Hubbard tree of a postcritically finite polynomial is defined as the

connected hull of the union of all critical orbits within the filled-in Julia set

(subject to a regularity condition on how to pass through bounded Fatou

components). We view a Hubbard tree of a quadratic polynomial as a finite

abstract tree T with dynamics f : T → T subject to the following conditions:

(1) f : T → T is a local embedding, except at a single critical point c0.

(2) This critical point divides T into (at most) two parts, labeled 1 (the

part containing the critical value c1 = f(c0)) and 0, while c0 itself

gets the symbol ?. Using these symbols, we can define itineraries in

the usual way.

(3) The endpoints of T lie on the critical orbit.

(4) All marked points (i.e., branch points and points on the critical or-

bit) have distinct itineraries (with respect to the partition introduced

by c0).

It was shown in [BKS] that for every ?-periodic or preperiodic ν, there

is a Hubbard tree (T, f) such that ν is the itinerary of the critical value.
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Moreover, ν uniquely determines the dynamics on the marked points, and

their numbers of arms, so the pair (T, f) is determined uniquely as an

abstract tree with dynamics (up to homotopy relative to the marked points).

However, there can be multiple ways (up to homotopy) of embedding T into

C such that the dynamics f extends to local homeomorphism on C. This

depends on how the arms of a branch point p are arranged; if p is periodic

of period n, then f ◦n permutes the arms of p in a transitive way, but the

choice of combinatorial rotation number is still free. This is the reason why

multiple parameter angles lead to the same kneading sequence (see also

Figure 2) and the same internal address. In order to distinguish different

embeddings of these trees, angled internal addresses are required [Sch1]. We

will come back to this in Section 7, where we estimate the total number of

different embeddings in C.

Not every sequence in Σ1 or Σ? occurs as the kneading sequence of an

external angle, or of a quadratic polynomial, not even every periodic se-

quence. The main result of [BrS] is an explicit condition that states which

sequences occur: a kneading sequence or internal address does occur unless

it fails the following admissibility condition for some period m. Failing the

condition forces the Hubbard tree to have a periodic branch point of period

m with certain specific properties; such periodic orbits are called evil.

Definition 3.1. (The Admissibility Condition).

A kneading sequence ν ∈ Σ? fails the admissibility condition for period m

(the evil period) if the following three conditions hold:

(1) the internal address of ν does not contain m;

(2) if k < m divides m, then ρ(k) ≤ m;

(3) ρ(m) < ∞ and if r ∈ {1, . . . ,m} is congruent to ρ(m) modulo m,

then orbρ(r) contains m.

A kneading sequence fails the admissibility condition if it does so for some

m ≥ 1.

An internal address fails the admissibility condition if its associated knead-

ing sequence (from Definition 2.2 and Algorithm 2.3) does.

Remark 3.2. The main result in [BKS] is that for every ?-periodic kneading

sequence ν there exists a unique Hubbard tree (without embedding into C)

for which the critical value has kneading sequence ν (with respect to the

unique critical point of this tree), and the main result of [BrS] is that this

tree can be embedded into the plane so that the dynamics is compatible with

this embedding if and only if ν does not fail this admissibility condition.
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Since every tree thus embedded is realized by a quadratic polynomial and

has two characteristic periodic dynamic rays, this means that a ?-periodic

kneading sequence is realized by an external angle if and only if the kneading

sequence does not fail the admissibility condition.

3.2. Combinatorial biaccessibility. In this section we give the central

combinatorial characterization of biaccessibility. We denote an ordered pair

of angles by 〈ϕ, ϕ′〉 (this is technically the same as the more usual notation

(ϕ, ϕ′) for an element of S1× S1, but we will reserve the latter for the open

interval). We say that an angle pair 〈ϕ, ϕ′〉 separates another angle pair

〈ϕ̃, ϕ̃′〉 if ϕ̃ and ϕ̃′ are in different components of S1 \ {ϕ, ϕ′}.
Suppose that in some dynamical plane the dynamic ray at angle ϑ lands

at the critical value (a discussion that holds in more general situations can

be given in terms of Thurston laminations as defined in [Th1]). Then the

two rays at angles ϑ/2 and (1+ϑ)/2 land at the critical point, so the critical

point is biaccessible and the two angles ϑ/2 and (1 + ϑ)/2 are biaccessible

angles (with respect to the angle ϑ). We say that 〈ϑ/2, (1 + ϑ)/2〉 forms

the critical angle pair (compare Figure 1). Similarly, all further angles on

the backwards orbit of ϑ are biaccessible angles. By induction on k (the

number of iterations required to reach ϑ), each angle ϕ on the backwards

orbit of ϑ has a unique angle ϕ′ 6= ϕ on the backwards orbit of ϑ with

Step(ϕ) = Step(ϕ′) that is not separated by precritical angle pairs with

lower values of Step, and then 〈ϕ, ϕ′〉 forms a precritical angle pair. In

particular, all precritical points are biaccessible, which forms a countable

set. Therefore, to find the Hausdorff dimension of biaccessible angles in

the dynamics modeled by the external angle ϑ, we only need to investigate

angles ϕ that are not on the backwards orbit of ϑ, or equivalently we only

need to investigate itineraries in Σ = {0, 1}N∗ .
In parameter space, it is known that all parameter rays at periodic angles

of fixed period n > 1 land in pairs [DH, Mi2, Sch4], so their landing points

are biaccessible and all periodic angles are biaccessible angles in parameter

space. If two parameter rays at periodic angles ϑ1 and ϑ2 (necessarily of

equal period) land together, we say that 〈ϑ1, ϑ2〉 forms a periodic parameter

angle pair. Since all periodic external angles are thus biaccessible (in param-

eter space, at least when the period is 2 or greater), and these are exactly the

angles with ?-periodic kneading sequences and they form a countable set,

it follows that the Hausdorff dimension of biaccessible angles in parameter

space is determined by angles with kneading sequences in Σ, and periodic
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parameter angle pairs give a necessary condition, and this condition turns

out to be sufficient except for sets of dimension zero).

We can now give a combinatorial definition of biaccessibility, both in the

dynamical plane and in parameter space.

Definition 3.3. (Combinatorial Biaccessibility and Angle Pairs).

An angle ϕ ∈ S1 is called combinatorially biaccessible with respect to ϑ ∈ S1

if there is a ϕ′ ∈ S1 with ϕ′ 6= ϕ such that no precritical angle pair separates

ϕ from ϕ′. We call 〈ϕ, ϕ′〉 a dynamic angle pair.

An angle ϑ ∈ S1 with non-periodic kneading sequence in Σ is called

combinatorially biaccessible (in parameter space) if there is a ϑ′ ∈ S1 with

ϑ′ 6= ϑ so that no periodic parameter angle pair 〈ϑ1, ϑ2〉 separates ϑ from

ϑ′. We call 〈ϑ, ϑ′〉 a parameter angle pair.

Remark 3.4. All precritical angles are combinatorially biaccessible accord-

ing to this definition. Indeed, if ϑ is not combinatorially biaccessible, then

〈ϑ/2, (ϑ + 1)/2〉 is an dynamic angle pair that is not separated by any

other precritical angle pair, and this carries over to preimage angle pairs of

〈ϑ/2, (ϑ+1)/2〉. If, on the other hand, ϑ is combinatorially biaccessible, say

〈ϑ, ϑ′〉 forms the corresponding dynamic angle pair, then 〈ϑ/2, ϑ′/2〉 and

〈(ϑ+ 1)/2, (ϑ′ + 1)/2〉 are angle pairs that are not separated by precritical

angle pairs. It is thus not relevant that 〈ϑ/2, (ϑ+1)/2〉 and 〈ϑ′/2, (ϑ′+1)/2〉
separate each other (while landing at the same point).

Our combinatorial estimates will all be with respect to this definition

(in dynamical planes and in parameter space). In order to explain how this

definition relates to the topological concept of biaccessibility as introduced

earlier, we start with a simple lemma.

Lemma 3.5. (Combinatorially Biaccessible Angle Pairs).

An angle ϕ is combinatorially biaccessible with respect to ϑ if and only if

there is a ϕ′ ∈ S1 with ϕ′ 6= ϕ so that νϑ(ϕ) = νϑ(ϕ′).

Proof. If two angles ϕ 6= ϕ′ are separated by precritical angle pairs, then the

angle pair with lowest value of Step is always unique (because two angle

pairs with equal value of Step are always separated by an angle pair with

lower value, which is easily confirmed inductively).

If two angles ϕ 6= ϕ′ are separated by a unique precritical angle pair

〈ϑ1, ϑ2〉 with Step(ϑ1) = Step(ϑ2) = k, then νϑ(ϕ) and νϑ(ϕ′) differ in the

k-th position.

Conversely, if the k-th entries of νϑ(ϕ) and νϑ(ϕ′) are different, then

D◦(k−1)(ϕ) and D◦(k−1)(ϕ′) are separated by the diameter 〈ϑ/2, (1 + ϑ)/2〉,
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and by taking k − 1 preimages it follows that ϕ and ϕ′ are separated by a

precritical angle pair 〈ϑ1, ϑ2〉 with Step(ϑ1) = Step(ϑ2) = k. �

The corresponding statement in parameter space will be discussed below.

3.3. Combinatorial and topological biaccessibility. We will now re-

late combinatorial biaccessibility with respect to ϑ to topological biacces-

sibility in a Julia set for which the dynamic ray at angle ϑ lands at the

critical value.

Proposition 3.6. (Topologically and Combinatorially Biaccessible Angles).

For every quadratic polynomial with connected Julia set, the set of topologi-

cally biaccessible angles is a subset of the set of combinatorially biaccessible

angles. In every case, these two sets have the same Hausdorff dimension.

Proof. If two rays at angles ϕ and ϕ′ land together at a point that is not on

the backwards orbit of the critical point, then ϕ and ϕ′ clearly cannot be

separated by a precritical angle pair. Therefore, combinatorial biaccessibility

in the sense of Definition 3.3 is necessary for topological biaccessibility in a

dynamical plane.

The converse is true at least in locally connected Julia sets; however,

some care is necessary because local connectivity in itself does not seem to

imply easily that combinatorially biaccessible angle pairs actually have rays

that land at a common point. However, the somewhat stronger property of

trivial fibers is sufficient, see [Sch2, Sch5]: by definition, a point z within

a Julia set J has trivial fiber if, for every z′ ∈ J \ {z}, there is a pair

of dynamic rays at periodic angles that separates z′ from z. This implies

local connectivity of J at z, but it is locally a strictly stronger property.

In particular, it implies that every z′ ∈ J \ {z} can also be separated from

z by a pair of rays that land at the same precritical point. Hence, if all

fibers are trivial, then every angle ϕ that is combinatorially biaccessible is

in fact topologically biaccessible: there is another angle ϕ′ so that the rays

at angles ϕ and ϕ′ land together. (Note that in the case of bounded Fatou

components, a slight modification is necessary in the definition of fibers,

allowing for separation lines to pass through bounded Fatou components

[Sch2].)

In fact, all currently known proofs of local connectivity of Julia sets

of quadratic polynomials show that all fibers are trivial: this is true for

polynomials with attracting or parabolic periodic orbits (Douady and Hub-

bard [DH]), as well as for all quadratic polynomials for which all periodic
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orbits are repelling and that are not infinitely renormalizable (Yoccoz [HY];

for the renormalizable case see also [Sch3]), and for various infinitely renor-

malizable quadratics in work of Kahn and Lyubich (see [Ly1, KL1, KL2] and

the references therein), and finally in the case of a Siegel disk of bounded

type [Pet]. A separate argument is the general result that if a polynomial

Julia set is locally connected at every point, then all fibers are trivial [Sch3]

(as mentioned, this implication is not true at individual points z).

The relation between combinatorial and topological biaccessibility may

thus be non-trivial only in the presence of irrationally indifferent cycles or

for infinitely renormalizable polynomials. In fact, for a quadratic polynomial

with an indifferent cycle of period 1, the set of angles that is not separated

from the indifferent fixed point by a precritical angle pair has Hausdorff

dimension zero [BuS] (this is the set of external angles of the Siegel disk

in case the Julia set is locally connected). All other angles cannot be part

of a biaccessible angle pair [SZ], so biaccessibility concerns only a set of

Hausdorff dimension zero (including the backwards orbit of all rays that are

not separated from the indifferent fixed point, which is a countable union),

so this does not affect our dimension estimates.

If there is an indifferent periodic cycle of period M > 1, then the set of

external angles related to this cycle still has dimension zero, and all other

points have trivial fibers [HY, Sch3], so combinatorially and topologically

biaccessible angles coincide.

Finally, for infinitely renormalizable polynomials (see Definition 2.9), we

note first that, for the same reason as before, all points z ∈ J that are

outside of the little M -renormalizable Julia set for some M have trivial

fibers, while external angles corresponding to M -renormalization are in a

set of Hausdorff dimension at most 1/M (see Section 8). Therefore, if a

polynomial is infinitely renormalizable, then all angles belong to trivial fibers

with the exception of a set of dimension zero, which again does not affect

our estimates. �

Proposition 3.7. (Topologically and Combinatorially Biaccessible Angles

in M).

For the Mandelbrot set, the set of topologically biaccessible angles is a subset

of the set of combinatorially biaccessible angles, and both sets have the same

Hausdorff dimension.

Proof. If two parameter rays land together, then they cannot be separated

by a parameter ray-pair at periodic angles (the landing point of the latter
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is not the landing point of any parameter ray except the two periodic ones).

This implies that an angle can only be topologically biaccessible if it is

combinatorially biaccessible in the sense of Definition 3.3.

We will now argue that “most” combinatorially biaccessible angles are

topologically biaccessible (except possibly for a set of dimension zero). Of

course, the set of external angles that do not land has always Hausdorff

dimension zero, but this is not a sufficient argument: we also need to consider

those rays that land, but possibly not at the same point as another ray at

a combinatorially associated angle.

The set of angles in parameter space that are associated toM -renormalizable

parameters has again Hausdorff dimension at most 1/M (again Section 8),

so the set of angles that are associated to infinitely renormalizable parame-

ters has dimension zero and does not affect our estimates. Similarly, the set

of angles that are associated to any particular hyperbolic component have

Hausdorff dimension zero, see Corollary 7.5.

Therefore, except for a set of angles of Hausdorff dimension zero, every

parameter ray is associated to a fiber ofM corresponding to polynomials for

which all cycles are repelling and which are not infinitely renormalizable,

and such fibers are trivial by [HY]. Fibers of M are defined in terms of

parameter ray-pairs at periodic angles, so if two parameter rays are not

separated by parameter ray-pairs of periodic angles (and are not in the

exceptional set), then they belong at the same fiber and thus land at the

same point; so for all angles except for a set of dimension zero, combinatorial

biaccessibility implies topological biaccessibility. �

Remark 3.8. In parameter space, it may be worth noting that parameter

rays at periodic angles (which have ?-periodic kneading sequences) always

land in pairs and are thus topologically biaccessible. Moreover, there are

uncountably many further parameter rays that accumulate at hyperbolic

components: their external angles have periodic (but not ?-periodic) knead-

ing sequences, and these rays land at a boundary point of a hyperbolic

component (with irrationally indifferent dynamics). These rays are all not

separated by periodic parameter ray-pairs and thus combinatorially biacces-

sible, but they are the only rays landing at the same point, so they are not

topologically biaccessible. These angles (from a zero-dimensional set, see

Corollary 7.5) thus form a difference between the two definitions of biacces-

sibility. A more precise definition of combinatorial biaccessibility would thus

be “an angle ϕ is combinatorially biaccessible if either there is an angle ϕ′ so

that ϕ and ϕ′ are not separated by a periodic angle pair, or if the kneading
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sequence ν(ϕ) is periodic but not ?-periodic”. This definition would be more

cumbersome without strengthening Proposition 3.7 — however, if all fibers

of M were trivial (which is equivalent to local connectivity of M [Sch5]),

then topological and combinatorial biaccessibility ofM in this sense would

coincide.

Definition 3.3 is thus a good combinatorial description of biaccessibility,

ignoring topological subtleties.

3.4. Combinatorial biaccessibility, itineraries, and kneading sequences.

In order to investigate biaccessibility from a combinatorial point of view, we

translate it to the setting of itineraries. In order to do this, we extend the

definition of the ρ-function to itineraries. For a kneading sequence ν ∈ Σ?

and x = νϑ(ϕ) ∈ Σ, let

ρν,x(n) := min{k > n : xk 6= νk−n}.
Obviously, ρν,ν = ρν for ρν as in Definition 2.2.

Lemma 3.9. (Condition for Itinerary to be Biaccessible).

Let ϑ, ϕ ∈ S1 be two arbitrary external angles, let ν := ν(ϑ) be the kneading

sequence of ϑ and let x := νϑ(ϕ) be the itinerary of ϕ with respect to ϑ;

assume that x ∈ Σ.

Then ϕ is combinatorially biaccessible with respect to ϑ if and only if

there is a k ≥ 2 that satisfies

orbρν,x(1) ∩ orbρν,x(k) = ∅.

Proof. We use symbolic dynamics modeled after the situation that the crit-

ical value is the landing point of the ray at angle ϑ. Then 〈ϑ/2, (1 + ϑ)/2〉
is the critical angle pair with Step = 1, and all other precritical angle pairs

are preimages of this one. We say that a precritical angle pair 〈ϑk, ϑ′k〉 with

Step(ϑk) = Step(ϑ′k) is a closest precritical angle pair (to ϕ) if it is not

separated from ϕ by any precritical angle pair for which the value of Step

is less than Step(ϑk). Since any two precritical angle pairs with equal value

of Step are separated by another angle pair with lower value, for any value

of Step there can be at most one closest precritical angle pair.

The closest precritical angle pair 〈ϑ1, ϑ
′
1〉 with Step(ϑ1) = Step(ϑ′n) = 1

is always 〈ϑ/2, (1 + ϑ)/2〉. Now define a sequence (mj) with m1 = 1 and,

if 〈ϑj, ϑ′j〉 is a closest precritical angle pair with Step(ϑj) = Step(ϑ′j) =

mj, then let 〈ϑj+1, ϑ
′
j+1〉 be the precritical angle pair with lowest value

of Step that separates ϕ from 〈ϑj, ϑ′j〉; we define mj+1 := Step(ϑj+1) =

Step(ϑ′j+1).
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This ρ-itinerary describes the itinerary of ϑj and of ϑ′j (which is the same)

completely: the first mj−1 entries coincide with that of ϕ, i.e., with νϑ(ϕ),

then comes a ?, and then the itinerary of ϑ (which is ν(ϑ)). This means

ρν,x(mj) = mj+1 for all j, so (mj) = orbρν ,x(1) (equality of sequences).

Now suppose 〈ϕ, ϕ′〉 is a biaccessible angle pair; by definition, this means

that no closest precritical angle pair 〈ϑj, ϑ′j〉 separates ϕ from ϕ′, so they

all (for j > 1) separate both ϕ and ϕ′ from the angle pair 〈ϑ/2, (1 + ϑ)/2〉.
Without loss of generality, we may assume that 0 < ϕ < ϕ′ < 1. Then

there is a precritical angle ψ1 ∈ (ϕ, ϕ′) and hence a precritical angle pair

〈ψ1, ψ
′
1〉 ⊂ (ϕ, ϕ′); set k1 := Step(ψ1) = Step(ψ2).

As before, for a precritical angle pair 〈ψj, ψ′j〉, define a sequence kj so

that 〈ψj+1, ψ
′
j+1〉 is the precritical angle pair with lowest value of Step that

separates ϕ from 〈ψj, ψj+1〉; we define kj+1 := Step(ψj+1) = Step(ψ′j+1).

Then all {ψj, ψ′j} ⊂ (ϕ, ϕ′), so none of the 〈ψj, ψ′j〉 separate 〈ϕ, ϕ′〉 from

〈ϑ1, ϑ
′
1〉. Therefore, the sequences (mj) and (kj) are disjoint.

Finally, comparing itineraries, it is easy to check that (kj) = orbρν,x(k1),

and this proves the existence of two disjoint ρν,x-orbits as required.

The converse is similar: orbρν,x(1) always describes the sequence of closest

precritical angle pairs 〈ϑj, ϑ′j〉, starting at the diameter, that separate the

previous angle pair from ϕ. If we label so that ϑj < ϑ′j, then the sequence

(ϑj) is monotonically increasing and (ϑ′j) is monotonically decreasing. De-

note their limits by ϑ∞ ≤ ϑ′∞. Observe that if ϑ∞ < ϑ′∞, then 〈ϑ∞, ϑ′∞〉
forms a biaccessible angle pair. Even if ϕ 6∈ {ϑ∞, ϑ′∞}, both 〈ϕ, ϑ∞〉 and

〈ϕ, ϑ′∞〉 are biaccessible angle pairs. In order to prove that ϕ is combinato-

rially biaccessible, it thus suffices to prove that ϑ∞ < ϑ′∞.

This is assured by the existence of orbρν,x(k): this describes a similar

sequence starting with the closest precritical angle pair for which Step has

the value k. If these sequences are disjoint for some k, then none of the

associated angle pairs can be separated from ϕ by any 〈ϑj, ϑ′j〉, and every

angle pair described by orbρν,x(k) provides a uniform lower bound for ϑ′j−ϑj,
so their limits are different as required. �

Now we turn to parameter space.

Lemma 3.10. (Biaccessible Kneading Sequence).

An angle ϑ is combinatorially biaccessible (in parameter space) in the sense

of Definition 3.3 if and only if its kneading sequence ν = ν(ϑ) has a k ≥ 2

such that

orbρ(1) ∩ orbρ(k) = ∅.
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Figure 2. Illustration of the map # 7! ⌫(#). The angles of the form
a/(2k � 1), k  n, divide S1 into arcs that map to components of n-
cylinder sets.

Note first that, as a function of the angle  , the n-th entry in the kneading sequence
⌫( ) changes between 0 and 1 exactly when  is periodic of period n or dividing n.
Since angles of equal period come in pairs, it follows that if two non-periodic angles
# and #0 are not separated by a periodic angle pair, their kneading sequences must
coincide; and if the periodic ray pair of lowest period that separates them has period
n, then the two kneading sequences di↵er for the first time at the n-th position (this
statement uses the fact, known as Lavaurs’ Lemma [La], that if any two parameter angle
pairs h 1, 

0
1i and h 2, 

0
2i of equal period are such that h 1, 

0
1i separates h 2, 

0
2i from

the angle 0, then the two angle pairs are separated from each other by an angle pair
of lower period).

Conversely, if their kneading sequences (which must be in ⌃) di↵er for the first time
at the n-th position, then the lowest period of an angle pair separating # and #0 is

Figure 2. Illustration of the map ϑ 7→ ν(ϑ). The angles of
the form a/(2k − 1), k ≤ n, divide S1 into arcs that map to
components of n-cylinder sets.

Proof. The structure of this proof is similar to Lemma 3.9; we use the struc-

ture given by periodic parameter angle pairs 〈ψ, ψ′〉 of equal period that land

together at a common point.

Note first that, as a function of the angle ψ, the n-th entry in the knead-

ing sequence ν(ψ) changes between 0 and 1 exactly when ψ is periodic of

period n or dividing n. Since angles of equal period come in pairs, it follows

that if two non-periodic angles ϑ and ϑ′ are not separated by a periodic an-

gle pair, their kneading sequences must coincide; and if the periodic ray pair

of lowest period that separates them has period n, then the two kneading

sequences differ for the first time at the n-th position (this statement uses

the fact, known as Lavaurs’ Lemma [La], that if any two parameter angle

pairs 〈ψ1, ψ
′
1〉 and 〈ψ2, ψ

′
2〉 of equal period are such that 〈ψ1, ψ

′
1〉 separates

〈ψ2, ψ
′
2〉 from the angle 0, then the two angle pairs are separated from each

other by an angle pair of lower period).
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Conversely, if their kneading sequences (which must be in Σ) differ for

the first time at the n-th position, then the lowest period of an angle pair

separating ϑ and ϑ′ is exactly n. In particular, if the two kneading sequences

coincide, then they are not separated by any periodic ray pair.

Now suppose that a non-periodic angle ϑ is combinatorially biaccessible

in parameter space, i.e., there is an angle ϑ′ that is not separated from ϑ

by any periodic parameter angle pair. Then ν(ϑ) = ν(ϑ′) =: ν. The angle

pair 〈ϑ1, ϑ
′
1〉 of lowest period n1 that separates the angle 0 from 〈ϑ, ϑ′〉 must

have period n1 = ρν(1), and inductively the angle pair of lowest period that

separates 〈ϑj, ϑ′j〉 from 〈ϑ, ϑ′〉, say 〈ϑj+1, ϑ
′
j+1〉, has period nj+1 = ρν(nj).

The sequence of periods of these angle pairs is thus orbρν (1); this is the

internal address of ϑ.

Sorting the angle pairs again such that 0 < ϑ < ϑ′ < 1 and 0 < ϑj <

ϑ′j < 1 for all j, it follows that the sequence (ϑj) is monotonically increasing

and converges to a limit in (0, ϑ], while (ϑ′j) is monotonically decreasing and

converges to a limit in [ϑ′, 1).

Now pick a periodic angle ψ1 ∈ (ϑ, ϑ′) of least possible period and denote

this period by k1. Then the angle pair of lowest period separating ψ1 from ϑ,

and thus also from ϑ′, has period k2 := ρν(k1), and by induction we obtain a

sequence of angle pairs 〈ψj, ψ′j〉 so that 〈ψj+1, ψ
′
j+1〉 separates 〈ψj, ψ′j〉 from

ϑ and from ϑ′, and their periods are orbρν (k1). All their angles are in (ϑ, ϑ′),

so these angle pairs are disjoint from the 〈ϑj, ϑ′j〉. Again by Lavaurs’ Lemma,

all periods nj and kj′ must be different. Therefore, orbρν (1)∩orbρν (k1) = ∅.
For the converse, consider an angle ϑ with kneading sequence ν = ν(ϑ)

and a k ∈ N∗ such that orbρν (1) ∩ orbρν (k) = ∅. If ϑ is periodic, then it

is part of a ray pair and thus biaccessible, so we may assume that ϑ is not

periodic. Construct the sequence of periodic angle pairs 〈ϑj, ϑ′j〉 as above so

that each of these ray pairs separates its successor from the angle 0. Let ϑ∞
and ϑ′∞ be the two limits of their angles; they satisfy ϑ∞ ≤ ϑ′∞. We want

to show that ϑ∞ < ϑ′∞. By construction, none of the angles ϑ, ϑ∞, and ϑ′∞
can be separated from each other by a periodic parameter angle pair, and

while possibly ϑ ∈ {ϑ∞, ϑ′∞}, it follows in any case that ϑ is combinatorially

biaccessible if ϑ∞ < ϑ′∞.

To complete this proof, we need to find an angle ψ with ϑ∞ < ψ < ϑ′∞.

More precisely, we will find a k′ ∈ orbρν (k) so that the kneading sequence

ν(k
′) consisting of the first k′−1 entries in ν, followed by ? and continued pe-

riodically, is admissible, and so that there is an angle ψk′ with ν(ψ) = ν(k
′);
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this angle ψk′ can then be chosen in (ϑ∞, ϑ′∞). Not every such ν(k
′) is ad-

missible; see the remark after the proof. However, we have the following.

Claim 3.11. If k′ ∈ orbρν (k) is such that k′ > ρν(m) for all m < ρν(k), then

there exists a periodic angle ψk′ ∈ S1 of period k′ with ν(ψk′) = ν1 . . . νk′−1?.

We first complete the proof of the lemma using this claim. There may

be several choices for ψk′ ; choose one for which the angled internal address

coincides longest possible (among all candidates) with ϑ. It will turn out

that this determines ψk′ uniquely, but if there are still several choices, then

the choice is arbitrary.

The angle ψk′ must be part of a ray pair 〈ψk′ , ψ′k′〉. Inductively let

〈ψj+1, ψ
′
j+1〉 be the ray pair of least period that separates 〈ψj, ψ′j〉 from ϑ

(such a ray pair always exists because ϑ is non-periodic, so the kneading se-

quences never coincide). We do not know yet that ψk′ or ψj are in (ϑ∞, ϑ′∞).

We claim that the ray pair 〈ψj+1, ψ
′
j+1〉 is unique. If not, then two

ray pairs of equal period separate 〈ψj, ψ′j〉 from ϑ, say 〈ψj+1, ψ
′
j+1〉 and

〈ψ̃j+1, ψ̃
′
j+1〉. Again by Lavaurs’ lemma, neither can separate the other from

the angle 0, and this is possible only if (possibly by switching labels) 〈ψj+1, ψ
′
j+1〉

separates 〈ψj, ψ′j〉 from 0, while 〈ψ̃j+1, ψ̃
′
j+1〉 separates ϑ from 0, and both

are not separated from each other by a ray pair of lower period, so they have

equal kneading sequences and thus equal internal addresses. By [Sch1, The-

orem 4.3] there exists another ray pair 〈ψ̃k′ , ψ̃′k′〉 of equal period and with

equal kneading sequence as 〈ψk′ , ψ′k′〉, but separated from 0 by 〈ψ̃j+1, ψ̃
′
j+1〉.

This contradicts the choice of ψk′ as the one for which the angled internal

address coincides for the longest possible time with that of ϑ. Therefore, all

ray pairs 〈ψj+1, ψ
′
j+1〉 are uniquely determined by ψk′ .

Our next claim is that no 〈ψj, ψ′j〉 separates ϑ from the origin. Indeed,

if it does, then the sequences 〈ψj, ψ′j〉 and 〈ϑj′ , ϑ′j′〉 will eventually coin-

cide, but their periods are orbρ(ν)(k) and orbρ(ν)(1) and these are disjoint

by hypothesis.

Therefore, all 〈ψj, ψ′j〉 separate ψk′ and hence 〈ψj−1, ψ′j−1〉 from ϑ and

from 0; this implies that ϑ 6∈ (ψj, ψ
′
j) ⊃ (ψj−1, ψ′j−1) for all j. Moreover, we

must have (ψj, ψ
′
j) ⊂ (ϑj′ , ϑ

′
j′) for all j and j′: otherwise, there are j and j′

for which (ψj, ψ
′
j)∩ (ϑj′ , ϑ

′
j′) = ∅, and then eventually 〈ϑj′ , ϑ′j′〉 must appear

among the 〈ψj, ψ′j〉, and this is an impossibility.

Together, we have ψk′ ∈ (ψj, ψ
′
j) ⊂

⋂
j′(ϑj′ , ϑ

′
j′) = (ϑ∞, ϑ′∞), which

proves the lemma. �
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We still need to prove Claim 3.11; for easier reference, we repeat the

statement in a self-contained way. If ν ∈ Σ1 is an admissible kneading

sequence, k ∈ N satisfies orbρ(k) ∩ orbν(1) = ∅, and k′ ∈ orbν(k) is such

that k′ > ρ(m) for all m < ρ(k), then there exists a periodic angle ψk′ ∈ S1

of period k′ with ν(ψk′) = ν1 . . . νk′−1?.

Proof of the claim. Recall that ν (with internal address 1 → S1 → S2 →
. . . ) is admissible. The kneading sequence ν ′ := ν1 . . . νk′−1? is ?-periodic

of period k′ and thus has an associated Hubbard tree (T, f), where f is a

continuous self-map of the finite tree T in which the unique critical point

c0 has period k′ and kneading sequence ν ′ [BKS, Theorem 2.5].

The main task is to prove that ν ′ does not fail the admissibility condition

in Definition 3.1. This implies, by [BrS, Theorem 4.2], that the tree T can

be embedded into C so that the dynamics f can be extended continuously

to a neighborhood of T and in fact to all of C, and thus it is the Hubbard

tree of a complex quadratic polynomial. The critical value has two char-

acteristic external rays, and their external angles then have period k′ and

kneading sequence ν ′. Every tree (T, f) embedded into C gives thus rise to

two angles as required in the claim, and there may be different choices for

the embedding of the tree.

In order to give a proof by contradiction, suppose that ν ′ fails the admis-

sibility condition (Definition 3.1) for some period m∗. This depends only on

the first ρ(m∗) entries of ν ′. Since ν is admissible and coincides with ν ′ for

k′ − 1 entries, the non-admissibility of ν ′ cannot be determined by looking

only at its first k′− 1 entries. This implies ρν(m∗) ≥ k′. Since the endpoints

of T lie on the critical orbit, and there are more endpoints than branch

points in a tree, we have m∗ < k′ and therefore ρν′(m∗) = k′. By hypothesis

of the claim, ρν(m) < k′ for all m < ρν(k), and hence m∗ ≥ ρν(k).

The fact that ν ′ fails the admissibility condition for period m∗ means

that the Hubbard tree (T, f) has an m∗-periodic evil periodic orbit with

q ≥ 3 arms at each of its points [BrS, Lemma 3.6]. Denote the characteristic

point of this evil orbit be z1. Then the global arms at z1 can be labeled

G0, G1, . . . , Gq−1 so that G0 3 c0 (the critical point) and so that after m∗
iterations, G1 maps homeomorphically onto G2, G2 maps homeomorphically

onto G3, etc., Gq−2 maps homeomorphically onto Gq−1, and Gq−1 maps to

its image that intersects both G0 and G1 (while G0 contains the critical

point, so its image contains G1 and much (if not all) of T ). This implies

that the itineraries of z1 and c1 coincide for at least (q − 2)m∗ entries.
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Within the Hubbard tree, take k−1 consecutive preimages of the critical

point c0, always choosing the branch so that the itinerary of the resulting

point, to be called ζk, with respect to c0 starts with ν1ν2 . . . νk−1?. Since the

critical value has period k′ > k, there is no ambiguity. It may of course hap-

pen that the appropriate preimage is not in T ; in this case, it is straightfor-

ward to extend (T, f) appropriately (as in [BrS, Lemma 3.6]). The extended

tree, say T ′, comes with a continuous self map f ′ that extends f on T , and

it shares all axioms of (T, f) except minimality; in particular, T ′ \ {c0} has

at most two connected components and f ′ is injective on each.

We claim that c1 separates ζk from 0 and z1, so that “ζk is behind c1”

(as seen from c0). To show this, first observe that k′ 6∈ orbν(1) (because

k′ ∈ orbν(k) and orbν(k) ∩ orbν(1) = ∅). In this case, the cutting time

argument applied to [c0, c1] shows that if we replace c1 by a pair of points,

one with entry 0 and one with 1 instead of the ?, then the point on the side

of c0 is such that it does not generate an entry k′, while ζk does generate

such an entry (k′ ∈ orbν(k)), so ζk is on the opposite side of c1 than c0, as

claimed.

But this implies that ζk is in the same global arm of z1 as c1 and thus sur-

vives at least (q − 2)m∗ ≥ m∗ iterations homeomorphically without hitting

the critical point, which is in contradiction to k < ρν(k) ≤ m∗. �

Remark 3.12. It is not true that if a kneading sequence ν is admissible,

then for every k the ?-periodic sequence of period k that coincides with

ν for k − 1 entries is also admissible, even when orbρ(k) ∩ orbρ(1) = ∅.
A counter-example is supplied by the kneading sequence corresponding to

internal address 1 → 2 → 4 → 6 → 7 → 9 → 11 → 13 → 15 → 17 . . . and

k = 10. Then orbρ(k) ∩ orbρ(1) = ∅, but 1→ 2→ 4→ 6→ 7→ 9→ 10 is

not admissible (evil period m∗ = 5).

4. Preliminaries on Cylinder Sets

We write Ce1e2...en = {x1x2 · · · ∈ Σ: x1 = e1, . . . , xn = en} for cylinder

sets in Σ of length n. Denote the length of a cylinder C by |C|, that is:

|Ce1e2...en| = n.

Lemma 4.1. (The Shape of the νϑ-Inverse of Cylinders).

The map νϑ : S1 → {0, ?, 1}N∗ is (in general) non-injective: for each n-

cylinder Ce1...en ∈ {0, 1}n, the preimage ν−1ϑ (Ce1...en) consists of at most n

open arcs of total length 2−n.
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Remark 4.2. There is no a priori lower bound (in terms of n) on the length

of the components of ν−1ϑ (Ce1...en). Indeed, such components have endpoints

ϕ and ϕ′ (not necessarily in that order) satisfying 2kϕ−a = ϑ = 2mϕ′−b for

integers a, b ∈ N and k ≤ m ≤ n. If k = m, then a 6= b and |ϕ′ − ϕ| ≥ 2−m,

but otherwise

|ϕ′ − ϕ| ≥ 2−md((2m−k − 1)ϑ,Z),

and for Liouville numbers ϑ this lower bound can be extremely small com-

pared to 2−n.

Proof. The open arcs A0 = (ϑ
2
, ϑ+1

2
) and A1 = (ϑ+1

2
, ϑ
2
) form the partition

of S1 which yields itineraries in {0, 1}N∗ . (Thus we ignore those countably

many ϕ ∈ S1 whose itinerary νϑ(ϕ) contains a ?.)

The two sets A0 and A1 correspond to the two 1-cylinders C0 and C1 of

Σ. Suppose by induction on n that the set A corresponding to the n-cylinder

Ce1...en has at most n components I. For j ∈ {0, 1}, D−1(I)∩Aj consists of

one interval, or two if ϑ ∈ I. Therefore D−1(I) ∩ Aj which corresponds to

the n + 1-cylinder Ce1...enj has at most n + 1 components. This proves the

induction step and hence the lemma. �

Lemma 4.3. (The Shape of the ν-Inverse of Cylinders).

The map ν : S1 → Σ? is non-injective: for each n-cylinder Ce1...en, the

preimage ν−1(Ce1...en) consists of finitely many open arcs of length between

2−(n+1) and 2−(2n+1).

Remark 4.4. The total number of arc-components of ν(Ce1...en) is based

on an estimate in how many ways we can embed a periodic Hubbard tree

into the plane, see Lemma 7.3. We estimate this number in Lemma 7.4.

Proof. This time the arc components of ν−1(Ce1...en) are open arcs with

endpoints ϑ and ϑ′ satisfying 2k+1ϑ − a = ϑ, 2m+1ϑ′ − b = ϑ′, that is

ϑ = a/(2k+1 − 1), ϑ′ = b/(2m+1 − 1) for some k ≤ m ≤ n and a, b ∈ N,

see Figure 2. Taking k = m = n and |a − b| = 1 we get the upper bound

|ϑ−ϑ′| ≤ 1/(2n+1−1). The lower bound is min{|a/(2k+1−1)−b/(2m+1−1)| >
0 : a, b ∈ N} ≥ 1/(22n+1 − 1). �

5. Preliminaries on Hausdorff Dimension

The motor for the dimension estimates will be the following elementary

lemma.
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Lemma 5.1. (Hausdorff Dimension of Sample Sets).

Given integers u > v ≥ 1, construct nested compact sets As ⊂ [0, 1] (for

s ≥ 0) as follows:

• Let A0 = [0, 1];

• Divide each of the (u− v)s intervals of As of length u−s into u equal

intervals and remove the closures of v of them, chosen arbitrarily.

Then As+1 is the union of the closures of the remaining (u − v)s+1

intervals of length u−(s+1) each.

Let A = ∩sAs. Then dimH(A) =
log(u− v)

log u
.

Proof. Since As consists of (u−v)s intervals of length u−s, the box dimension

of A is log(u−v)
log u

. Therefore dimH(A) ≤ log(u−v)
log u

.

For the lower bound we use the measure µs on As which assigns mass

(u− v)−s to each of the (u− v)s intervals of As and refine it to a measure

µ on A using Kolmogorov’s extension theorem, see e.g. [C]. For a point

x ∈ A, let Is(x) be the interval of As containing x. If B(x; ε) denotes the

ε-ball around x, then the interval Is(x) is contained in the ball B(x; ε) for

u−s < ε ≤ u−s+1, and B(x; ε) is contained in at most u intervals of length

u−s. Choosing δ < log u−v
log u

, we have for s sufficiently large:

µ(B(x; ε)) ≤ u(u− v)−s = u
(
u−s·

log u−v
log u

)
≤ ε−δ.

The Frostman Lemma (see e.g. [Mat]) now implies that the δ-dimensional

Hausdorff mass of A is positive. Since δ < log u−v
log u

is arbitrary, we obtain the

required lower bound dimH(A) ≥ log u−v
log u

. �

As usual, we endow Σ = {0, 1}N∗ with the metric d(x, x̃) =
∑

i≥1 |xi −
x̃i|2−i. The binary representation map b : Σ → S1 = R/Z is given by

b(x1x2 . . .) =
∑
xi2
−i; it is injective except for the countably many dyadic

rationals. We define the Hausdorff dimension of Y ⊂ Σ by dimH(Y ) :=

dimH(b(Y )), and we denote the Hausdorff dimension of subsets of S1 and

of Σ by dimH .

Corollary 5.2. (Hausdorff Dimension of Concatenations of Blocks).

For distinct blocks X1, . . . , Xk of 0s and 1s, none of which is a suffix of

another, let

B =
{
x = W1W2 . . . : Wi ∈ {X1, . . . , Xk} for all i

}
⊂ Σ

(in other words, consider an arbitrary infinite concatenation of blocks Xi).

Then dimH(B) ≥ log k

m log 2
for m = maxi |Xi|.
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Proof. Extend each block Xi to the left to a block X̃i of length m in

an arbitrary way. Since no Xi is a suffix of any other Xj, the resulting

blocks X̃i are distinct. Then Lemma 5.1 immediately gives that dimH(B̃) =

log k/(m log 2) for B̃ = {x = W1W2 . . . : Wi ∈ {X̃1, . . . , X̃k}}. Indeed,

B̃ can be transformed into a subset of S1 using the binary extension map

b : Σ → S1 that makes the shift on Σ commute with the angle doubling

map on S1.

Now define h : Σ → Σ by replacing every ‘non-overlapping’ occurrence

of a block Xi in x = x1x2x3 · · · ∈ Σ by the block X̃i and leaving the

other coordinates xj untouched. More precisely, we work from left to right:

whenever we encounter a block Xj not overlapping with an occurrence of

some block Xi replaced previously, then we replace it with X̃j. Then h maps

B bijectively and continuously onto B̃, and the Lipschitz constant of h is at

most 1. Therefore dimH(B) ≥ dimH(B̃) = log k/(m log 2), as required. �

Lemma 5.3. (Symbolic Codings that Preserve Hausdorff Dimension).

Let P : N∗ → N∗ be a polynomial and K > 0 and suppose that I : S1 → Σ is

a map such that the preimage I−1(C) of any n-cylinder consists of at most

P (n) intervals of length ≤ K2−n. Then dimH(I−1(Ω)) ≤ dimH(Ω) for any

set Ω ⊂ Σ.

If Q : N∗ → N∗ is a polynomial such that the preimage I−1(C) of any

n-cylinder contains an arc of length ≥ 2−n/Q(n), then dimH(I−1(Ω)) ≥
dimH(Ω) for any set Ω ⊂ Σ.

Proof. Let ε > 0 be arbitrary and take any δ′′ > δ′ > δ = dimH(Ω). Let N

be so large that

• Kδ′′P (n) < 2n(δ
′′−δ′) for all n ≥ N ;

• ∑i diam(Ui)
δ′ < ε, where {Ui} is a cover of Ω such that diam(Ui) <

2−N for each i. (Without loss of generality we can assume that each

Ui is a cylinder set of length ni ≥ N . In the standard metric on Σ1,

diam(U) = 2−|U |.)

Then {I−1(Ui)}i defines a countable cover {Vj}j of I−1(Ω), each interval Vj

has length at most K2−ni , and
∑

j

diam(Vj)
δ′′ =

∑

n≥N

∑

|Ui|=n

∑

Vj⊂I−1(Ui)

diam(Vj)
δ′′ ≤

∑

n≥N

∑

|Ui|=n
P (n)Kδ′′2−nδ

′′

≤
∑

n≥N

∑

|Ui|=n
P (n)Kδ′′2−n(δ

′′−δ′)diam(Ui)
δ′

≤
∑

n≥N

∑

|Ui|=n
diam(Ui)

δ′ < ε .
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Since this is true for every ε > 0 and δ′′ > δ, it follows that dimH(I−1(Ω)) ≤
δ.

Now for the second statement, take 0 < δ′′ < δ′ < δ = dimH(Ω) and

K > 0 arbitrary. Then there exists N so large that

• ( 1
Q(n)

2−n)δ
′′
> 2−δ

′n for all n ≥ N ;

• ∑i(2
−|Ci|)δ

′
> 2K, where {Ci} is a cover of Ω with cylinder sets

with |Ci| ≥ N .

For each Ci, let Ai be an interval in I−1(Ci) of length ≥ 2−n/Q(n). Let

{Vj}j be any open cover of I−1(Ω) with intervals of length < 2−n/(2Q(n)).

For each i, let Vi = {Vj : Vj ⊂ Ai}, so
∑

Vj∈Vi |Vj|δ
′′
> 1

2
|Ai|δ′′ . Therefore

∑

j

|Vj|δ
′′ ≥

∑

i

∑

Vj∈Vi
|Vj|δ

′′ ≥ 1

2

∑

i

|Ai|δ
′′

≥ 1

2

∑

i

(
1

Q(|Ci|)
2−|Ci|

)δ′′
≥ 1

2

∑

i

2−δ
′|Ci| > K.

Since K and δ′′ < δ′ < δ are arbitrary, we obtain dimH(I−1ϑ (Ω)) ≥ δ. This

proves the lemma. �

6. Dimension for combinatorially biaccessible itineraries

We will produce two pairs of bounds for the Hausdorff dimension of

biaccessible itineraries (and kneading sequences). These constitute the main

step for proving Theorems 2.4 and 2.5.

Proposition 6.1. (Dimension of Biaccessible Sequences).

(i) For any kneading sequence ν, the Hausdorff dimension of biaccessible

itineraries with respect to ν is in I(N(ν), Sκ+1(ν)).

(ii) The Hausdorff dimension of biaccessible kneading sequences ν with

N(ν) = N and Sκ+1(ν) = S is in I(N,S).

Proof. (i) Fix a kneading sequence ν, let N = N(ν) and define, for k ≥ 2,

Ek =
{
x ∈ Σ: k = min{i ≥ 2: orbρν,x(1) ∩ orbρν,x(i) = ∅}

}
.

Note that the set of biaccessible itineraries is
⋃
k Ek. We will show that all

Ek satisfy the same dimension bounds.

Upper Bound U1(N): In order to prove that dimH(Ek) ≤ log(2N−1)
log 2N

, we

show that for sufficiently large n > k, every n-cylinder Ce1...en contains at

least one n+N -cylinder that is disjoint from Ek.

Choose x ∈ Ce1...en . Let a := max{i ≤ n : i ∈ orbρν,x(1)} and b :=

max{i ≤ n : i ∈ orbρν,x(k)}. Then clearly ρν,x(a) > n and ρν,x(b) > n.
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Suppose that Ce1...en ∩ Ek 6= ∅ (otherwise there is nothing to show); then

a 6= b. Let wa = νn−a+1 . . . νn−a+N and wb = νn−b+1 . . . νn−b+N . Recall that

ρν,x(a) finds the first difference between xa+1xa+2 . . . and ν1ν2 . . . . Therefore

ρν,x(a) ≤ n + N unless x starts with e1 . . . eaν1ν2 . . . νn−awa, and similarly

for b.

Our task is the following: given ν, n and e1 . . . en, we want to find at

least one n+N -cylinder in Ce1...en disjoint from Ek.

Let 0 . . . 0 and 01 . . . 0 be the two words of length N which contain no 1,

except possibly at the second position. The following three cases are easy

to check:

Case 1: wa 6= 0 . . . 0 and wb 6= 0 . . . 0. We claim that the cylinder

Ce1...en0...0 is disjoint from Ek. Indeed, for x ∈ Ce1...en0...0, we get

ρν,x(a) ∈ {n + 1, . . . , n + N}: we have ρν,x(a) ≥ n + 1 by definition

of a, and ρν,x(a) ≤ n + N because wa 6= 0 . . . 0 means that ν does

not have a sequence of N zeroes starting at position n−a+ 1. After

ρν,x(a) ∈ {n + 1, n + N}, the orbit orbρν,x(a) increases in steps of

1 until it reaches n + N , hence n + N ∈ orbρν,x(a) ⊂ orbρν,x(1).

Similarly, n+N ∈ orbρν,x(k), which proves the claim.

Case 2: wa = 0 . . . 0 and wb = 1 . . . . This time, we claim that Ce1...en01...0

is disjoint from Ek: for x ∈ Ce1...en01...0, we have ρν,x(a) = n+ 2, and

after that, orbρν,x(a) increases in steps of 1 up to n + N , so again

n + N ∈ orbρν,x(a). This time, ρν,x(b) = n + 1 and ρν,x(ρν,x(b)) =

n+N , so n+N ∈ orbρν,x(1) ∩ orbρν,x(k).

Case 3: wa = 0 . . . 0 and wb = 0 . . . . Now the entire N + 1-cylinder

Ce1...en1 is disjoint from Ek: for x ∈ Ce1...en1, we have ρ(a) = n+ 1 =

ρ(b).

These three cases cover all possibilities, possibly interchanging the roles

of wa and wb. Hence each n-cylinder contains at least one n + N -cylinder

disjoint from Ek. By Lemma 5.1, Ek is contained in a Cantor set of Hausdorff

dimension

log(2N − 1)

log 2N
= 1 +

log(1− 2−N)

log 2N
≤ 1− 2−N

log 2N

as claimed (using the standard bound log(1 + x) ≤ x for |x| < 1).

Lower Bound L1(N): First assume that N = N(ν) ≥ 6. Observe that

the beginning of ν = 100 . . . 01 . . . contains N − 3 zeroes in a row. Take

M = bN/2c − 1, and let

(6.1) B =
{
x = W1W2 · · · ∈ Σ : Wi ∈ {0, 1}M \ {00 . . . 0}

}
.
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In particular, no x ∈ B contains N − 3 consecutive symbols 0. It follows

that ρν,x(i) < i + N for all i ≥ 1. Moreover, every x ∈ B admits at least

two disjoint ρν,x-orbits: if mi describes the positions of the entries 1 in x,

then ρν,x(mi − 1) = mi+1, and then the orbit increases in steps of 1 until

mi+2− 1, and it later reaches mi+4−1− 1 etc. A different orbit goes through

mi+1−1, mi+3−1, mi+5−i, etc., and is disjoint from the first one. Therefore,

all sequences in B are biaccessible.

According to Lemma 5.1, the Hausdorff dimension of B is

log(2bN/2c−1 − 1)

log 2bN/2c−1
= 1 +

log(1− 2−bN/2−1c)

log 2bN/2c−1
≥ 1− 2−bN/2−1c

(1− 2−bN/2−1c) log 2bN/2c−1

= 1− 1

(2bN/2−1c − 1) log 2bN/2c−1

(using the standard lower estimate log(1 + x) ≥ x/(1 + x) for |x| < 1).

Now let us treat the case N = 5, so ν = 1001 . . . . In this case, we take

B = {x = W1W2 · · · ∈ Σ : Wi ∈ {11, 10} for i ≥ 2}.
Then every x ∈ B admits two disjoint ρν,x-orbits. The Hausdorff dimension

of B is log 2/ log 4 = 1/2 according to Lemma 5.1. This proves the lower

bound L1(N).

Remark 6.2. The same idea gives lower bounds for other beginnings of

kneading sequences:

ν = 10110 . . . : taking Wi = 1111 or 1010 gives dimH(B) ≥ 1/4.

ν = 10100 . . . : taking Wi = 11111 or 11010 gives dimH(B) ≥ 1/5.

ν = 101111 . . . : taking Wi = 101110 or 111010 gives dimH(B) ≥ 1/6.

Incidentally, for the latter two examples, these bounds equal the respective

bounds L2(Sκ+1) below. The bound 1/4 for ν = 10110 . . . is better than

L2(Sκ+1) = 1/5.

Upper Bound U2(Sκ+1): We start with Case (c) in the definition of

L2(Sκ+1) and U2(Sκ+1); see (2.5); in this case Sκ < Sκ+1 < ∞. By the

definition of κ, we can write Sj = pj−1Sj−1 for 1 ≤ j ≤ κ and we define

pκ := max{i ≥ 1 : iSκ < Sκ+1}. Then Sκ+1 ≤ 2pκSκ and

(6.2)

ν1 . . . νSj = (ν1 . . . νSj−1
)pj−1(ν1 . . . ν

′
Sj−1

), ν1 . . . νpκSκ = (ν1 . . . νSκ)pκ ,

where ν ′i = 1 if νi = 0 and vice versa. Every n < pκSκ can be written

uniquely as

n =
κ∑

j=0

ajSj, 0 ≤ aj < pj.
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If ρ(n) < Sκ+1, then

(6.3) ρ(n) = n+ aSh for h ≥ min{j : aj 6= 0} and some 1 ≤ a < ph.

Now if x ∈ Ek, then we can enumerate the entries of orbρν,x(1) and orbρν,x(k)

as 1 = u0 < u1 < . . . and k = v0 < v1 < . . . . We try to estimate how many

different sequences (us)s≥0 and (vt)t≥0 (and hence sequences x ∈ Ek) can be

both disjoint and satisfy ρν,x(us) = us+1 and ρν,x(vt) = vt+1.

If x is known up to entry us+1 and us < vt < us+1, then vt+1 is fully

determined, provided vt+1 < us+1. Let us analyze what can happen if us <

vt < us+1 < vt+1.

Claim: If us+1 − us ≤ pκSκ, then us+1 − vt = aSh for some h < κ and

1 ≤ a < ph, and furthermore vt+1 − vt ≥ min{Sh+1, Sκ + 1}.
To prove this, let y ∈ Σ1 be such that the first difference between x

and y is at position us+1. Abbreviate n = vt − us and r = us+1 − us.

Then yus+1 . . . yus+1 = ν1 . . . νr, and ρν,y(vt) = us+1. By (6.3), this means

that us+1 − vt = r − n = aSh for some h and 1 ≤ a < ph. Now the form

of ν given in (6.2) shows that vt+1 − vt = ρν,x(vt) − vt ≥ Sh+1, because

ρν,x(vt)− vt < Sh+1 would imply that ρν,x(vt) = ρν,x(us+1). This proves the

claim.

Next take s′ maximal such that us′ < vt+1. Then one of the following

holds:

(1) vt+1 − vt = a′Sj for some h + 1 ≤ j ≤ κ and 1 ≤ a′ < pj. Then

(6.2) shows that vt+1 − us′ = a′′Sj−1 for some 1 ≤ a′′ < pj−1, and

the above argument (with the roles of u and v interchanged) implies

that us′+1 − us′ ≥ Sj.

(2) vt+1 − vt > Sκ. In fact, if Sκ+1 > vt+1 − vt > Sκ then using (6.2)

again, we find vt+1 = us′+1, so in this case vt+1 − vt ≥ Sκ+1, but of

course Sκ+1 = Sκ + 1 is possible.

Let us say that u and v switch roles at entries (s, t) if us < vt < us+1 < vt+1.

Let h = h(s, t) be such that us+1 − vt = aSh. The above arguments show

that if h(s, t) ≤ κ and v and u switch roles again at entries (t+ 1, s′), then

h(t+ 1, s′) ≥ h(s, t). Hence, at switches, h is non-decreasing at least until it

exceeds κ, whereas between switches (say us < vt < vt+1 < us+1, the entry

vt+1 is fully determined by us+1. To illustrate this, let us give an example:

ν = 101011101010100 . . .
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with κ = 3 and internal address 1→ 2→ 6→ 12→ 15→ . . . , and

x = 1︸︷︷︸
u0=1

v0, h=0︷︸︸︷
1

v1, h=1︷︸︸︷
0 1 0 1

v2, h=2︷︸︸︷
1 1 0 1 0 1 1︸︷︷︸

u1, h=2

1 0 1 0 1

v3, h=2︷︸︸︷
1 . . .

with k = 2. We see that h stays constant if the roles of u and v switch, and

increases between switches. Furthermore, two consecutive switches of roles

takes Sh+1 digits.

We can code the consecutive switches by integers lj ≥ 0: each lj indicates

the number of pairs of switches where h(s, t) = h(s+ 1, t+ 1) (or h(t, s) =

h(t+1, s+1) for reversed roles of u and v) remain constant at j. If lj = 0, it

means that h(s, t) increases from below j to above j. Suppose there are r ≥ 1

occurrences of h(s, t) > κ before h(s, t) drops to ≤ κ again. Let mj ≥ Sκ+1,

1 ≤ j ≤ r, denote the distances between the remaining switches before

h(s, t) ≤ κ again. (If r = 0, then there are no such mjs.) Thus the whole loop

from h(s, t) = 0 to the last h(s, t) ≥ κ takes at least
∑κ

j=0 ljSj+1 +
∑r

j=1mj

digits. Let us introduce a second index i to indicate the loop number. Then

the pair (li,j)
n, κ
i=1,j=0, (mi,j)

n, ri
i=1,j=1 encodes a cylinder set in Ek going through n

loops, and the cylinder length is at least k+
∑n,κ

i=1,j=0 li,jSj+1+
∑n,ri

i=1,j=1mi,j.

Let δ = U2(Sκ+1). The cylinders encoded by (li,j)
n, κ
i=1,j=0, (mi,j)

n, ri
i=1,j=1

form a cover of Ek with diameter < 2−(k+nSκ). Its δ-dimensional Hausdorff

measure is bounded by

2−kδ
∑

2−δ
∑n,κ
i=1,j=0 li,jSj+1 ·

∑
2−δ

∑n,∞,ri
i=1,ri=1,j=1mi,j ,

where the first main sum runs over all combinations of n(κ + 1) positive

integers li,j and the second main sum over all combinations of integers mi,j ≥
pκSκ+1. Using geometric series, the estimate

∑∞
l=0 2−lα ≤ 1+

∫∞
0

2−xαdx =

1 + 1
α log 2

, and changing the order of product and sum, we can rewrite this

quantity as

2−kδ ·
n∏

i=1




κ∏

j=0

∞∑

li,j=0

2−δli,jSj+1 ·
∞∑

ri=1

ri∏

j=1

∞∑

mi,j=pκSκ+1

2−δmi,j




≤ 2−kδ ·
n∏

i=1

[
κ∏

j=0

(
1 +

1

δSj+1 log 2

)
·
∞∑

ri=1

(
2−δ(pκSκ+1)

1− 2−δ

)ri ]
.(6.4)

Next observe that Sκ+1 ≥ pκSκ + 1 > Sj ≥ 2j for 0 ≤ j ≤ κ, and hence∏κ
j=0(1 + 1

δSj+1 log 2
) ≤ 21/δ(log 2)2 . The second factor is another geometric

series, and can be computed as
∞∑

ri=1

(
2−δ(pκSκ+1)

1− 2−δ

)ri
= 2−δ(pκSκ+1)−log(1−2−δ−2−δ(pκSκ+1))/ log 2.
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Therefore expression (6.4) is bounded by 2 to the power

−kδ +
n

log 2

(
1

δ log 2
− (pκSκ + 1) δ log 2− log(1− 2−δ − 2−δ(pκSκ+1))

)
,

so that (6.4) is bounded in n if and only if the factor in the brackets above

is non-positive. In coordinates δ log 2 = a/
√
pκSκ + 1, this is equivalent to

(6.5) P (a, pκSκ) := ea
√
pκSκ+1(1− e−a/

√
pκSκ+1)− e

√
pκSκ+1/a ≥ 1.

For pκSκ = 3, this can be solved numerically by a ≥ a0 ≈ 1.8234 log 2 >

1.2638. Since P (a, pκSκ) is increasing in a and pκSκ for a ≥ a0, it follows

that (6.4) is bounded in n for δ = 1.8234√
pκSκ+1

. Since pκSκ + 1 > Sκ+1/2 and

1.8234
√

2 <
√

7, we get dimH(Ek) ≤ U2(Sκ+1).

Remark 6.3. If Sκ = 3, then ν = 110 . . . and δ = 1.8234√
pκSκ+1

= 0.9117 gives

a slightly better estimate than U1(N) = U1(3) = log 7/ log 8 ≈ 0.9358. If

Sκ = 2, then ν = 10 . . . and U1(N) ≤ U1(4) is the better upper bound. At

the other end, given any ε > 0, we can take δ = 1+ε√
pκSκ+1 log 2

as upper bound

provided pκSκ is sufficiently large.

Cases (a) and (b) are limit cases, and enforce the sequences vt+1−vt and

us+1 − us to be non-decreasing for every x ∈ Ek. Therefore for any N and

co-countably many x ∈ Ek, eventually vt+1 − vt ≥ N and us+1 − us ≥ N .

This means that eventually, there are at most two “free choices” of symbol

in x within every N entries. Hence we can find c > 0 such the number of n-

cylinders in Ek is at most c22n/N for every n ∈ N, whence dimH(Ek) ≤ 2/N .

But N is arbitrary, so the upper bound U2(Sκ+1) = 0 holds in these cases

too.

Lower Bound L2(Sκ+1): Write ν = ν1ν2 . . . and define V = ν1ν2 . . . νSκ−1ν
′
Sκ

and V̂ = ν1ν2 . . . νSκ+1−1ν
′
Sκ+1

, where ν ′i = 1 if νi = 0 and vice versa. (Note

that if Sκ+1 =∞, then there is nothing to prove.) Let

(6.6) B =
{
x = W1W2 · · · ∈ Σ : Wi ∈ {V, V̂ }

}
.

Corollary 5.2 implies dimH(B) ≥ 1
Sκ+1

as claimed, so it suffices to show

that each x ∈ B admits two disjoint ρν,x-orbits. By construction of x ∈ B,

ρ◦iν,x(Sκ) = |W1W2 . . .Wi| for all i ≥ 0. We will show that the ρν,x-orbit

of Sκ−1 is disjoint from this. Note that V is the concatenation of Sκ/Sκ−1
blocks ν1ν2 . . . νSκ−1 . Therefore, for any integer a ∈ {1, . . . , Sκ

Sκ−1
− 1},

ρν,V V (aSκ−1) = ρν,V V̂ (aSκ−1) = Sκ + aSκ−1,
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where we extended the definition of ρν,x to the case where x is a finite block

in the obvious way. Also

ρν,V̂ V (aSκ−1) = ρν,V̂ V̂ (aSκ−1) = Sκ.

Let n = Sκ+1−Sκ, so we can write V̂ = VW for W = ν1 . . . νn. Furthermore

W = V iX for some i ≥ 0 and m := |X| < Sκ. We can use (6.3) to compute

ρXV,XV (m) = aSh for some h ≤ κ − 1 and 1 ≤ a ≤ Sh+1/Sh. If h = κ − 1,

then X is the concatenation of at most pκ− 1 blocks ν1 . . . νSκ−1 and in this

case we readily find

ρν,V̂ V (Sκ) = ρν,V̂ V̂ (Sκ) = Sκ + aSκ−1.

If h ≤ κ− 2, then

ρν,V̂ V (Sκ) = ρν,V̂ V̂ (Sκ) = Sκ+ρ(n) = Sκ+1+(ρ(n)−n) = Sκ+1+(ρ(m)−m).

Since ρ(m) ≤ Sκ−1, Lemma 4.2 in [BKS] gives that Sκ−1 ∈ orbρ(ρ(m)−m),

and therefore Sκ+1+Sκ−1 belongs to the ρν,V̂ V -orbit (and to the ρν,V̂ V -orbit)

of Sκ.

Combining these facts, we derive that the ρν,x-orbit of Sκ−1 contains

|W1 . . .Wi| + aiSκ−1 for each i and some 1 ≤ ai < pκ, and hence is disjoint

from the ρν,x-orbit of Sκ.

(ii) Now for the second statement, i.e., for kneading sequences, we repeat

the proof with

(6.7) ΣN,S,k =

{
ν ∈ Σ :

N(ν) = N, Sκ+1(ν) = S,

k = min{i : orbρ(1) ∩ orbρ(i) = ∅}

}
.

Take G = N or Sκ+1 according to whether the dimension estimate is ob-

tained from (2.2) or (2.5). For ν ∈ ΣN,κ,k, instead of comparing subwords

of ν with a fixed itinerary, we compare subwords of ν with ν itself, and

in the above arguments, only a comparison with ν1 . . . νG matters. There-

fore there is no change in the upper bounds, also if we have to exclude the

non-admissible kneading sequences.

For the lower bounds, take n > max{k,G}, and we can always select an

admissible n-cylinder for C intersecting ΣN,κ,k (from equation 6.7) and such

that orbρ(i) 3 n for all i < G.

If G = N , then the sequences B = {ν = CW1W2 · · · : Wi ∈ {0, 1}M \
{00 . . . 0}} (constructed in the same gist as (6.1)) have the property that

ρ(i)−i < G for all i ≥ n, and hence they satisfy Admissibility Condition 3.1.

If G = Sκ+1, then we use B = {ν = CW1W2 · · · : Wi ∈ {0, 1}M \{V, V̂ }} (as

in (6.6)). The same reasoning gives that all ν ∈ B satisfy the admissibility

condition, and so we obtain the same lower bounds L1(N) and L2(S). �
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We can now translate the first (dynamical) half of Proposition 6.1 from

itineraries to external angles of dynamic rays; the second (parameter) half

with the transfer from kneading sequences to external angles of parameter

rays will be treated in Section 7.

Proof of Theorem 2.4. From Lemma 4.1 we know that for each n-cylinder

set Ce1...en , the preimage ν−1ϑ (Ce1...en) consists of at most n open arcs, with

combined length 2−n. Hence each of these arcs has length ≤ 2−n and at

least one of them has length ≥ 2−n/n.

Using Lemma 5.3, we can transfer the dimension bounds of Proposi-

tions 6.1 to the combinatorially biaccessible dynamic angles, proving the

theorem. �

Remark 6.4. If ν is periodic (but not ?-periodic), this may correspond to

a Siegel disk in the Julia set it models. There is a Cantor set K of dynamic

angles with the same itinerary ν. Lemma 4.1 doesn’t fail: it just says that

K can be covered by n arcs of combined length 2−n for each n and hence

dimH(K) = 0. This fact was already proved by Bullett and Sentenac [BuS].

7. Dimension estimates for angles in parameter space

In this section, we make the transition from the dimension of kneading

sequences (Proposition 6.1 (ii)) to the dimension of external angles of rays

in parameter space.

In [BKS] we constructed Hubbard trees based on the combinatorial in-

formation encoded in the internal address or kneading sequence only. In

[BrS, Lemma 3.1.] it was shown that all branch points that are not precriti-

cal have a representative periodic point, called characteristic point on their

orbit that lies on the arc [0, c1] and closer to c1 than any other periodic

point on the same orbit. The precise definition is as follows:

Definition 7.1. (Characteristic Point).

A periodic point p on a Hubbard tree is called characteristic if c1 lies in a

different component of T \ {p} than every other of orb(p).

Characteristic points come in two types, tame and evil, of which the

tame points are the ones that actually occur in true embedded Julia sets.

We call the components of T \{z1} the global arms of z1, whereas the global

arms intersected with a small neighborhood of z1 are called local arms. The

next lemma collects from [BrS, Lemma 3.6] those properties of global arms

of branch points that are relevant for this paper.
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Lemma 7.2. (Global Arms at Branch Points Map Homeomorphically).

Let z1 be the characteristic point of a tame n-periodic orbit of branch points,

each with q ≥ 3 arms. Then n appears in the internal address, and the global

arms at z1 can be labeled G0, G1, . . . , Gq−1 so that G0 3 0, G1 3 c1, and f ◦n

maps G1, . . . , Gq−2 homeomorphically onto their images in G2, . . . , Gq−1.

As shown in [BrS, Lemma 3.1], this characteristic point lies on the arc

[0, c1] and if 1 → S1 → S2 → . . . is the internal address of (T, f), then for

every entry Si, there is a characteristic point pi.

Recall that the map ν : S1 → Σ1 assigns the kneading sequence to an

external parameter angle. In order to investigate how Hausdorff dimension

behaves under ν−1, we must determine, for an n-cylinder C, the number of

components of ν−1(C) and their minimal length. This relies on the number

of different ways a Hubbard tree with an m-periodic critical point can be

embedded in the plane, because this equals the number of components of

ν−1(C) for m-cylinders C. Let ϕ(q) be the Euler function counting the

integers 1 ≤ i < q that are coprime to q; it gives the number of transitive

maps on q points preserving circular order.

Lemma 7.3. (Embedding of the Hubbard Tree).

A Hubbard tree (T, f) can be embedded into the plane so that f respects the

cyclic order of the local arms at all branch points if and only if (T, f) has no

evil orbits. If q1, q2, . . . are the number of arms of the different characteristic

branch points (all of them tame), then there are
∏
ϕ(qi) different ways to

embed T into the plane such that f extends to a two-fold branched covering.

Proof. If (T, f) has an embedding into the plane so that f respects the cyclic

order of local arms at all branch points, then clearly there can be no evil

orbit (this uses the fact that no periodic orbit of branch points contains a

critical point).

Conversely, suppose that (T, f) has no evil orbits, so all local arms at

every periodic branch point are permuted transitively. First we embed the

arc [0, c1] into the plane, for example on a straight line. Every cycle of branch

points has at least its characteristic point p1 on the arc [0, c1], and it does

not contain the critical point. Suppose p1 has q arms. Take s ∈ {1, . . . , q−1}
coprime to q and embed the local arms at p1 in such a way that the return

map f ◦n moves each arc over by s arms in counterclockwise direction. This

gives a single cycle for every s < q coprime to q. There are ϕ(q) choices to

do this and these choices can be made for all characteristic branch points

independently.
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A point x ∈ T is called marked if it is a branch point or point on the

critical orbit. We say that two marked points x, y are adjacent if (x, y)

contains no further marked point. If a branch point x is already embedded

together with all its local arms, and y is an adjacent marked point on T

which is not yet embedded but f(y) is, then draw a line segment representing

[x, y] into the plane, starting at x and disjoint from the tree drawn so far.

This is possible uniquely up to homotopy. Embed the local arms at y so

that f : y → f(y) respects the cyclic order of the local arms at y; this is

possible because y is not the critical point of f .

Applying the previous step finitely many times, the entire tree T can be

embedded. It remains to check that for every characteristic branch point p1

of periodm, say, the map f : p1 → f(p1) =: p2 respects the cyclic order of the

local arms. By construction, the forward orbit of p2 up to its characteristic

point p1 is embedded before embedding p2, and f ◦(m−1) : p2 → p1 respects

the cyclic order of the embedding. If the orbit of p1 is tame, the cyclic order

induced by f : p1 → p2 (from the abstract tree) is the same as the one

induced by f ◦(m−1) : p2 → p1 used in the construction (already embedded in

the plane), and the embedding is indeed possible. Recalling that q1, q2, . . .

are the number of arms of the characteristic branch points in T , we see that

there are altogether
∏
ϕ(qi) different ways to embed T . �

Lemma 7.4. (Upper Bound for Number of Embeddings).

A Hubbard tree in which the critical orbit is periodic with period n has less

than n embeddings into the plane that respect the circular order of the local

arms at every branch point.

Proof. Let 1 → S1 → . . . → Sk be the internal address of the tree (cf.

Definition 2.2), with Sk = n. We may suppose that all branch points are

tame (or there would be no embedding at all). By Lemma 7.2, the periods

of all branch points appear on the internal address. Let p0, . . . , pk−1 be

the tame characteristic periodic points of periods S0, . . . , Sk−1. Let their

numbers of arms be q0, . . . , qk−1; according to [BrS, Proposition 4.19] they

satisfy

Si+1 =

{
(qi − 1)Si + ri if Si ∈ orbρ(ri),
(qi − 2)Si + ri if Si /∈ orbρ(ri),

where the ri are uniquely defined by the condition 1 ≤ ri ≤ Si.

Since only branch points contribute to the number of embeddings, let us

write i(0), i(1), . . . , i(l) for the indices of pi that are branch points. Obviously

k > i(l).
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By Lemma 7.3, there are precisely a :=
∏l

s=0 ϕ(qi(s)) dynamically viable

embeddings of the Hubbard tree into the plane. Clearly a ≤ ∏l
s=0(qi(s) −

1). We will show that a < Sk. We call ζj be a closest precritical point of

Step(ζj) = j if f ◦j(ζ) = c1. and the arc [c1, ζj] contains no precritical

point of Step < j. The arc [pi(t), c1] contains the closest precritical point

ζSi(t)+1
, and f ◦(qi(t)−2)Si(t) maps it to a precritical point ζt of Step(ζt) =

Si(t)+1−(qi(t)−2)Si(t). Lemma 7.2 implies that the arm G1 of pi(t) containing

c1 homeomorphically survives f ◦(qi(t)−2)Si(t) and ζt lies in a different arm of

pi(t) as the critical point. However, ζt and ζSi(t−1)+1
lie in the same global

arm of pi(t−1), which homeomorphically survives another (qi(t−1) − 2)Si(t−1)
iterates. Inductively repeating this argument gives

Si(t)+1 > (qi(t) − 2)Si(t) + (qi(t−1) − 2)Si(t−1) + · · ·+ (qi(0) − 2)Si(0).

Choose u1 = Si(1), u0 = u1/(qi(0) − 2) and

ut+1 := (qi(t) − 2)ut + (qi(t−1) − 2)ut−1 + · · ·+ (qi(0) − 2)u0 .

Then by induction ut+1 = (qi(t) − 1)ut, and therefore

ut+1 = (qi(t) − 1)ut = u1

t∏

s=1

(qi(s) − 1).

Hence Sk ≥ Si(l)+1 > ul+1 = Si(1)
∏l

s=1(qi(s) − 1). It is easily checked that

Si(1) ≥ qi(0) − 1. Therefore Sk > a as asserted. �

Proof of Theorem 2.5. We know the dimension bounds in terms of kneading

sequences ν, which are proved by means of counting n-cylinders. Here we

need to make the transition from parameter angle ϑ to ν(ϑ). This involves

counting how many arcs A ⊂ S1 map into the same cylinder set C under ν,

which is related to how many ways there are to embed Hubbard trees into

the plane.

For every ϑ with ν(ϑ) ∈ C, the Hubbard tree (whether finite or infinite)

contains a finite skeleton composed of the connected hulls of the character-

istic periodic points of period up to n, see [BKS]. The number of possible

embeddings of this skeleton coincides with the number of different arcs in

ν−1(C), and hence we need to understand these embeddings only for finite

trees.

For the upper bound, we claim that for every n-cylinder C ⊂ Σ, ν−1(C)

consists of at most 1
2
n(n + 1) arcs of length ≤ 1

2n−1 . Indeed, if α is such

that the n-th entry ν(α)n = ?, say that 2n−1α = m+α
2

for some m ≥ 1, then

for α′ = α + 1
2n−1 we have 2n−1α′ = m+1+α′

2
. Therefore every component of
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ν−1(C) must be contained in an arc (α, α + 1
2n−1) for some α ∈ S1. This

shows that ν−1 is Lipschitz on each branch.

Let T be a Hubbard tree with a periodic critical point; say the period is

m = Sk. The external angles of T depend on the specific embedding of T in

the plane. According to Lemma 7.4 there are at most m different embed-

dings. Each embedding of T (with biaccessible critical value) comes with at

least two external angles. We can exclude the Hubbard trees with more than

two external angles at the critical value, because these correspond to strictly

preperiodic critical points and this constitutes a countable set. Hence there

are at most 2m external angles realizing the kneading sequence ν1 . . . νm−1?.

Each arc in ν−1(Cν1...νn) has two boundary points having kneading sequences

ν1 . . . νm−1? for some m ≤ n. Therefore the total number of arcs is bounded

by
∑n

m=1m = 1
2
n(n + 1). This proves the claim. Now use Proposition 6.1

and Lemma 5.3 to finish the proof of the upper bound.

For the lower bound, take M = N or Sκ+1 according to whether the

lower bound in Proposition 6.1 is obtained from L1(N) or L2(Sκ+1). Let

k > M and take an n-cylinder set C = Ce1...en intersecting ΣN,κ,k. Without

loss of generality we can choose C so that n ∈ orbρ(i) for each i ≤ M , and

that no ν ∈ C gives rise to an evil period m with ρ(m) ≤ n.

Using Proposition 6.1, we can find a subset B ⊂ C of Hausdorff dimen-

sion δ ≥ max{L1(N), L2(Sκ+1)}. Moreover, for all ν ∈ B, ri := ρ(i)−i ≤M

for all i > n. Therefore n ∈ orbρ(ri), so it follows that every ν ∈ B cor-

responds to an admissible Hubbard tree T , whose periodic branch points

have period ≤M . By Lemma 7.3, T has a bounded number of embeddings,

hence the map ν : ν−1(B)→ B is bounded-to-one.

A second property of B ⊂ C is that if C̃ = Ce1...ej is any subcylinder

intersecting B, then all four subcylinders Ce1...ejej+1ej+2
satisfy Admissibility

Condition 3.1. Therefore the single arc component A ⊂ ν−1(C̃) is divided

into four pieces by points of the form i
2j+1−1 or i

2j+2−1 (where i is an integer),

and |A| > 1
2j+2−1 . It follows that the map ν restricted to ν−1(B) is Lipschitz

(with Lipschitz constant ≤ 4) on each of its branches. Therefore, we can use

the second part of Lemma 5.3, say with polynomial Q(n) ≡ 4, to conclude

that the set of biaccessible external angles contains a Cantor set ν−1(B) of

Hausdorff dimension δ. �

The following corollary deals with parameter angles whose rays land

on hyperbolic components. Note that all these rays land indeed: if ν(ϑ) is

periodic of period n but ϑ is irrational, then ϑ has a finite internal address

and the parameter ray is contained in the wake of a hyperbolic component
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of period n, but not in any of its subwakes, and every boundary point of a

hyperbolic component has trivial fiber [Sch5, Corollary 5.1].

Corollary 7.5. (Hausdorff Dimension of Periodic Parameter Angles).

The set of parameter angles ϑ ∈ S1 such that ν(ϑ) is periodic has zero

Hausdorff dimension.

Proof. Let ν be a periodic kneading sequence. If ν is ?-periodic, then there

are at most finitely many ϑ ∈ S1 such that ν(ϑ) = ν. Otherwise, there can

be a Cantor set of such angles, but the first half of the proof of Theorem 2.5

shows that this Cantor set has Hausdorff dimension zero. Since there are

countably many periodic kneading sequences, the result follows. �

8. Biaccessibility and Renormalization

It remains to prove Propositions 2.10 and 2.11 on the biaccessibility

dimension under the condition of renormalizability or being associated to

the main molecule.

Proof of Proposition 2.10. If a kneading sequence is simpleM -renormalizable

(regardless of whether it is admissible or not), then the associated internal

address contains after entry M only entries which are divisible by M , see

(2.7). If the kneading sequence is divided into blocks of length M , then

every block can differ from the first one only at the last position. Since

ν1 = 1 and νM must be such that M occurs in the internal address, there

are at most 2M−2 · 2i−1 possibilities for the first iM entries of such knead-

ing sequences. Hence the set of M -renormalizable kneading sequences has

Hausdorff dimension at most (log 2)/ log(2M) = 1/M by Lemma 5.1. In-

finitely renormalizable kneading sequences are simple M -renormalizable for

arbitrarily large M , so their Hausdorff dimension is 0.

Given a parameter angle ϕ with kneading sequence ν(ϕ), define the

interval

Jn(ϕ) = {ϕ′ ∈ S1 : for all ϑ ∈ (ϕ, ϕ′) (the shorter arc)

ν(ϑ)i = ν(ϕ)i for all 1 ≤ i < n}.
Then |2iϑ− 2iϑ′| < 1 for all ϑ, ϑ′ ∈ Jn(ϕ) and 1 ≤ i < n, so diam(Jn(ϕ)) ≤
21−n, cf. Figure 2.

If ϕ is M -renormalizable, then, as above, there at most 2M−22i−1 ways

to select the first iM digits. By Lemma 7.4, there are at most iM ways in

which the corresponding Hubbard tree can be embedded in the plane. Hence,

the set of M -renormalizable parameter angles is covered by a collection
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of at most iM2M−3+i intervals of length 21−iM . Therefore the Hausdorff

dimension of the set of M -renormalizable parameter angles is bounded by

lim infi
log(iM2M−3+i)

log 21−iM
= 1

M
.

For infinitely renormalizable angles, this holds for arbitrary large M , so

the Hausdorff dimension of this set is 0. �

Proof of Proposition 2.11. If ϑ is associated to the main molecule ofM and

infinitely renormalizable, then κ =∞ and dimH(Biacϑ) ≤ U2(Sκ+1) = 0 by

Theorem 2.4. If ϑ is associated to the main molecule and finitely simple

renormalizable, then in particular, it has a finite internal address, and there

are only countably many ray-pairs in this case.

The other implication follows immediately from Theorem 2.4 because if

ϑ is not associated to the main molecule of M, then Sκ < Sκ+1 < ∞ and

we have the lower bound L2(Sκ+1) = 1/Sκ+1 > 0. �
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