
INDUCING AND UNIQUE ERGODICITY OF DOUBLE ROTATIONS

H. BRUIN AND G. CLACK

Abstract. In this paper we investigate “double rotations”, i.e., interval translation maps that
when considered on the circle, have just two intervals of continuity. Using the induction procedure
described by Suzuki et al., we show that Lebesgue a.e. double rotation is of finite type, i.e., it
reduces to an interval exchange transformation. However, the set of infinite type double rotations
is shown to have Hausdorff dimension strictly between 2 and 3, and carries a natural induction-
invariant measure. It is also shown that non-unique ergodicity of infinite type double rotations,
although occurring, is a-typical with respect to every induction-invariant probability measure in
parameter space.

1. Introduction

Interval translation maps (ITMs) are a generalisation of interval exchange transformations, first
introduced by Boshernitzan and Kornfeld in 1995, [BK]. They are a class of piecewise isometry
constructed by partitioning an interval, I (usually [0, 1)) into d subintervals and applying a rotation
to each partition element. Unlike IETs these rotations are not such that the map is surjective.

Thus in order to understand the dynamics upon an ITM, T it is useful to compute the attractor;
Ω = I ∩ TI ∩ T 2I ∩ . . . . If there exists an n ∈ N such that I ∩ TI ∩ T 2I ∩ · · · ∩ TnI = I ∩ TI ∩
T 2I ∩ · · · ∩TnI ∩Tn+1I then we say, following [BK], that T is of finite type, and thus reduces to an
IET. However if no such n exists then Ω is a Cantor set and T is said to be of infinite type. Infinite
ITMs have properties such as minimality, provided Ω contains a dense orbit, [BT].

In the parameter space P of ITMs, of dimension 2d− 1, we would like to find the set of parameters
for which the corresponding ITM is of infinite type. Boshernitzan and Kornfeld [BK], in analogy
to the well-known Rauzy induction for interval exchange transformations (IETs), introduced an
induction and renormalisation (i.e., first return map rescaled to unit size) method to study their
examples. In [BT] this was extended to a two-parameter slice of the three-dimensional parameter
space for ITMs with two intervals. In the paper Double Rotations, [SIA], Suzuki et al. describe
induction suitable for general ITMs of two intervals, which we shall term Suzuki induction. Using
this method, we confirm the result proved [SIA] for the parameter slices where α and β are rationally
independent.

Theorem 1. For Lebesgue a.e. parameter in P , the corresponding ITM is of finite type.

In fact, the subset of infinite type ITMs in P has a fractal structure, and our estimates indicate that
its Hausdorff dimension lies in [2, 2.88], see Section 4. Since Suzuki induction S is a non-conformal
map, finding (a S-invariant measure equivalent to) Hausdorff measure is a non-trivial matter, as is
a description of the measure of maximal dimension.

The question of unique ergodicity is a central theme for IETs. The speciality of early examples of
non-unique ergodicity by Keynes & Newton [KN] and Keane [K] led to conjecture that typically,
an IET (based on an irreducible permutation) is uniquely ergodic. This has been confirmed by the
seminal work of Veech [V] and Masur [M], using the aforementioned Rauzy induction. In [BT] it
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was shown that there are infinite type ITMs that are not uniquely ergodic, although the number of
ergodic measures is bounded by d(d+ 1)/2e, see [BH]. Hence for the ITMs in this paper, two is the
maximal number of ergodic measure. Although Rauzy induction, and little of the other advanced
machinery of IETs are available for ITMs, non-unique ergodicity turns out to be extremely rare:

Theorem 2. For every S-invariant measure µ such that µ(Abyss) = 0, µ-a.e. parameter corre-
sponds to a uniquely ergodic ITM.

In Section 2 we introduce an ITM of two intervals, and consider its partitioning. Section 3 contains
a definition of the accelerated version of the map, and the calculations giving us bounded distortion
(i.e., equations (2a) and (2b)). From this we show that with respect to Lebesgue measure, almost
every point is an Abyss point. Section 4 describes results related to the Hausdorff dimension of the
set of non-Abyss ITMs. The symbolic dynamics of the Suzuki map are in Section 5. Finally, the
proof of Theorem 2 occupies Section 6.

2. Definitions

We consider a map, T(α,β,c) : [0, 1)→ [0, 1), of the form:

T(α,β,c)x =

{
x+ α (mod 1) if x ∈ [0, c)

x+ β (mod 1) if x ∈ [c, 1)

with α, β, c ∈ [0, 1). These three values give us our parameter space, P = [0, 1) × [0, 1) × [0, 1),
a three-dimensional cube. A double rotation is a piecewise translation defined on two to four
subintervals of continuity (if we identified 0 and 1 to form a circle, there are always two intervals
of continuity, hence the name, but in this paper we will use the interval approach). Upon this
parameter space we can apply Suzuki induction and renormalisation, to produce a new double
rotation. This involves computing the first return map to a subinterval of [0, 1), determined by
order relations between the parameters α, β, c. This corresponds to a partitioning of P , viz.:

(1) P(1) = {(α, β, c) : α < β, c ≤ 1− β}
(2) P(2) = {(α, β, c) : α < β, 1− β < c < 1− α}
(3) P(3) = {(α, β, c) : α < β, 1− α ≤ c}
(4) P(4) = {(α, β, c) : β < α, c ≤ β}
(5) P(5) = {(α, β, c) : β < α, β < c < α}
(6) P(6) = {(α, β, c) : β < α, α ≤ c}.

Any parameter that is in P(2) or P(5) will reduce to a rotation. The remaining cases give us the
following map on P :

S(α, β, c) =



({
α

1−β

}
,
{

β
1−β

}
, c
1−β

)
if (α, β, c) ∈ P(1)({

α−1
α

}
,
{
β−1
α

}
, c+α−1α

)
if (α, β, c) ∈ P(3)({

α−1
β

}
,
{
β−1
β

}
, cβ

)
if (α, β, c) ∈ P(4)({

α
1−α

}
,
{

β
1−α

}
, c−α1−α

)
if (α, β, c) ∈ P(6)

(1)

with the induction taking place on [0, 1− β), [1− α, 1), [0, c) ∪ [1− β + c, 1), and [0, c− α) ∪ [c, 1)
for P(1), P(3), P(4), and P(6) respectively. See [SIA] for more details.

If a point (α, β, c) maps to P(2) or P(5) under iteration of S, then the corresponding ITM is of finite
type. This motivates our next definition: the Abyss is the set of (α, β, c) ∈ P such that there exists
n ∈ N0 with Sn(α, β, c) ∈ P(2) ∪ P(5).

The set P(1) is a tetrahedron with vertices (0, 0, 0), (0, 1, 0), (1, 1, 0), and (1, 1, 1). We can divide this
space by the discontinuity lines of the Suzuki induction map S on the space, i.e., when S(α, β, c)
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Figure 1. The subpartition of P(1) the brackets referring to the (m,n)

Figure 2. Each (m,n) box maps to the entire parameter space.

has an integer component. Let S(α1, β1, c1) = (α2, β2, c2). We find β2 = 0 when β1
1−β1 = n giving

us the planes β = n
n+1 intersecting P(1) for all n ∈ N. Similarly from α1

1−β1 = m ∈ N we get the

planes β1 = 1 − α
m intersecting P(1). This partitions the space P(1) into boxes made by the above

mentioned planes and the plane c = 1 − β (see Figure 1). We can give every point its address in
the above in the form of (m,n).

For each box (m,n), the boundary ∂(m,n) = ∂U1 ∪ ∂U2 ∪ ∂V1 ∪ ∂V2 ∪ ∂W1 ∪ ∂W2 corresponding
to c = 0 (∂U1), c = 1− β (∂U2), β = n−1

n (∂V1), β = n
n+1 (∂V2), α = (m− 1)(1− β), or α = 0 for

m = 1, (∂W1), and α = m(1 − β) (∂W2). These are mapped by S to c = 0, c = 1, β = 0, β = 1,
α = 0, and α = 1 respectively. Thus each of these boxes maps to the entire parameter space, P .
For the cases where m = n we replace ∂V2 and ∂W2 with ∂D, corresponding to α = β, this maps
to α = β and thus (n, n) boxes map to P(1) ∪ P(2) ∪ P(3) for all n ∈ N. Within each of the boxes

the function is C2.

There exist symmetries between the four non-Abyss cases acting as involutions

g(α, β, c) = (β, α, 1− c)
h(α, β, c) = (1− β, 1− α, 1− c) giving

P(1) g
←→

P(6)

l h l h
P(3) g

←→
P(4)

From this it follows that we shall see the same kinds of properties upon P(3), P(4), and P(6). Hence
we can partition the space P(1) ∪ P(3) ∪ P(4) ∪ P(6) with each box having address (i,m, n) where m
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and n are as above, and i ∈ {1, 3, 4, 6} signifying the P(i), we refer to such a partition as P(i,m,n).
Further note that, ⋃

i∈{1,3,4,6}

P(i) \
⋃

i∈{1,3,4,6}

⋃
n∈N

⋃
m≤n

P(i,m,n)

has zero Lebesgue measure zero. Thus we have that the Suzuki induction map is a Markov map.

On each of the partition elements the expansion of S is determined by the denominators 1− β, α,
β, and 1− α. It turns out that each of the P(i)s has a line of neutral fixed points, with β = 0 and
α = 0, for P(1) and P(6), and also α = 1 and β = 1 for P(4) and P(6). So in order to obtain uniform
expansion we shall accelerate the map.

Since P(1,1,1) is the part of P(1) where S has neutral fixed points, we shall speed up the subparti-

tioning of P(1,1,1). We divide the partition elements into slices: {(α, β, c) : β ∈ ( 1
t+1 ,

1
t+2)} ∩ P(1,1,1)

for all t ∈ N. If we examine the dynamics upon this box we see it maps to the box {(α, β, c) : β ∈
(1t ,

1
t+1), α < β, c ∈ [0, 1)}. So we can imagine that each of these boxes gets mapped into the area

of the next box away from the neutral fixed point in the α and β directions, and gets its “roof”
c = 1− β stretched to c = 1.

We are interested in finding out when each point in each of these boxes gets mapped outside of
P(1,1,1). There are three different cases. Firstly, the point might stay in P(1,1,1) until Skβ ∈ (12 , 1),

where we write Sk(α, β, c) = (Skα, Skβ, Skc). In this case k = t and we define the induce time

τ(α, β, c) = t where t is as above.

For the second type of point there exists an iteration where (α, β, c) is mapped outside of P(1,1,1)

before Skβ ∈ (12 , 1). In this case the induce time τ is defined as,

τ(α, β, c) = min{k ∈ N : Sk(α, β, c) ∈ P(3)}+ 1.

Finally we have the Abyss points, of which we need say no more. So using the above we get an
accelerated version of Suzuki induction, Z = Sτ , with the τ defined as above.

3. Almost Every Element of the Parameter Space is an Abyss Element

From the above we have a Markov map for S with the partition⋃
i∈{1,3,4,6}

⋃
n∈N

⋃
m≤n

P(i,m,n) ∪ P(2) ∪ P(5).

Thus we can describe an orbit of a point (α, β, c) with the addresses of its iterations: ωj = i if
Sj(α, β, c) ∈ P(i). Obviously, the non-Abyss cases are those such that ωj ∈ {1, 3, 4, 6} for all j ∈ N0.

Now we consider the distortion properties of the map. For a map f : X → X with a partition,
Φ = {B1, B2, . . . } of maximal regions of continuity, we say that f has bounded distortion, if there
exists a C > 0 such that for every partition, Bi the x, y ∈ Bi obey:∣∣∣∣det(Jf (x))

det(Jf (y))
− 1

∣∣∣∣ ≤ C |fx− fy| , (2a)

and it has uniform expansion of the Jacobian if there are K > 0 and λ > 1 such that

|det(Jfn(x))| ≥ Kλn (2b)

for all n ∈ N, where Jf is the Jacobian matrix of f . Combining (2a) and (2b), we obtain bounded
distortion for all iterates: there is C ′ such that∣∣∣∣det(Jfk(x))

det(Jfk(y))
− 1

∣∣∣∣ ≤ C ′ ∣∣∣fkx− fky∣∣∣ ,
for all k ≥ 1 and all x, y in the same element of the k-fold refinement Φ ∨ f−1Φ ∨ · · · ∨ f1−kΦ of
the partition Φ.
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For Suzuki induction we compute the Jacobian matrix for P(1):

JS(α, β, c) =


1

1−β
α

(1−β)2 0

0 1
(1−β)2 0

0 c
(1−β)2

1
1−β

 with det(JS(α, β, c)) =
1

(1− β)4
.

Similarly, we have determinants 1
α4 , 1

β4 , and 1
(1−α)4 for points in P(3), P(4), and P(6) respectively.

So now we consider if we can find a C for (2a), using the notation S(α, β, c) = (Sα, Sβ, Sc):∣∣∣∣det(JS(α2, β2, c2))

det(JS(α1, β1, c1))
− 1

∣∣∣∣ =

∣∣∣∣∣
(

1− β1
1− β2

)4

− 1

∣∣∣∣∣
=

∣∣∣∣∣
(

1 + Sβ2
1 + Sβ1

)4

− 1

∣∣∣∣∣
=

∣∣∣∣∣
(

1 +
Sβ2 − Sβ2

1 + Sβ1

)4

− 1

∣∣∣∣∣
≤ (1 + |Sβ2 − Sβ2|)4 − 1 ≤ 15|Sβ2 − Sβ2|.

Thus taking C ≥ 15 suffices to satisfy (2a).

However we also have to consider the accelerated version of Suzuki induction, Z, for the points in the
set P(1,1,1), of the first type mentioned above, those that stay in P(1) until it reaches {(α, β, c) : β ∈
(12 , 1)}. Hence we have:

Z(α, β, c) = Sτ (α, β, c) =

(
α

1− τβ
,

β

1− τβ
,

c

1− τβ

)
.

This has a Jacobian with determinant:

det(JZ(α, β, c)) =
1

(1− τβ)4
.

So in this case 1 + τZβ = 1
1−τβ and because Zβ2 ≥ 1/2 we have for (2a):∣∣∣∣det(JZ(α2, β2, c2))

det(JZ(α1, β1, c1))
− 1

∣∣∣∣ =

∣∣∣∣∣
(

1− τβ1
1− τβ2

)4

− 1

∣∣∣∣∣
=

∣∣∣∣∣
(

1 + τZβ2
1 + τZβ1

)4

− 1

∣∣∣∣∣
=

∣∣∣∣∣
(

1 + τ
Zβ2 − Zβ1
1 + τZβ1

)4

− 1

∣∣∣∣∣
≤ (1 + 2|Zβ2 − Zβ2|)4 − 1 ≤ 80|Zβ2 − Zβ1|.

So any C ≥ 80 satisfies (2a).

Finally we have the points of P(1,1,1) that get mapped to P(3) before they hit {(α, β, c) : β ∈ (12 , 1)},
which can happen only if β < 1/(τ + 1). This will give us the accelerated Suzuki map of the form:

Z(α, β, c) =

({
α+ (τ − 1)β − 1

α

}
,

{
τβ − 1

α

}
,
α+ (τ − 1)β + c− 1

α

)
.

This has a determinant of 1
α4 . Notice that this is the same value as we get for a point in P(3).

To estimate the distortion in this case, we decompose Z = S ◦ Ẑ where (α̂, β̂, ĉ) = Ẑ(α, β, c) =
Sτ−1(α, β, c) is the τ − 1-fold application of S on P(1), and

Z(α, β, c) = S(α̂, β̂, ĉ) =

({
α̂− 1

α̂

}
,

{
β̂ − 1

α̂

}
,
ĉ+ α̂− 1

α̂

)
5



is the final application of S on P(3).

Let n ∈ N be such that
{
α̂−1
α̂

}
= nα̂−1

α̂ . Then for α̂1, α̂2 in the same region of continuity of S we
have,

α̂2 − α̂1 = α̂1

(
nα̂2 − 1

α̂1
− nα̂1 − 1

α̂1
− (n− 1)

α̂2 − α̂1

α̂1

)
= α̂1

(
(1 +

α̂2 − α̂1

α̂1
)Sα̂2 − Sα̂1 − (n− 1)

α̂2 − α̂1

α̂1

)
= α̂1

(
Sα̂2 − Sα̂1 − (n− 1− Sα̂2)

α̂2 − α̂1

α̂1

)
,

so |α̂2 − α̂1| = α̂1
n−Sα̂2

|Sα̂2 − Sα̂1|. By a similar computation,

|β̂2 − β̂1| ≤ α̂1

(
|Sβ̂2 − Sβ̂1|+ (1− β1)|Sα̂2 − Sα̂1|

)
≤ α̂1 (|Zβ2 − Zβ1|+ |Zα2 − Zα1|) .

Since det JZ = (det JS ◦ Ẑ) · det JẐ = ( 1
α̂

1
1−(τ−1)β )4, we obtain for the distortion

det JZ(α1, β1, c1)

det JZ(α2, β2, c2)
=

det JS(α̂1, β̂1, ĉ1)

det JS(α̂2, β̂2, ĉ2)

JẐ(α1, β1, c1)

JẐ(α2, β2, c2)

≤
(

1 +
|Zα1 − Zα2|
n− Sα̂2

)4
(

1 +
(τ − 1)|β̂1 − β̂2|
1 + (τ − 1)β̂1

)4

≤
(

1 +
|Zα1 − Zα2|
n− Sα̂2

+ (1 +
τ − 1

1 + (τ − 1)β̂1
)α̂1 (|Zβ2 − Zβ1|+ |Zα2 − Zα1|)

)4

≤ (1 + 3‖Z(α2, β2, c2)− Z(α1, β1, c1)‖∞)4

≤ 1 + 269‖Z(α2, β2, c2)− Z(α1, β1, c1)‖∞,

where we used α̂1 ≤ β̂1 for the third inequality. Therefore∣∣∣∣det JZ(α1, β1, c1)

det JZ(α2, β2, c2)
− 1

∣∣∣∣ ≤ 269‖Z(α2, β2, c2)− Z(α1, β1, c1)‖∞.

It follows from the symmetries that the results for Suzuki induction and accelerated Suzuki induc-
tion will work on P(3), P(4), and P(6) also. Thus (2a) is satisfied. Now we consider (2b) for P(1) (as
before this will be sufficient to demonstrate it holds for the parameter space). For Z we have that

|det(JZ(x))| = |det(JS(x))| ≥
(

1
2
3

)4
=
(
3
2

)4
. So for (2b) we have that:

|det(JZn(x))| ≥ λn

where λ =
(
3
2

)4
. Hence accelerated Suzuki induction Z satisfies the bounded distortion conditions

above.

From [Mañ] we have the Folklore Theorem:

Theorem 3 (Folklore Theorem). Let f : M −→M be a C1 piecewise expanding map of a compact
(n-dimensional) manifold M , with bounded distortion. Assume also that f is topologically mixing
and preserves a Markov partition with finite image partition. Then f has an absolutely continuous
invariant probability measure µ. Furthermore, µ is ergodic, its density is bounded and bounded
away from zero and µ(A) = limn−→∞ Leb(f

−n(A)) for each measurable set A.

Hence accelerated Suzuki induction Z has a finite, invariant probability measure. It follows quite
readily that the set of non-abyss cases has measure zero.
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This result also follows from work by Suzuki et al. [SIA]. They show that for any (α, β) such that α
and β are rationally independent, there exists subset of the c ∈ [0, 1], Γ which correspond to values
of c where (α, β, c) is not an Abyss element. They then prove that Γ is a Cantor set with measure
zero.

Corollary 4. Lebesgue-a.e. point in the phase space belongs to the Abyss.

Proof. Define the following map of the parameter space:

Z(α, β, c) =


Z(α, β, c) if (α, β, c) ∈ P(i) for i ∈ {1, 3, 4, 6}
Z(α, β, {c}1−β) if (α, β, c) ∈ P(2)

Z(α, β, {c}β) if (α, β, c) ∈ P(5)

This map will have an ergodic, invariant measure by the Folklore theorem. Hence by ergodicity,
µ-a.e. (α, β, c) ∈ P(2) ∪ P(5) will visit every point in the parameter space. Thus µ-a.e. (α, β, c) ∈ P
is an Abyss element, and as µ is absolutely continuous with respect to Lebesgue, we get the desired
result. �

4. Hausdorff Dimension of Non-Abyss Cases

We can consider the dimension of the set of non-Abyss points, NA. Noting that the set P(1) ∩
{(α, β, c) : c = 0} is invariant we can deduce that the dimension of the non-Abyss set must be at
least 2. For an upper bound we compute an estimate for the box-dimension. This gives us the
estimate 2.88. Thus we conclude that the Hausdorff dimension of NA satisfies dimHNA ∈ [2, 2.88].

Let ε = 2−n and {
Gp,q,r(ε) = [εp, (p+ 1)ε)× [εq, (q + 1)ε)× [εr, (r + 1)ε),

NGp,q,r(ε) =
∑

p,q,r∈{0,...,2n−1}Υ(Gp,q,r(ε)),

where

Υ(Gp,q,r(ε)) =

{
1 if NA ∩Gp,q,r(ε) 6= ∅
0 otherwise.

The approximation of the box-dimension comes from approximating

lim
ε→0
−

log(NGp,q,r(ε))

log(ε)

using grids, Gp,q,r(2
−n) for a finite range of n ∈ N. Figure 3 shows a graph of log(NGp,q,r(ε))

versus log(ε). Our approximation was based upon computing the values of NGp,q,r(ε) for the 420th
iteration of Suzuki induction on the parameter space. With the parameter space divided up into
303 = 27000, 313 = 29791,. . . , 3003 = 27000000 cubes. The line on the plot was given by the
polyfit function in Matlab, which uses the least squares method. See e.g. Barnsley [Ba] for more
details on the algorithm.

It would seem natural to use the measure of maximal dimension on NA as a reference measure to
express the typicality of dynamic behaviours of T(α,β,c). The distortion properties of the accelerated
Suzuki induction, Z, are such that much of the standard theory of thermodynamic formalism should
apply for the potential − log |det(JZ)|. Hence, it can be expected that the pressure:

P (t) = sup

{
hS(µ)t

∫
log | det(JZ)|dµ : µ is Z-invariant and supp(µ) = NA

}
(3)

is an analytic, convexly decreasing function for t > 0, and that for each t there is a unique equilib-
rium measure µt that maximises the right hand side in (3). However, since S is a non-conformal
map, it does not follow, even for the minimal value t = t0 where P (t0) = 0, that µt is equivalent to

7



Figure 3. A plot of log(NGp,q,r(ε)) versus log(ε).

the measure of maximal dimension. Hence there is no good motivation to single out such equilib-
rium measure among all other probability measures. Fortunately, in the case of unique ergodicity,
there is a stronger notion of typicality that holds, and we will discuss this in the next sections.

5. Symbolic Dynamics

The usual way of applying symbolic dynamics is by assigning a label b to each continuity interval
Ib of T , and then forming itineraries (strings of labels) for each x ∈ I by

i(x) = i0(x)i1(x)i2(x) . . . , where ik(x) = b if T k(x) ∈ Ib.

Renormalisation then takes the shape of a substitution on the space of itineraries, as follows. If
T̂ : J → J is the first return map of T to a subinterval J , then T̂ (x) = T τ(x)(x) for the first return

time τ(x) of x ∈ J , and if b is the label of the continuity interval of T̂ containing x, then we write

t(b) = b0b1 . . . bτ(x)−1 where T i(x) ∈ Ibi for 0 ≤ i < τ(x).

This substitution acts on strings of labels by concatenation:

t(b0b1 . . . bn) = t(b0)t(b1) . . . t(bn).

In order to repeat this procedure for all subsequent renormalisation steps, i.e., for all iterates Sk

of the Suzuki induction, we require an alphabet Ak of labels at stage k, generating the space A∗k
of finite words of these labels, and substitutions

tk : Ak → A∗k−1.

Let Jk ⊂ [0, 1) be the interval of the first return map which is represented by the k-th renormali-
sation. If x ∈ ∩kJk, then the itinerary of x can be found as

i(x) = lim
m→∞

t1 ◦ t2 . . . tm(bm),

where bm is the label of the continuity interval of Jm that contains x. By minimality of T : Ω→ Ω,
each y ∈ Ω will have its itinerary in the orbit closure Σ = {σn(i(x)) : n ∈ N}, where σ denotes the
left-shift.

The sequence of substitutions (tk)k∈N0 is determined by the addresses of Sk(α, β, c), as shown in
equation (5), below. The shape of the renormalisation map (especially where the symmetries g
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and h are concerned) makes it convenient to sometimes use more labels than there are intervals of
continuity, but this doesn’t affect the method.

It is obvious that all of the non-Abyss maps have either three or four intervals, so it might seem
natural to use an alphabet {1, 2, 3} (with 4 in some cases). However we need to divide the intervals
into pieces such that the involutions g and h cannot split any of them into two pieces. As we will
have problems for computing the substitution shift of, say P1 or P(3) into P(4) or P(6). So for each
map we need the alphabet {1, 2, 3, 4} (and in some cases 5).

Firstly we require a new partitioning of P :

Q(1) = {(α, β, c) : β ≥ α ≥ c} Q(4) = {(α, β, c) : 1− β ≥ 1− α ≥ c}
Q(2) = {(α, β, c) : β > c > α} Q(5) = {(α, β, c) : 1− β > c > 1− α}
Q(3) = {(α, β, c) : c ≥ β ≥ α} Q(6) = {(α, β, c) : c ≥ 1− β ≥ 1− α}

and from this and the P -partitioning we have the χ-partitions:

χ(i,j) = P(i) ∩Q(j). (4)

g h
χ(1,1) ↔ χ(6,6) χ(1,1) ↔ χ(3,3)

χ(1,2) ↔ χ(6,5) χ(1,2) ↔ χ(3,2)

χ(1,3) ↔ χ(6,4) χ(1,3) ↔ χ(3,1)

χ(3,1) ↔ χ(4,6) χ(4,4) ↔ χ(6,6)

χ(3,2) ↔ χ(4,5) χ(4,5) ↔ χ(6,5)

χ(3,3) ↔ χ(4,4) χ(4,6) ↔ χ(6,4)

We can use the above to make connections between properties of different partition elements. So
now we have to consider the symbolic dynamics the Suzuki induction of each partition to every
other partition. Firstly we ask the question of whether every element maps to every other element.
This is not the case. For the cases χ(1,1), χ(3,3), χ(4,4), and χ(6,6) all map to all the other partitions.
However, consider the partition element χ(1,2) (where c < 1− α < 1− β and α < c < β) in this α
is less than c, hence α < 1− β. From the definition of Suzuki induction we know that α

1−β <
c

1−β .

Hence χ(1,2) cannot map to points where c < α thus it cannot map to χ(1,1), χ(3,1), χ(4,4), χ(4,5),
and χ(4,6). In the case of the partitions that don’t map to all the other partitions we have:

χ(1,2) 7→ χ(1,2), χ(1,3), χ(3,2), χ(3,3), χ(6,4), χ(6,5), and χ(6,6)

χ(3,2) 7→ χ(1,1), χ(1,2), χ(3,1), χ(3,2), χ(4,4), χ(4,5), and χ(4,6)

χ(4,5) 7→ χ(3,1), χ(3,2), χ(3,3), χ(4,5), χ(4,6), χ(6,5), and χ(6,6)

χ(6,5) 7→ χ(1,1), χ(1,2), χ(1,3), χ(4,4), χ(4,5), χ(6,4), and χ(6,5)

χ(1,3) 7→ χ(1,3), and χ(3,3)

χ(3,1) 7→ χ(1,1), and χ(3,1)

χ(4,6) 7→ χ(4,6), and χ(6,6)

χ(6,4) 7→ χ(4,4), and χ(6,4)

For χ(1,1) we have the subintervals; [0, c), [c, 1 − β), [1 − β, 1 − β + c), and [1 − β + c, 1), labelled
1, 2, 3, and 4 respectively. In the case of χ(1,2) the intervals are [0, c − α), [c − α, c), [c, 1 − β),
[1−β, 1−β+ c), and [1−β+ c, 1). With χ(1,3) we have the intervals [0, c−α), [c−α, c), [c, 1−β),
and [1− β, 1) see figure 4.

So we consider Suzuki induction on χ(1,1). For χ(1,1) → χ(1,1) the first interval will be mapped to

[0, 1− β) after a− 1 =
⌈

α
1−β

⌉
− 1 iterations in the fourth interval. The second interval splits into

three, the left part maps to [0, 1 − β) after b − 1 =
⌈

β
1−β

⌉
− 1 iterations in the fourth interval.

The centre part spends b− 1 iterations in the fourth interval and then in the third interval before
returning. The right part spends b iterations in the fourth interval.
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Figure 4. The division of χ(1,1), χ(1,2), and χ(1,3) (from left to right).

For the case χ(1,1) → χ(1,2) the first interval in this case has a right and a left part. The left part
spends a − 2 in fourth interval before going to the third. The right part behaves the same as the
first interval in the case above. These two cases correspond to the substitution shifts below:

1 −→ 14a−1 1 −→ 14a−23
2 −→ 24b−1 2 −→ 14a−1

3 −→ 24b−13 3 −→ 24b−1

4 −→ 24b 4 −→ 24b−13
5 −→ 24b

In total there are 84 different cases. The other cases are listed in the appendix.

6. Unique Ergodicity

In [BK, Theorem 11] it was shown that the slice c = 1−α of the parameter space contains parameters
(α, β) for which the ITM is of infinite type, but not uniquely ergodic. Also some weak conditions
were given [BK, Theorem 12] that imply that Tα,β : Ω→ Ω preserves only one probability measure,
showing that unique ergodicity is the typical situation in that parameter slice. It would be natural
to express typical behaviour on the space of infinite type ITMs, in terms of S-invariant measures
µ on P . One might take µ to be equivalent to measure of maximal dimension, if available, but in
case of unique ergodicity, we can express its typical occurrence in a stronger way.

Theorem 5. For any measure µ, invariant with respect to Suzuki induction S,

µ{(α, β, c) ∈ P \Abyss : Tα,β,c is not uniquely ergodic} = 0.

The matrices Ak associated to the substitutions tk can be used to keep track of the number (and

frequency) of symbols appearing in strings. Indeed, if Nk(w) is the vector in N#Ak
0 indicating

the number of appearances of the i-th symbol of Ak in w, then Nk−1(tk(w)) = Ak−1Nk(w) is the

vector in N#Ak−1

0 indicating the number of appearances of the i-th symbol of Ak−1 in tk(w). By
normalising these vectors, we obtain the frequency of these symbols in w, etc. Alternatively, we

can use the positive cone Ck = R#Ak
+ and projective (Hilbert) metric H to investigate whether the

symbol frequencies in itineraries i(x) are independent of the point x ∈ Ω. This is important to
determine if T : Ω → Ω is uniquely ergodic, and we can easily extend Lemma 17 of [BT] to the
following:

Proposition 6. Let (α, β, c) correspond to an infinite type ITM T(α,β,c. Then (T,Ω) is uniquely
ergodic if and only if

Fk = ∩m≥kAk ·Ak+1 · · ·Am(Cm+1) (5)

is a single line (i.e., single point in projective space) for all k ∈ N.
10



We will use Hilbert Metric on cones C, defined as

H(x, y) = log
inf{a : ax− y ∈ C}
sup{b : y − bx ∈ C}

.

In fact, H is only a semi-metric, since H(x, y) = 0 if and only if x and y are on the same line through
the origin, but H is a proper metric on projective space. In addition [Bi], it is a contraction under
linear transformations: namely, if A : C2 → C1 is a linear transformation between cones (equipped
with Hilbert metric H2 and H1 respectively), then

H1(Ax,Ay) ≤ tanh(
D

4
)H2(x, y) where D = diamH1A(C2).

The diameter diamH1(AC2) is finite if only if A(C2) is compactly contained in C1 (i.e., ∂C1∩∂A(C2)

is only the origin of C1). In our case, the Cm are cones within R#Am
+ and the linear transformations

are those represented by the matrices Am. Only when Am is positive (at every entry) we find

diamHm(AmR
#Am+1
+ ) < ∞, and for this reason, we consider compositions Ak · · ·Am of blocks of

matrices rather than single matrices. Let

Pm = {(α, β, c) ∈ P \Abyss : A1 · · ·Am is a positive matrix},

where the matrices Ak, k = 1, . . . ,m are uniquely determines by the itinerary of (α, β, c) under
Suzuki induction S. We have

Lemma 7. P \Abyss =
⋃
m∈N Pm.

Proof. Since T = Tα,β,c is of infinite type, T : Ω → Ω is minimal, see [ST] and [BK, Theorem 1].
Due to compactness of Ω, there is m ≥ 1 such that the first return map T τ to the interval Jm that
is associated to the m-th Suzuki induction has the following properties:

• The first return time τ is bounded;
• For each x ∈ Jm ∩Ω and each interval Ij with label j ∈ A1, there is 0 ≤ k < τ(x) such that

T k(x) ∈ Ij .

This means that the matrix composition A1 · · ·Am is positive. �

Proof of Theorem 5. Let µ be any S-invariant measure such that µ(Abyss) = 0; without loss
of generality we can assume that µ is ergodic. By Lemma 7, there is m such that µ(Pm) > 0. By
taking a smaller U ⊂ Pm if necessary, but still with µ(U) > 0, we can assume that the sub-labels
(a, b) in the addresses of cells χi,j used for the substitutions tk (and hence matrices Ak) are all
bounded. Thus, for each (α, β, c) ∈ U , a the corresponding m matrices are chosen out of a finite
collection, and hence A1 · · ·Am is not only positive, but also bounded. Therefore

D = sup{diamH1(A1 · · ·AmR#Am+1) : (α, β, c) ∈ U} <∞

uniformly on U . By the Ergodic Theorem, µ-a.e. (α, β, c) ∈ P has a sequence (nj)j≥1 with nj+1 ≥
nj +m, such that Snj (α, β, c) ∈ U for all j ∈ N. At each visit to U , Hilbert distance will decrease
by a factor λ := tanh(D/4) within the next m iterates, so we find

diamH1(A1 · · ·AnjR
#Anj+1) ≤ λj−1D.

It follows that F1 :=
⋂
j A1 · · ·AnjR

#Anj+1 is a single line, and the same argument gives that also

Fk :=
⋂
j Ak · · ·AnjR#Am+1 is a single line for each k ∈ N. Therefore Proposition 6 implies that

Tα,β,c is uniquely ergodic. �
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Appendix

The table in this appendix lists the possible transitions between regions in parameter space P that
are allowed by the Suzuki induction S. In each of the boxes (there are in total 84 cases), we give
the symbolic substitution that Suzuki induction represents in these regions, so the whole table
indicates which substitution can be followed by which other substitution. Note that the exponents
a and b stand for the ceiling function of Sα and Sβ respectively.
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χ(1,1) χ(3,3) χ(4,4) χ(6,6) χ(1,2) χ(3,2)

χ(1,1) 1→ 14a−1 1→ 31b−12 1→ 12a−1 1→ 13b−12 1→ 31b−12
2→ 24b−1 2→ 41a2 2→ 42b 2→ 43a−22 2→ 42
3→ 24b−13 3→ 41a 3→ 42b−13 3→ 43a−1 3→ 4
4→ 24b 4→ 41a−22 4→ 42b−1 4→ 43a−12 4→ 5

χ(1,2) 1→ 14a−23 1→ 31b 1→ 12a−13 1→ 13b−1 1→ 1 1→ 31b

2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2 2→ 31b−12
3→ 24b−1 3→ 41a−12 3→ 42b 3→ 43a−22 3→ 35b−1 3→ 42
4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 25b−14 4→ 4
5→ 24b 5→ 41a−12 5→ 42b−1 5→ 43a−12 5→ 25b 5→ 5

χ(1,3) 1→ 14a−23 1→ 31b−1 1→ 12a−13 1→ 13b−1 1→ 1
2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2
3→ 24b−1 3→ 41a−12 3→ 42b 3→ 43a−22 3→ 35b−1

4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 35b−14
χ(3,1) 1→ 14a−1 1→ 31b−12 1→ 12a−1 1→ 13b−12 1→ 31b−12

2→ 14a−13 2→ 31b−1 2→ 12a−23 2→ 13b 2→ 31b−1

3→ 24b−13 3→ 41a−1 3→ 42b−13 3→ 43a−1 3→ 4
4→ 24b−1 4→ 41a−22 4→ 42b−1 4→ 43a−12 4→ 5

χ(3,2) 1→ 14a−23 1→ 31b 1→ 12a−13 1→ 13b−1 1→ 1 1→ 41b

2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2 2→ 41b−12
3→ 14a−13 3→ 31b−1 3→ 12a−23 3→ 13b 3→ 24 3→ 31b−1

4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 35b−14 4→ 4
5→ 24b 5→ 41a−22 5→ 42b−1 5→ 43a−12 5→ 35b 5→ 5

χ(3,3) 1→ 14a−23 1→ 31b 1→ 12a−13 1→ 13b−1 1→ 1
2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2
3→ 14a−13 3→ 31b−1 3→ 12a−23 3→ 13b 3→ 24
4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 35b−14

χ(4,4) 1→ 14a−1 1→ 31b−12 1→ 12a−1 1→ 13b−12 1→ 31b−12
2→ 24b−1 2→ 41a−12 2→ 42b 2→ 43a−22 2→ 42
3→ 24b−13 3→ 41a−1 3→ 42b−13 3→ 43a−1 3→ 4
4→ 24b 4→ 41a−22 4→ 42b−1 4→ 43a−12 4→ 5

χ(4,5) 1→ 14a−1 1→ 31b−12 1→ 12a−1 1→ 13b−12 1→ 31b−12
2→ 14a−13 2→ 31b−1 2→ 12a−13 2→ 13b 2→ 31b−1

3→ 24b−1 3→ 41a−12 3→ 42b 3→ 43a−22 3→ 42
4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 4
5→ 24b 5→ 41a−22 5→ 42b−1 5→ 43a−12 5→ 5

χ(4,6) 1→ 14a−1 1→ 31b−12 1→ 12a−1 1→ 13b−12 1→ 31b−12
2→ 14a−13 2→ 31b−1 2→ 12a−23 2→ 13b−1 2→ 31b−1

3→ 24b−13 3→ 41a−1 3→ 42b−13 3→ 43a−1 3→ 4
4→ 24b 4→ 41a−22 4→ 42b−1 4→ 43a−12 4→ 5

χ(6,4) 1→ 14a−23 1→ 31b 1→ 12a−13 1→ 13b−1 1→ 1
2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2
3→ 24b−1 3→ 41a−12 3→ 42b−1 3→ 43a−22 3→ 35b−1

4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 35b−14
χ(6,5) 1→ 14a−23 1→ 31b 1→ 12a−13 1→ 13b−1 1→ 1

2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2
3→ 14a−13 3→ 31b−1 3→ 12a−23 3→ 13b 3→ 24
4→ 24b−1 4→ 41a−12 4→ 42b 4→ 43a−22 4→ 35b−1

5→ 24b−13 5→ 41a−1 5→ 42b−13 5→ 43a−1 5→ 35b−14
χ(6,6) 1→ 14a−23 1→ 31b 1→ 12a−13 1→ 13b−1 1→ 1

2→ 14a−1 2→ 31b−12 2→ 12a−1 2→ 13b−12 2→ 2
3→ 14a−13 3→ 31b−1 3→ 12a−23 3→ 13b 3→ 24
4→ 24b−13 4→ 41a−1 4→ 42b−13 4→ 43a−1 4→ 35b−14
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χ(4,5) χ(6,5) χ(1,3) χ(3,1) χ(4,6) χ(6,4)

χ(1,1) 1→ 13b−12 1→ 21
2→ 4 2→ 31
3→ 5 3→ 3
4→ 52 4→ 4

χ(1,2) 1→ 13b−1

2→ 13b−12
3→ 4
4→ 5
5→ 52

χ(1,3) 1→ 13b−1 1→ 1
2→ 13b−12 2→ 2
3→ 4 3→ 3
4→ 5 4→ 34

χ(3,1) 1→ 1 1→ 21
2→ 2 2→ 2
3→ 53b−14 3→ 3
4→ 53b−1 4→ 4

χ(3,2) 1→ 14
2→ 1
3→ 2
4→ 53b−14
5→ 53b−1

χ(3,3) 1→ 14 1→ 1
2→ 1 2→ 2
3→ 2 3→ 24
4→ 53b−14 4→ 34

χ(4,4) 1→ 13b−12 1→ 12
2→ 4 2→ 3
3→ 5 3→ 4
4→ 52 4→ 42

χ(4,5) 1→ 1 1→ 13b−12
2→ 2 2→ 13b

3→ 13b 3→ 4
4→ 13b−14 4→ 5
5→ 53b−1 5→ 52

χ(4,6) 1→ 1 1→ 1
2→ 2 2→ 2
3→ 53b−14 3→ 43
4→ 53b−1 4→ 4

χ(6,4) 1→ 13b−1 1→ 1
2→ 13b−12 2→ 12
3→ 4 3→ 3
4→ 5 4→ 4

χ(6,5) 1→ 14 1→ 13b−1

2→ 1 2→ 53b−12
3→ 2 3→ 53b

4→ 53b 4→ 4
5→ 53b−14 5→ 5

χ(6,6) 1→ 14 1→ 13
2→ 1 2→ 1
3→ 2 3→ 2
4→ 13b−14 4→ 43
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