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Abstract

We study linear recurrence and weak mixing of a two-parameter family of interval translation
maps Tα,β for the subset of parameter space where Tα,β has a Cantor attractor. For this class, there
is a procedure similar to the Rauzy induction which acts as a dynamical system G on parameter
space, which was used previously to decide whether Tα,β has an attracting Cantor set, and if so,
whether Tα,β is uniquely ergodic. In this paper we use properties of G to decide whether Tα,β is
linearly recurrent or weak mixing.
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1 Introduction

In [13] the following family of interval translation maps (ITMs) was introduced:

Tα,β(x) =


x+ α, x ∈ [0, 1− α),

x+ β, x ∈ [1− α, 1− β),

x− 1 + β, x ∈ [1− β, 1].

0 11− α 1− β

α

β

on the parameter space U = {(α, β) : 0 < β ≤ α ≤ 1}. Viewed as circle map, Tα,β is a piecewise
rotation on two pieces; it was studied in greater generality in [1, 11].

ITMs come in: (i) finite type if reduced to a set of subintervals, it is an interval exchange trans-
formation (IET), and (ii) if the only compact invariant set are Cantor sets, and (iii) mixtures of the
two. A conjecture by Boshernitzan & Kornfeld [8] suggests that infinite type occurs only for a set of
zero Lebesgue measure in parameter space, and for the family Tα,β his indeed holds, see [13, Theorem
6]. Determining the type for this family goes via renormalization consisting of the first return map to
[1−α, 1] and rescaling to unit size, in analogy to Rauzy induction for IETs. This transforms Tα,β into
Tα′,β′ where

(α′, β′) = G(α, β) =

(
β

α
,
β − 1

α
+
⌊ 1
α

⌋)
. (1)
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Note that G(U) = U ∪ L for L = {(α, β) : α − 1 ≤ β ≤ 0 ≤ α ≤ 1} and exactly the parameters
in Ω∞ := {(α, β) : Gn(α, β) ∈ U◦ for all n ≥ 0} have the property that Tα,β is of infinite type, i.e.,

Ω :=
⋂

n≥0 T
n
α,β([0, 1]) is a Cantor set on which Tα,β acts as a minimal endomorphism. See Figure 1

for the parameter set associated to type infinity ITMs.
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Figure 1: Approximation of the set Ω∞ of type infinity parameters with 10, 000 pixels.

Symbolically, Tα,β is described by an S-adic subshift (X,σ), based on a sequence of substitutions
χki , ki ∈ N = {1, 2, 3, . . . }, and we call Tα,β linearly recurrent if the subshift (X,σ) is, i.e., there is
L such that for every x ∈ X, every subword w reappears in x with gap ≤ L|w|. Theorem 2.6 gives a
precise condition on the sequence (ki)i∈N that results in linear recurrence.

Unique ergodicity of Tα,β fails if the sequence (ki) increases exponentially fast, see [13, Theorem
11]. In this non-generic situation, there are two ergodic measures. We can also conclude from its
representation as S-adic shifts, that Tα,β is never strongly mixing, see e.g. [12, Theorem 6.79].

Instead, the other property we investigate in this paper is weakly mixing of Tα,β . General results in
weak mixing for interval exchange transformations were obtained by Nogueira & Rudolph [19] (generic
IETs), Sinăı & Ulcigrai [20] (“periodic” IETs) and Avila & Forni [3] (Lebesgue typical IETs). Recent
extensions of these results can be found in e.g. [2, 4, 5]. However, the relative simplicity of the family
{Tα,β} allows us to use methods from linear algebra (rather than results of Veech and Teichmüller
theory) combined with a general condition on Bratteli-Vershik systems for existence of eigenvalues
of the Koopman operator. This condition goes back to Host [17], and worked out in more generals
settings in [7, 9, 10, 14, 15]. We prove that all “periodic” ITMs in our class (i.e., those for which
the corresponding sequence (ki)i∈N is (pre-)periodic) as well as “typical” (in a sense made precise in
Theorem 4.12) ITMs in our class are weakly mixing.

The paper is structured as follows. In Section 2 we characterize the linear recurrent ITMs by giving
an if and only if condition on the index sequence (ki)i∈N of the substitutions in the S-adic representa-
tion. When the S-adic representation is viewed as non-autonomous sequences of toral automorphisms
(Ak)k≥1, the condition for the existence of an eigenvalue e2πiξ of the Koopman operator is close (al-

though not equivalent) to the vector ξ⃗ := (ξ, ξ, ξ) ∈ T3 belonging to the stable space W s(⃗0) of (Ak)k≥1.

In Section 3, we study the Lyapunov exponents of long concatenations A1 · · ·An and show that W s(⃗0)
is one-dimensional, so that the absence of eigenvalues becomes the generic situation, as studied in Sec-
tion 4. Section 4.2 gives algebraic reasons why ITMs with (pre-)periodic sequences (ki)i∈N are weak
mixing. Section 4.3 investigates the stable direction further, showing that it is uniquely determined by
(ki)i∈N. In Section 4.4 we show that ξ⃗ ∈ W s(⃗0) is a necessary, although not a sufficient, condition for
the existence of continuous eigenvalues. Finally, in Section 4.5 we show that if lim infi ki < ∞, then
the ITM is uniquely ergodic. This implies that for any G-invariant probability measure ν on Ω∞, the
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ITM Tα,β is uniquely ergodic for ν-a.e. parameter (α, β). If in addition to lim infi ki < ∞ we have

ξ⃗ ̸∈ W s(⃗0), then the Koopman operator has no measurable eigenvalues.

Acknowledgement: We are grateful to the referee for pointing out some unclear steps in what
now became Section 3, as well as for drawing our attention to [18].

2 Linear recurrence

We use symbolic dynamics w.r.t. the partition {[0, 1−α), [1−α, 1−β), [1−β, 1]}, with symbols 1, 2, 3,
respectively. One renormalization step is given by the substitution

χk :


1 → 2

2 → 31k

3 → 31k−1

for k =
⌊ 1
α

⌋
∈ N. (2)

The associate matrix and its inverse are

Ak =

0 k k − 1
1 0 0
0 1 1

 and A−1
k =

 0 1 0
1 0 1− k
−1 0 k

 .

Note that det(Ak) = det(A−1
k ) = −1 and the characteristic polynomial of Ak is Pk(λ) = λ3−λ2−kλ+1.

Every ITM of infinite type in this family is uniquely characterised by a sequence (ki)i∈N ⊂ N such
that

k2i > 1 for infinitely many i ∈ N and k2i−1 > 1 for infinitely many i ∈ N. (3)

Otherwise Gn(α, β) will eventually belong to the upper and right boundary alternatingly, and this
behaviour belongs to the finite type case.

The itinerary of the point 1 ∈ [0, 1] is then

ρ = lim
i→∞

χk1
◦ χk2

◦ χk3
◦ · · · ◦ χki

(3).

Let X be the closure of {σn(ρ)}n∈N where σ is the left-shift. For such sequences, the attractor Ω of the
ITM is a Cantor set, on which the action is isomorphic to an S-adic shift (X,σ) with associated matrices
Aki

. In [13] conditions are given under which (Ω, Tα,β) is uniquely ergodic, see also Corollary 4.15. For
the first result on linear recurrence for our family of ITMs, we need certain properties for the S-adic
shift.

A S-adic subshift based on substitutions χi : Ai → A+
i−1 is called primitive if for all m ∈ N there

exists n ≥ m such that for all a ∈ An

χm ◦ · · · ◦ χn(a) contains every b ∈ Am−1.

The corresponding shift space X is the shift orbit closure of the set of accumulation points of {χ1 ◦
· · · ◦ χn(a) : n ∈ N, a ∈ An}. A subshift is aperiodic if there exists no x ∈ X such that σk(x) = x for
some k ∈ N.

A substitution is called left-proper, if for all letters a ∈ A the word χ(a) has the same starting
letter. While the substitutions χki based on an ITM of infinite type are not left-proper, any telescoping
χk ◦ χki+1

is, because

χki
◦ χki+1

:


1 → 31ki

2 → 31ki−12ki+1

3 → 31ki−12ki+1−1.

Thus ρ, the itinerary of the point 1 ∈ [0, 1], is the unique one-sided fixed point under (χki)i∈N.
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Next we need to show that our S-adic shift (X,σ) is aperiodic. In the literature one can find some
results in this direction, e.g., [6, Lemma 3.3] requires that the substitutions are unimodular, primitive
and proper, where we only have left-proper. The next lemma uses a weak form a recognizability, which
does hold in our case.

Definition 2.1. Let (X,σ) be a subshift based on the substitution χ. We call χ combinatorially
recognizable if there is N ∈ N such that for every word w in X of length |w| ≥ N and every v =
v1v2v3 . . . vn such that w appears twice in χ(v), then the first appearance of w starts at χ(v1 · · · vi) if
and only if the second appearance of w starts at χ(v1 · · · vj) for some 0 ≤ i < j < n. (Here i = 0
means that χ(v) starts with w.)

The S-adic subshift (X,σ) based on substitutions (χi)i∈N is recognizable if each χi is recognizable
(not necessarily with the same N).

Lemma 2.2. Let (X,σ) be an injective, combinatorially recognizable S-adic subshift based on substi-
tutions χi : Ai → A+

i−1 such that for every n ∈ N there is m > n such that

|χn ◦ · · · ◦ χm(a)| > 1 for every a ∈ Am. (4)

Then (X,σ) is aperiodic.

Proof. Assume by contradiction that (X,σ) has a periodic element x = σk ◦ χ(y) ∈ X with period p.
It follows that x = w∞ with w a word of length p. We can pick k in such a way that w∞ starts with
χ1(a) for some a ∈ A1. As χk1

is recognizable and injective, every new occurrence of w must start
with χ1(a). In fact, there is a unique word a · · · b ∈ A+

1 such that χ1(a · · · b) = w and

χ−1
1 (x) = χ−1

1 (w)∞ = (a · · · b)∞.

This unique χ−1
1 (x) is again periodic with period p1 ≤ p. Using (4) and taking preimages χ−1

m ◦ · · · ◦
χ−1
1 (x) decreases the period: pm < p1. Since we can repeat this argument, even when the period is

reduced to 1, we get a contradiction. Hence all elements of (X,σ) are aperiodic.

Proposition 2.3. The S-adic subshift (X,σ), based on substitutions (χki
)i∈N from an ITM of infinite

type, is primitive, combinatorially recognizable and aperiodic.

Proof. Primitivity. We prove that for any i ∈ N there exists ni such that the product of matrices
associate to χki , . . . , χki+ni+1 is strictly positive.

We write Ak for matrices with k > 1. For odd or even length blocks of substitutions with ki = 1
the product of associated matrices are

A2r−1 =

 0 1 0
1 0 0

r − 1 r 1

 , A2r =

1 0 0
0 1 0
r r 1

 .

Let i ∈ N be such that ki > 1, as the ITM is of infinity type there exists an odd mi such that
ki+mi

> 1.
In between ki and ki+mi the positions of odd distance to ki are always equal to one, the even

positions may take any value k ≥ 1, i.e.,

(ki, 1, ki+2, 1, . . . , 1, ki+2j , 1, . . . , 1, ki+2n, ki+mi) .

Thus we can write the multiplication of matrices from ki to ki+mi
in the following way

Aki

∏
(k,r)

A2r−1Ak

A2s Aki+mi
, (5)
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where s ≥ 0 and (k, r) are the values of kj > 1 for i < j < i+mi and 2r− 1 is the length of the chain
of ones between the previous k > 1 and kj with r > 0.

If the product in (5) is empty, it is the identity matrix. If it contains only one pair (k, r), it has
the form  0 1 0

1 0 0
r − 1 r 1

0 k k − 1
1 0 0
0 1 1

 =

1 0 0
0 k k − 1
r (r − 1)k + 1 (r − 1)(k − 1) + 1

 .

Otherwise, if the product contains multiple such factors, we get

∏
(k,r)

A2r−1Ak =
∏
(k,r)

1 0 0
0 ∗ ∗
∗ ∗ ∗

 =

1 0 0
∗ ∗ ∗
∗ ∗ ∗

 ,

where the ∗ represent integers greater than zero. As the identity matrix is minimal in each entry, we
use it as the lowest possible bound for each entry in the matrix multiplication with s > 0

Aki

∏
(k,r)

A2r−1Ak

A2s ≥

0 ki ki − 1
1 0 0
0 1 1

1 0 0
0 1 0
s s 1

 =

∗ ∗ ∗
1 0 0
∗ ∗ ∗


In case s = 0, the result is Aki

, which is the entry-wise lower possibility. Thus

Aki

∏
(k,r)

A2r−1Ak

A2sAki+mi
≥

0 ki ki − 1
1 0 0
0 1 1

0 ki+mi
ki+mi

− 1
1 0 0
0 1 1


=

∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗

 .

We see that the multiplication from ki to ki+mi
does not result in a full matrix. By multiplying one

more step, independently of the value of ki+mi+1 (it can be 1), we get∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗

Aki+mi+1 =

∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗

0 ki+mi+1 ki+mi+1 − 1
1 0 0
0 1 1

 =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


and thus we have a full matrix by multiplying mi + 2 steps together.

For an arbitrary position j with kj ≥ 1 there exists nj ≥ 0 such that there is j ≤ i ≤ j + nj with
ki > 1 and mi odd with ki+mi

> 1. Thus the matrix associated to the substitution χkj
◦ · · · ◦χki+mi+1

is strictly positive. Therefore the S-adic shift is primitive.
Combinatorial Recognizability. Let (Xi, σ) be the S-adic subshift based on (χkj )j≥i, we show

that substitution χki is combinatorially recognizable. Take x ∈ Xi, there is a unique way to decompose
x into blocks χki

(a) for a ∈ A. Any 2 in x is its own block χki
(1). Further every 3 in x starts a new

block and depending on the number of 1s directly following, we can determine if the block is χki
(2) or

χki
(3). For example

x = . . . | 2 | 3 1 1 | 3 1 | 2 | 2 | 3 1 1 | . . .

= . . . χ2(1) χ2(2) χ2(3) χ2(1) χ2(1) χ2(2) . . .

For any word w with |w|1 and v such that w appears twice in χki(v), if w starts with letters 2 or 3 we
know that there exists i < j with

χki
(v) = χki

(v1 · · · vi)w · · · = χki
(v1 · · · vj)w · · · .
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If w starts with letter 1, then there exists no such i, j.
Thus the substitution χki

is combinatorially recognizable and therefore the S-adic subshift based
by substitutions (χki

)i∈N is combinatorially recognizable.
Aperiodicity. By Lemma 2.2 there exist no periodic elements in (X,σ).

From this proof, it is clear that a general method of telescoping the sequence Akn to obtain full
matrices Ãi is the following:

Ãi = A1 · · ·A1︸ ︷︷ ︸
ri,1

·Aki,1
·A1 · · ·A1︸ ︷︷ ︸

ri,2

· · · · · ·Aki,m
·A1 · · ·A1︸ ︷︷ ︸

ri,m+1

·Aki,m+1
·Aki,m+2

, (6)

where ki,j ≥ 2 for 1 ≤ j ≤ m+ 1, ki,m+2 ≥ 1 and ri,j odd for 2 ≤ j ≤ m, ri,1 ≥ 0 and ri,m+1 even.

Remark 2.4. If the lengths of gaps between ki > 1 and ki+mi
> 1 with mi odd, is bounded for all i,

then the subshift is strongly primitive, i.e., there exists a constant M > maxi(mi) such that the matrix
associated to the substitution χki

◦ · · · ◦ χki+2M
is strictly positive for all i.

Lemma 2.5. Let (X,σ) be a primitive non-periodic S-adic shift, based on substitutions χi : Ai →
A+

i−1. If for every k ∈ N there are i < j and a ∈ Ai−1, b ∈ Aj such that ak is a subword of
χi ◦ · · · ◦ χj(b), then (X,σ) is not linearly recurrent.

Proof. Let L ∈ N be arbitrary and find i < j and b ∈ Aj such that χi ◦ · · · ◦χj(b) has a
L+2 as subword.

Set w = χ1 ◦ · · · ◦ χi−1(a); then X contains a sequence x having wL+2 as subword. Since x is not
periodic, the word-complexity px(|w|) > |w|, and hence there is a word v of length |v| = |w| that is
not a subword of wL+2. By primitivity, v and wL+2 appear infinitely often in x. But then v must
have reappearances with gap ≥ L|v|. Hence (X,σ) is not L-linearly recurrent. As L was arbitrary, the
lemma follows.

By Theorem 5.4 in [7], a S-adic subshift based on recognizable substitutions is linearly recurrent
if and only if we can telescope the substitutions (χki)i≥1 into finitely many, left-proper substitutions
with strictly positive transition matrices.

Theorem 2.6. The subshift (X,σ) associated to an ITM (Ω, Tα,β) of infinite type is linearly recurrent
if and only if (ki)i∈N is bounded and the sets {i : k2i > 1} and {i : k2i−1 > 1} have bounded gaps.

Proof. Let M and N be the maximal gap sizes of the sets {i : k2i−1 > 1} and {i : k2i > 1} respectively.
Every M -gap (i.e., (kn)

M
n=i+1 for any i ∈ N) contains at least one k2i−1 > 1 and every N -gap at least

one k2i > 1. Then there exists M̃ > max{M,N} where for any ki ≥ 1 there exists ki+2j−1 > 1 and

ki+2l > 1 for j, l < M̃ . Thus as in the proof of Proposition 2.3 for any i ∈ N multiplying 2M̃ + 1
matrices together from ki to ki+2M̃ will result in a full matrix. As there are only finitely many values
kj ∈ N can take, the set of full associated matrices is finite and the subshift (X,σ) is linearly recurrent.

On the other hand if (kn)n unbounded we have that for any L ∈ N there exists n ∈ N with kn > L
and therefore

χkn
(2) = 31kn

contains the subword 1kn .
Similarly if the gaps of {i : ki > 1} are unbounded, for any L ∈ N there exists a gap of length

rn > 2L and

χrn
1 (2) =

{
3ln1 for rn = 2ln − 1,
3ln2 for rn = 2ln

contains the subword 3ln . By Lemma 2.5, the subshift (X,σ) is not linearly recurrent.
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3 Lyapunov exponents

In this section we analyse the dynamics of the matrix products Ã1 · Ã2 · · · Ãn, n → ∞, and show that
there is one positive Lyapunov exponent (as lim inf), one negative Lyapunov exponent (as lim sup),
and the third Lyapunov is at least not negative (as lim inf). The usual Oseledets theory states that
Lyapunov exponents exist (as limits) for typical parameters, where in our setting, typical is to be
interpreted as w.r.t. a G-invariant measure on Ω∞, in the line of [1] based on the construction of [16].
We need a statement for all (α, β) ∈ Ω∞, but lim inf / lim sup-results as in Proposition 3.1 suffice.

Because the matrices Aki have determinant−1, they can be viewed as automorphismsMk : T3 → T3

of the 3-torus T3, given by Mkx⃗ = x⃗Ak mod 1. Condition (21) below can then be interpreted as that
the line in T3 spanned by (1, 1, 1) intersects the stable direction of (0, 0, 0) for the infinite system
(Mki

◦ · · · ◦Mk2
◦Mk1

)i≥1 in T3. This explains the need of determining hyperbolicity and computing
the dimension of the stable direction of this system in the first place. For conditions in Section 4
deciding whether the ITM is weak mixing or not, the important thing is that the stable space is one-
dimensional. Therefore, if u⃗ := ξ⃗Ak1 · · ·Akr mod Z3 ∈ span(v⃗2Ak1 · · ·Akr ) for some r ∈ N, then ξ⃗
doesn’t contract and the arguments in Section 4 to get the estimates of (21) are all necessary and the
same, regardless if u⃗Akr+1

· · ·Akn
increases, increases exponentially or just stays bounded as n → ∞.

Abbreviate Ãn = Ã1 · · · Ãn, where the Ãi’s are the telescoped matrices from (6) in the previous
section.

Proposition 3.1. For every sequence (ki)i∈N satisfying (3), the sequences of eigenvalues (λn,i)n≥1,

i = 1, 2, 3, of Ãn satisfy

lim sup
n→∞

1

n
log λn,3 < 0 ≤ lim inf

n→∞

1

n
log |λn,2| ≤ lim sup

n→∞

1

n
log |λn,2| ≤ lim inf

n→∞

1

n
log λn,1.

Proof. Let λn,i, i = 1, 2, 3, indicate the eigenvalues of Ãn. Their product is ±1, because det(Ak) = −1

for all k. Each Ãj is strictly positive and maps the positive octant Q+ = {x ∈ R3 : xi ≥ 0} strictly
into itself (except for the origin). As in (the proof of) the Perron-Frobenius Theorem, this implies that
lim infn

1
n log λn,1 > 0 and the corresponding unstable eigenspace E1 goes through the interior of Q+.

The octant Q− = {x ∈ R3 : x1, x2 ≥ 0 ≥ x3} is preserved by each inverse matrix A−1
k . A change of

coordinates changes Q− into Q+. Indeed, take

U :=

0 1 0
1 0 0
0 0 −1

 and Bki = UA−1
ki

U−1 =

0 1 ki − 1
1 0 0
0 1 ki

 . (7)

Let B̃n = B̃n · · · B̃2 · B̃1, where the B̃i’s are blocks of matrices Bkj
telescoped in exactly the same way

(but in the other direction) as the Aki ’s. As will be shown in the proof of Lemma 4.3 all the B̃i’s are
strictly positive.

Then the Perron-Frobenius Theorem applies and we obtain lim infn
1
n log(λn,3)

−1 > 0 (because the

eigenvalues of Ãn and B̃n are each other reciprocals). This gives a negative lim supn
1
n log λn,3 < 0.

We will continue the proof using the original (i.e., non-telescoped) matrices Ak and Bk. For
our choice of Bk, the corresponding transition graphs of Ak and Bk are the same except that the
multiplicities of the 12-entry of 33-entry are swapped. (In particular, Ak = Bk if k = 1.) The fact that
Bk’s have a loop 3 → 3 with multiplicity k (which has only multiplicity 1 in Ak) is the reason why
Bkn

· · ·Bk1
dominates Ak1

· · ·Akn
for sufficiently large n. Note that the matrix multiplication goes in

opposite direction. This can be remedied by taking the transpose, amounting to a reversal of arrows
in the transition graph, which has no influence on the number of paths.

The u, v-entries of the matrices Ak1
· · ·Akn

(or Bkn
· · ·Bk1

) represent the number of n-paths from
u to v. Note, that in every iterate (i.e., multiplication with Aki

or BkN+1−i
, with N the total number

of matrices involved in B̃n) we use a different matrix, but their structure is the same, so that the
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Figure 2: Transition graphs of Ak and Bk. The numbers at the edge-labels stand for weights (=
multiplicities) of the edges.

corresponding transition graphs are the same, except for the labelling, see Figure 2. Let x1 . . . xn

be the edge-coding of an n-path. Then we call the product of the labels of the edges xi the weight
w(x1 . . . xn). It represents the total number of paths corresponding to the single edge-code x1 · · ·xn.

We first look at the loops from vertex 1 back to 1, that is, edge-coded, from edge b to a. These are
represented by words bx2 . . . xn−1a where xj ̸= a.

Let wA(bx2 . . . xn−1a) and wB(bx2 . . . xn−1a) denote the weights of these paths in the transition
graphs of Aki

and BkN+1−i
. If none of the symbols xj = a, then there are only ⌊(n−1)/2⌋ possibilities,

characterized by the symbol c at its unique even position. We call the collection of these words a
cluster of loops.

We claim that for every r ≥ 1, the sum of the weights of the 2r + 1-cluster satisfies

r−1∑
j=0

wA((be)
jbcd2(r−j−1)a) = k2k4 · · · k2r − 1 ≤

r−1∑
j=0

wB((be)
jbcd2(r−j−1)a), (8)

and the inequality is strict if k2j , k2j′+1 > 1 for some 1 ≤ j ≤ j′ < r.
Clusters of even length 2r+2 are obtained from odd length clusters by adding an extra d at position

2r + 1. Therefore (8) implies that

r−1∑
j=0

wA((be)
jbcd2(r−j)−1a) = k2k4 · · · k2r − 1 ≤ (k2k4 · · · k2r − 1)k2r+1 ≤

r−1∑
j=0

wB((be)
jbcd2(r−j)−1a),

with strict inequality if k2r−1 > 1 or under the same condition as for (8).
Each edge b has weight wA(b) = wB(b) = 1; the edges c in position 2j have weight wA(c) = wB(c) =

k2j − 1 and the remaining edges in position i have weight wA(e) = wB(d) = ki, wA(d) = wB(e) = 1.
We prove the equality regarding wA in (8) by induction from 1 up to r. For r = 1 we have

wA(bca) = k2 − 1. If the statement holds for r − 1, then

r−1∑
j=0

wA((be)
jbcd2(r−j−1)a) =

r−2∑
j=0

wA((be)
jbcd2(r−j−1)a) + k2k4 . . . (k2r − 1)

= k2k4 · · · k2r−2 − 1 + k2k4 . . . (k2r − 1)

= k2k4 · · · k2r − 1.

The inequality regarding wB in (8) is also proved by induction, now from r down to 1, and assuming

that all odd-indexed k2j+1 = 1. That is, we show that
∑r−1

j=m wB((be)
jbcd2(r−j−1)a) = k2m+2 · · · k2r−1

for all r ∈ N and 0 ≤ m < r. This is done by induction too, but now working downwards, first taking
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the For m = r − 1, we get wB((be)
r−1bca) = k2r − 1. If the statement holds for m, then

r−1∑
j=m−1

wB((be)
jbcd2(r−j−1)a) =

r−1∑
j=m

wB((be)
jbcd2(r−j−1)a) + k2mk2m+2 · · · (k2r − 1)

= k2m+2 · · · k2r−2 − 1 + k2m · · · (k2r − 1)

= k2m · · · k2r − 1.

This concludes the induction. Since each instance wB(d) > 1 at an odd position (provided wB(c) > 1
at the previous occurrence of symbol c) increases the terms in the sum of wB-weights by a factor ≥ 3

2 ,
the inequality follows. This proves (8).

For paths starting in vertices 2 and 3, the proof that the B-weight of clusters dominates the
A-weight are similar.

Now decompose an n-path from u to v ∈ {1, 2, 3} into loops, with a potential remaining piece
that is shorter than a full loop1. Group together all n-paths with the same loop structure (i.e., the
same endpoints of their loops) as they fall into the same cluster pateern. The above estimates show
that the combined B-weight of the concatenation of clusters dominates the combined A-weight of the
concatenation. Summing over all cluster patterns, we arrive at (B̃n)u,v ≥ (Ãn)u,v for all u, v ∈ {1, 2, 3}
and for sufficiently large n. Thus the leading eigenvalue of B̃n is larger than the leading eigenvalue of
Ãn. Since Ãn and B̃n have reciprocals eigenvalues, lim infn→∞

1
n log |λn,2| ≥ 0.

The next theorem establishes the Lyapunov exponents and invariant directions of (Ãn)n≥1.

Theorem 3.2. Let λn,i, i = 1, 2, 3, be the eigenvalues of Ãn. There exist a constant C ≥ 1 and vectors
v⃗i ∈ S2, i = 1, 2, 3, such that

1

C
λn,i ≤ ∥v⃗iÃn∥ ≤ Cλn,i,

for i = 1, 2, 3 and for all n ≥ 1.

Proof. From the proof of Proposition 3.1 we have

lim sup
n→∞

1

n
log λn,3 < 0 ≤ lim inf

n→∞

1

n
log |λn,2| ≤ lim sup

n→∞

1

n
log |λn,2| ≤ lim inf

n→∞

1

n
log λn,1,

and corresponding eigenvectors v⃗n,1 ∈ Q+ ∩ S2, v⃗n,3 ∈ Q− ∩ S2 and v⃗n,2 ∩ S2 has a uniformly positive
angle from the other eigenvectors.

Next define

Q+
n = {v⃗ ∈ S2 : v⃗(Ãn)−1 ∈ Q+} and Q−

n = {v⃗ ∈ S2 : v⃗(Ãn) ∈ Q−}.

Since Q+ is forward invariant and Q− is backward invariant, these are both nested sequences of non-
empty (because v⃗n,1 ∈ Q+

n and v⃗n,3 ∈ Q−
n ), compact sets, so we can choose v⃗1 ∈

⋂
Q+

n and v⃗3 ∈
⋂
Q−

n .

Recall that Ãn = Ã1 · · · Ãn. Since Ãi uniformly contracts Q+ (in Hilbert semi-metric, see [12, Section
8.6]),

v⃗1Ãn

∥v⃗1Ãn∥
− v⃗n,1Ãn

∥v⃗n,1Ãn∥
→ 0 exponentially as n → ∞,

so there is C1 ≥ 1 such that

1

C1
λn,1 ≤ ∥v⃗1Ãn∥ ≤ C1λn,1 for all n ≥ 0. (9)

1For these short pieces, similar cluster inequalities hold. The worst case is wA(be) + wA(bc) = 2k − 1 > wB(be) =
wB(bc) = k if k is the multiplicity of the e at the second position, but this single factor k/(2k− 1) is negligible for large
n.
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The same argument shows that there is C3 ≥ 1 such that

1

C3
λn,3 ≤ ∥v⃗3Ãn∥ ≤ C3λn,3 for all n ≥ 0. (10)

Next define

P+
n = {v⃗ ∈ S2 : v(Ãn) /∈ int(Q+)} and P−

n = {v⃗ ∈ S2 : v(Ãn)−1 /∈ int(Q−)}.

Then P+
n ∩ P−

n forms a nested sequences of non-empty (because v⃗n,2 ∈ P+
n ∩ P−

n ) compact sets, so we

can find v⃗2 ∈
⋂

n(P
+
n ∩ P−

n ). Since Ã1 = Ã1 is a strictly positive matrix, there is a neighborhood V +

of Q+∩S2 such that v⃗Ã1 ∈ Q+ for each v⃗ ∈ V +. Therefore P+∩V + = ∅ for P+ :=
⋂

n P
+
n . The same

argument gives a neighborhood V − of Q− ∩ S2 such that P− ∩ V − = ∅ for P− :=
⋂

n P
−
n . This shows

that v⃗2Ãn ∈ P− ∩P+ has uniformly positive angles with v⃗3Ãn and v⃗1Ãn, so there is a constant C ′ ≥ 1
such that

|λn,1λn,2λn,3|
4π

3
= Vol(Ãn(B1(⃗0)) ≤ C ′∥v⃗1Ãn∥∥v⃗2Ãn∥∥v⃗3Ãn∥ ≤ C ′C1λn,1C3λn,3∥v⃗n,2Ãn∥.

A similar argument gives a lower bound, so there is C2 ≥ 1 such that

1

C2
|λn,2| ≤ ∥v⃗2Ãn∥ ≤ C2|λn,2| for all n ≥ 0. (11)

Combining (9), (10) and (11) finishes the proof the theorem for C = max{C1, C2, C3}.

For further investigation into the number of concatenations of clusters, we use a lemma in terms
of weighted trees. Consider a tree with root v0 and vertex and edge sets V and E respectively. Let
V0 = {v0} be the root of the tree and Vn = {v ∈ V : v is n edges away from v0}. Clearly V = ⊔n≥0Vn.

We assign to each e ∈ E a weight w(e) ≥ 1. Extend the weight function to V by setting w(v0) = 1
and w(v) =

∏
{w(e) : e lies between v0 and v} for v ∈ Vn, n ≥ 1.

Lemma 3.3. Assume that in the tree above each vertex v ∈ Vn−1 has 1+ bn edges to Vn, one of these
edges has weight 1 + ηn and the others have weight 1. Then

∑
v∈Vn

w(v) = #Vn

n∏
r=1

(
1 +

ηr
1 + br

)
.

Proof. The proof of the claim goes by induction on n. For n = 1, this is trivially true. Assume now
that the statement holds for n− 1. For v ∈ Vn−1, write V1(v) for the set of vertices v′ ∈ Vn such that
there is an edge between v and v′. Then #V1(v) = 1 + bn for each v ∈ Vn−1 and

∑
v∈Vn

w(v) =
∑

v∈Vn−1

∑
v′∈V1(v)

w(v′) =
∑

v∈Vn−1

w(v)

ηn +
∑

v′∈V1(v)

1


=

∑
v∈Vn−1

w(v)
∑

v′∈V1(v)

(
1 +

ηn
#V1(v)

)
=

(
1 +

ηn
1 + bn

)
(1 + bn)

∑
v∈Vn−1

w(v)

= (1 + bn)#Vn−1

n∏
r=1

(
1 +

ηr
1 + br

)
= #Vn

n∏
r=1

(
1 +

ηr
1 + br

)
.

The completes the induction and the proof.
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Assume that Ãn comprises s matrices Akj
, 1 ≤ j ≤ s. We call j a marked position if kj ≥ 2. Hence,

each telescoped matrix Ãi contains at least two and Ãn contains at least 2n marked positions.
In (8) we computed the total weight of clusters of loops with the same start and end point. Each

such cluster has a unique symbol m which must be at a marked position, and it must take an even
position in the loop. If there were an earlier marked position at an even place in the loop, there is
another loop in the same cluster. Hence, to identify a cluster, we need the earliest midpoint m (which
we call the mark of the cluster) and an integer b such that m− 2b+ 1 is the start of the cluster, and
there are no marked position at an even place between m − 2b + 1 and m. The end of the cluster is
one before the start of the next cluster, and hence determined by the next cluster.

A cluster pattern P is the concatenation of clusters that fits within the integer interval [1, s], so
its first cluster starts at 1 and its last cluster ends at s. According to (8), a cluster c has weight
wB(c) ≥ ( 32 )

twA(c) if it contains t marked positions m′ after its mark m such that m′ − m is odd.
If t = 0, then wB(c) = wA(c). Let wB(P ) (resp. A(P )) stand for the B-weight (resp. A-weight) of a
cluster pattern, i.e., the product of the B-weights (resp. A(P )-weights) of its clusters.

Since
∑

P wB(P )/
∑

P wA(P ), where the sum runs over all cluster patterns, is an indication for the
second eigenvalue λn,2, we need to identify all cluster patterns P and compare wB(P ) and wA(P ). To
do that, we order the cluster patterns in a tree-structure and finally apply Lemma 3.3.

Among the marked positions, we choose a sequence as follows: j0 is the first even marked position,
and if jr−1 is chosen, then jr > jr−1 is the first marked position such that jr − jr−1 is odd. Let R
be maximal such that jR < s. We build a tree, thinking of its vertex sets Vr, r = 0, . . . , R, as being
associated to the marked position jr. V0 = {v0} is the root. For r ≥ 1, set br = ⌊(jr − jr−1)/2⌋, and
to each v ∈ Vr−1, attach 1 + br edges to vertices in Vr, namely

� one representing cluster patterns having no cluster that ends between jr−1 and jr; this edge gets
weight 1 + ηr ≥ 3

2 ;

� one for each 1 ≤ b ≤ br, representing cluster patterns having a cluster that ends at position
jr − 2b; such an edge gets weight 1.

Then every cluster pattern P is associated to a single R-path in the tree (i.e., a single v ∈ VR),
namely according whether P contains a cluster ending between jr and jr−1, and where that endpoint
is. Moreover, wB(P ) ≥ w(v)wA(P ) where the weight w(v) of v ∈ VR is the product of the weights of
the edge between v0 and v. If all these edge-weights are 1, then we have equality wB(P ) = wA(P ).

Example 3.4. This example shows that it is possible that the second Lyapunov exponent is zero, and
a fortiori, there is no expansion in the direction v⃗2.

Take kj = 2 for j = 2n− ((n+1) mod 2), that is, the marked positions are j = 2, 3, 8, 15, 32, 63, . . .
with kj = 2, and kj = 1 otherwise. Since these marked positions are alternatively even and odd,

jr = 2, 3, 8, 15, 32, 63, . . . , so jr = 2r+1 − (r mod 2) for r ≥ 0. Also Ãn comprises 4n matrices Ak and
2n marked positions. The corresponding numbers br = 0, 2, 3, 8, 15, 32, . . . , so br = 2r−1 − (r mod 2)
for 1 ≤ r ≤ R = 2n− 1. From Lemma 3.3 with 1 + ηr ≡ 2, we derive

∑
P

wB(P ) ≤
∑
P

wA(P )

R∏
r=1

(
1 +

1

1 + br

)
≤ 2e

∑
P

wA(P )

for the sums of weights of cluster patterns. Therefore, the sequence of second eigenvalues (λn,2)n≥1 is
bounded.

Proposition 3.5. Every linearly recurrent ITM satisfying (3) has two strictly positive (as lim inf) and
one strictly negative (as lim sup) Lyapunov exponent.

Proof. From Proposition 3.1 we have already that lim supn
1
n log λn,3 < 0 < lim infn

1
n log λn,1. The

second eigenvalue λn,2 is comparable to the quotient of the B-weight of all n-paths and the A-weight
of all n-paths. For this, we construct the tree as described above. The characterization of linear
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recurrence in Theorem 2.6 implies now, that there is K ∈ N such that 1 + br ≤ K for all 1 ≤ r ≤ R
and also that R ≥ n/K. Hence, Lemma 3.3 with ηr ≡ 1

2 gives

∑
P

wB(P ) ≥
(
1 +

1

2K

)R∑
P

wA(P ) ≥
(
1 +

1

2K

)n/K∑
P

wA(P ).

This shows that lim infn→∞
1
n log |λn,2| ≥ 1

K log(1+ 1
2K ) > 0. Theorem 3.2 then gives the two positive

and one negative Lyapunov exponents.

4 Weak mixing

4.1 Host’s eigenvalue condition

Host [17] formulated a condition for primitive substitution shifts to have an eigenvalue: For e2πiξ to
be an eigenvalue the Koopman operator for some ξ ∈ (0, 1) is:

∞∑
n=1

|||ξ⃗An||| < ∞, ξ⃗ = (ξ, ξ, ξ), (12)

where |||x||| is the distance of a vector to the nearest integer lattice point and A is the associated matrix
of the substitution. The condition is of the same gist as Veech criterion [21] for non-weak-mixing of
IETs, although there A can be seen as the matrix representing the action of Rauzy induction on the
homology H1(Z) of the translation surface obtain as suspension flow over the IET.

For primitive substitution shifts, (12) is both sufficient and necessary and every eigenfunction can
be taken to be continuous. Later works, see e.g. [14, 15], showed that in the context of linearly
recurrent S-adic shifts (i.e., subshifts based on a sequence of substitution rather than a single one),
(12) is necessary and sufficient as well. For more general S-adic subshifts, more complicated conditions
are needed, and we come back to them in Sections 4.4 and 4.5 where we distinguish between continuous
and measurable eigenvalues.

4.2 Weak mixing for (pre-)periodic ITMs

Theorem 4.1. For every (pre-)periodic sequence (ki)i∈N satisfying (3), the corresponding system
(Ω, Tα,β) is weakly mixing.

Proof. Suppose that the sequence (ki)i∈N has period n and also satisfies (3), then the corresponding
S-adic shift is linearly recurrent (and uniquely ergodic). If An = Ak1

· · ·Akn
, then its eigenvalues are

λ̃i where λ̃3 < 1 < |λ̃2| < λ̃1. That is, there is only a one-dimensional stable subspace E3 spanned by
a vector (u1, u2,−1) ∈ Q−. Also, since An is irreducible, the λ̃i are cubic numbers.

As (ki) is periodic, telescoping gives a stationary sequence, so condition (12) decides on the eigen-
values of the the Koopman operator. To prove that there is a non-trivial eigenvalue, we need to show
that ξ⃗ lies in some integer translation of E3. That is

(ξ, ξ, ξ) + s(u1, u2,−1) = (p, q, r) (13)

for some integers p, q, r and reals u1, u2 > 0. Eliminating s and ξ from this system, we obtain

(q − r)u1 = (p− r)u2 + (p− q). (14)

For the matrix An = (aij)
3
i,j=1, the third eigenvalue equation λ̃3(u1, u2,−1) = (u1, u2,−1)A gives

λ̃3u1 = a11u1 + a21u2 − a31,

λ̃3u2 = a12u1 + a22u2 − a32.
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Multiplying these equations and inserting (14) to eliminate u1, we obtain

λ̃3((p− r)u2 + (p− q)) = a11((p− r)u2 + (p− q)) + a21(q − r)u2 − (q − r)a31,

λ̃3(q − r)u2 = a12((p− r)u2 + (p− q)) + a22(q − r)u2 − (q − r)a32.

Making u2 subject of the second equation (so that the RHS is a fractilinear expression in λ̃3) and then
inserting it in the first equation gives an equation of two fractilinear expressions in λ̃3. Therefore λ̃3

is the solution of a quadratic equation contradicting that λ̃3 is a cubic number.
For the preperiodic case, with preperiod m, we need to replace (13) by

(ξ, ξ, ξ) ·Ak1 · · ·Akm + s(u1, u2,−1) = (p, q, r).

This gives a more cumbersome version of (14) but the argument is essentially the same.

Remark 4.2. Very recently2, Mercat [18] proved a general criterion for weak-mixing of S-adic shifts,
which is directly computable if the involved sequence of substitutions is preperiodic. Mercat’s criterion
confirms our Theorem 4.1, see [18, Example 7.9].

4.3 The stable direction.

Let (Ω, Tα,β) be an infinite type ITM based on a sequence (kn)n∈N satisfying (3). We call W s(⃗0) :=⋂
n A

−1
k1

◦ · · · ◦A−1
kn

(Q−) = span(v⃗3) the stable space of the sequence (Aki
)i∈N. In order to find W s(⃗0),

we iterate the matrices Bki
from (7). This gives

(u, v, w) = lim
n→∞

Bn(⃗a)

∥Bn(⃗a)∥1
for Bn = Bkn ◦ · · · ◦Bk1

and, apart from the assumption of unique ergodicity, the choice of the vector a⃗ ∈ Q+ can be arbitrary.
Then (v, u,−w) = (u, v, w)U (with U from (7)) is the stable direction of Ak1

· Ak2
· · · , normalised so

that u+ v + w = 1.

Lemma 4.3. The direction (u, v, w) is uniquely determined by the sequence (ki)i∈N, provided it satisfies
(3).

Thus, even if Tα,β fails to be uniquely ergodic and there is no unique unstable direction in the first
octant, the stable direction in Q− is always well-defined.

Proof. Since (ki)i∈N satisfies (3), there are infinitely many i and integers r ≥ 0 such that ki ≥ 2,
ki−1 = · · · = ki−2r = 1 and ki−2r−1 ≥ 2. Abbreviate a = ki ≥ 2, b = ki−2r−1 ≥ 2 and c = ki−2r−2 ≥ 1.
The telescoped block from ki to ki+2r+2 gives

B̃ = Ba ·B2r
1 ·Bb ·Bc

=

(a− 1)(r + 1) (a− 1)b(r + 1) + 1 c((a− 1)b(r + 1) + 1)− (r(a− 1) + 1)
1 b− 1 c(b− 1)

a(r + 1) ab(r + 1) + 1 c(ab(r + 1) + 1)− (ra+ 1)

 ,

which is a strictly positive matrix. Therefore it represents a strict contraction in the Hilbert metric on
the first octant, see e.g. [12, Section 8.6]. The contraction factor is bounded by tanh( 12 log(ρ)), where

3

ρ = max
1≤j,j′≤3

√
max{B̃j,k/B̃j′,k : 1 ≤ k ≤ 3}
min{B̃j,k/B̃j′,k : 1 ≤ k ≤ 3}

. (15)

2Mercat’s preprint was uploaded onto the arXiv four months after we first submitted our paper.
3We phrase this different from formula (8.29) in [12] because we are using left-multiplication with row vectors instead

of right multiplication with column vectors as in [12].
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The shape of B̃, where the rows Ri component-wise satisfy

a(r + 1)

3
R2 < R1 < 3a(r + 1)R2,

1

3
R3 < R1 < 3R3,

a(r + 1)

3
R2 < R3 < 3a(r + 1)R2.

Therefore ρ ≤ 3, and hence the contraction factor is strictly smaller than 1, uniformly in a, b, c. As
there are infinitely many such telescoped blocks B̃, the infinite matrix product contracts the positive
octant into a single half-line ℓ. Thus Uℓ for the matrix U from (7) represents the unique stable direction
W s(⃗0).

To find an eigenvalue, we have to solve

(ξ, ξ, ξ) = (p, q, r) + s(v, u, u+ v − 1) for some p, q, r ∈ Z. (16)

Solving for ξ and s gives arcs ℓp,q,r = {(u, v) ∈ ∆ : (1 − u)(r − q) = (1 − v)(r − p)} in the simplex
∆ = {(u, v) : 0 ≤ u ≤ 1− v}, or equivalently

ℓp,q,r = {(u, v) ∈ ∆ : u(q − r) = v(p− r) + q − p}. (17)

Expressed in terms of p, q, r, ξ, we find

u =
ξ − q

ξ + r − p− q
, v =

ξ − p

ξ + r − p− q
, (18)

so that ξ = r−p
1−u + p + q − r = r−q

1−v + p + q − r ∈ Q if and only if both u, v ∈ Q. We define ℓp,q,r(ξ)
as those points (u, v) ∈ ∆ such that (18) holds. Let Hk(u, v) indicate the first two coordinates of
(u, v, 1− (u+ v))Bk normalised to unit length. Then Hk : ∆ → ∆k := Hk(∆) is a map from the unit
simplex ∆, and it has the formula

Hk : (u, v) =
1

Dk
(v , 1− v) for Dk = k(1− v) + 1− u, (19)

H−1
k : (x, y) 7→

(
x+ (k + 1)y − 1

x+ y
,

x

x+ y

)
for (x, y) ∈ ∆k. (20)

The derivative and its determinant are

DHk(u, v) =
1

D2
k

(
v k + 1− u

1− v u− 1

)
, detDHk(u, v) = − 1

Dk
.

To find the set ∆k, we compute the images of the three boundary lines of ∆:

(a′) → (a) Hk({0} × [0, 1]) =
{ 1

k(1− v) + 1
(v, 1− v) : v ∈ [0, 1]

}
,

(b′) → (b) Hk([0, 1]× {0}) =
{ 1

k + 1− u
(0, 1) : u ∈ [0, 1]

}
,

(c′) → (c) Hk({(1− v, v) : v ∈ [0, 1]}) =
{ 1

k(1− v) + v
(v, 1− v) : v ∈ [0, 1]

}
,

see Figure 3, left. Comparing (a) and (c) we can see that the triangles ∆k and ∆k+1 are adjacent,
and ∆1 is adjacent to the upper boundary of ∆. That is, the ∆k’s have disjoint interiors and ∆ =⋃

k≥1 ∆k. Furthermore, unless k = k′ = 1, Hk ◦ Hk′ maps ∂∆ into the interior of ∆, and hence,
for every (u, v) ∈ ∆, there are no common boundaries of ∆k’s that are the image of any point
Hk ◦ Hk′ ◦ Hk′′ .... It follows that for each (u, v) ∈ ∆, there is at most one sequence (ki)i∈N such
that limn→∞ Hk1

◦Hk2
◦ · · · ◦Hkn

(⃗a) = (u, v).
The boundary points of the ∆k cannot be reached as limit from an interior point (u, v) ∈ ∆◦, and

under later iterates of the Hk’s, the iterated boundary points E :=
⋃

n∈N

⋃
k1,...,kn

Hk1 ◦ · · · ◦Hkn(∂∆)
cannot be equal to any point in

⋂
n

⋃
k1,...,kn

Hk1
◦ · · · ◦Hkn

(∆◦).
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u

v

∆

∆k

1
k

1
k+1

(b)

(a)

(c)

(a’)

(b’)

(c’)

•

ℓ2,1,0

ℓ3,1,0

ℓ1,1,0

Figure 3: The simplex ∆ and image ∆k = Hk(∆) (left) and further images (right).

Remark 4.4. The points (x, y) ∈ ∆ which give rise to parameters (kn)n∈N such that the subshift
associated is linearly recurrent, are bounded away from ∂∆ for all preimages H−1

kn
◦· · ·◦H−1

k1
(x, y). For

(kn)n∈N unbounded, a subsequence of preimages goes to the edges (a′), (b′); in case of unbounded blocks
of 1’s in (kn)n∈N, a subsequence of preimages goes to (c′). Conjecturally, this set has full Hausdorff
dimension, but for each fixed bound C, the set of parameters for which lim supn kn ≤ C and the lengths
of blocks of 1’s is eventually bounded by C has Hausdorff dimension strictly less than 1. Since the
maps Hk are non-conformal, the current techniques of fractal geometry seem insufficient to prove this.

The maps Hk send points with rational coordinates to points with rational coordinates, and hence
the lines between such points (thus with rational slope) to lines of the same properties.

Proposition 4.5. The sides of every triangle Hk1 ◦ · · · ◦Hkn(∂∆) have negative slopes for all n ≥ 1
and k1, . . . , kn ∈ N.

Proof. With some stretch of terminology, the statement holds for n = 0, so for ∆ itself: here the
“bottom” side ∂b∆ has slope 0 and the left side ∂l∆ needs to be interpreted as with slope −∞. Only
the “right” side ∂r∆ has a proper negative slope −1.

Now
⋃

k∈N ∂∆k consists of ∂b∆ and a fan F of straight lines stretching from (1, 0) to ∂l∆, see
Figure 3, right. The slope of these lines are therefore all negative.

The maps Hk reverse orientation: they are reflections in lines of positive slope combined with a
(non-linear) contraction. Since the vertex Vk := (0, 1

k ) = Hk(1, 0) of ∆k is the intersection of ∂l∆ and
∂r∆k, Hk(F ) is a fan of lines stretching from Vk to the opposite boundary ∂b∆k. These lines have
slopes between the slopes of ∂l∆k and ∂r∆k, so they are negative.

The proof follows from repeating this argument inductively.

4.4 Continuous eigenvalues for the general case.

Let (En, Vn,≻) be an ordered Bratteli diagram with Vershik transformation τ and associated matrices
Ai. (See [15] or [12, Chapter 5.4] for the precise definitions.) Theorem 2 in [15] states for positive
transition matrices Mj , j ≥ 1, that e2πiξ is a continuous eigenvalue if and only if

∞∑
n=1

max
x∈X

|||⟨sn(x), ξ⃗M1 · · ·Mn⟩||| < ∞, ξ⃗ = (ξ, ξ, ξ), (21)
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where (sn(x))v = #{e ∈ En+1 : e ≻ xn+1, s(e) = v}. Thus in the ordered Bratteli-Vershik diagram
(with ≻ indicating the order of the incoming edges) the vector sn(x) counts the number of incoming
edges that are higher in the order than edge xn+1 in the path x. This definition of sn is phrased in terms
of ordered Bratteli diagrams. In terms of S-adic shifts (X,σ) based on substitutions χn : An → An−1,
every x ∈ X can be written as

x = lim
n→∞

σj1 ◦ χ1 ◦ σj2 ◦ χ2 . . . σ
jn ◦ χn(an)

for some integer sequence (jn) and symbols an ∈ An such that an is the first letter of σjn+1 ◦
χkn+1(an+1). Then

sn,b(x) = |σjn+1 ◦ χkn+1(an+1)|b, b ∈ An,

where |w|b indicates the number of symbols b in the word w.
We will use this for our situation, so with χki and Aki (or in fact, the telescoped version Ãi from (6))

replacing χi and Ai. The paper [15] is formulated for invertible S-adic shifts, but the Bratteli-Vershik
system having a unique minimal path (which is true in our case because χki

◦ χki+1
is left-proper) is

sufficient.

Lemma 4.6. Let {Ãi}i≥1 be the telescoped version of (Ai)i≥1 given in (6), and s̃i+1 the associated

s-value of Ãi+1. Then

∞∑
n=1

max
x∈X

|||⟨sn(x), ξ⃗Ak1
· · ·Akn

⟩||| ≥
∞∑

n=1

max
x∈X

|||⟨s̃n(x), ξ⃗Ã1 · · · Ãn⟩|||. (22)

Proof. Let h̃n = (1, 1, 1)Ã1 · · · Ãn. We can decompose the telescoped ⟨s̃i(x), h̃i⟩ back into levels ni

(the index of the first matrix in the product Ãi) to ni+1 − 1 (the index of Aki,m+2
). It follows that

⟨s̃i(x), h̃i⟩ =
ni+1−1∑
j=ni

⟨sj(x), hj⟩.

Then

∞∑
i=1

max
x∈X

|||ξ⟨s̃i(x), h̃i⟩||| =
∞∑
i=1

max
x∈X

|||ξ
ni+1−1∑
j=ni

⟨sj(x), hj⟩|||

≤
∞∑
i=1

max
x∈X

ni+1−1∑
j=ni

|||ξ⟨sj(x), hj⟩|||

≤
∞∑
j=1

max
x∈X

|||ξ⟨sj(x), hj⟩|||,

as claimed.

Remark 4.7. For our specific case of infinite type ITMs sj(x) can be simplified to the vector (rj , 0, 0)
T

with rj ∈ {0, . . . kj} depending on the choice of x. Then the sum is

∞∑
j=1

max
x∈X

|||ξ⟨sj(x), hj⟩||| =
∞∑
j=1

max
rj∈{0,...kj}

|||ξrjhj(1)|||.

One would expect (in accordance with the Veech criterion [21]) the Koopman operator to have a
non-trivial eigenvalue if and only if (u, v) ∈ ℓp,q,r for some p, q, r ∈ Z and otherwise the map is weak
mixing. However, also because we have to deal with summability condition (21), especially the factor
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sn(x), the story is not as clear-cut as that. In one direction, it is as expected. We will use the notation
W s(⃗0) mod 1 to indicate the stable manifold of 0⃗ for the non-autonomous dynamical system on the
3-torus T3 induced by the sequence of matrices (Ai)i≥1. It is an immersed line in the direction of
W s(0) and wrapping densely through the torus.

Theorem 4.8. If ξ⃗ does not belong to the stable space W s(⃗0) mod 1 for ξ ∈ (0, 1), then the corre-
sponding ITM has no continuous eigenvalue.

Proof. Let ξ⃗0 = ξ⃗ mod 1 and ξ⃗n+1 = ξ⃗nÃn+1 mod 1 ∈ (− 1
2 ,

1
2 ]

3. Assume by contradiction that condi-

tion (21) holds, i.e., maxx∈X |||⟨s̃n(x), ξ⃗n⟩||| is summable. Take n0 ∈ N so that maxx∈X |||⟨s̃n(x), ξ⃗n⟩||| <
1/4 for all n ≥ n0.

The vectors s̃n(x) have non-negative entries, but are smaller than the v-th column of Ãn+1 if the
path x ∈ X is such that r(xn+1) = v. Using the language of BV-diagrams, if xn+1 is the smallest
incoming edge to v, then s̃n(x) has the largest possible value, say s+n (x), which is the v-th column of
Ãn+1 with one entry decreased by 1. Taking successive incoming edges for xn+1, s̃n(x) decreases each
time by one unit, depending on the source vertex s(xn+1).

Now if ξ⃗n ∈ Bε(⃗0), but ⟨s̃+n (x), ξ⃗n⟩ is close to a non-zero integer, then choosing paths x with xn+1

equal to successive incoming edges to v, ⟨s̃n(x), ξ⃗n⟩ decreases every step by an amount < ε. At some

step, |||⟨s̃n(x), ξ⃗n⟩||| > 1
3 , contradicting that maxx∈X |||⟨s̃n(x), ξ⃗n⟩||| < 1/4.

This implies that ξ⃗n · Ãn+1 · · · Ãn+m → 0⃗ as m → ∞, contrary to the assumption that ξ⃗ /∈
W s mod 1, and the proof is complete.

The next proposition together with (18) shows that there cannot be an eigenvalue e2πiξ for rational
ξ, because 1

ξ+r−p−q (ξ − q, ξ − p) ∈ ∆ is contained in Hk1 ◦ · · · ◦Hkn(∂∆) for n sufficiently large, and

that means there is no sequence (ki)i∈N satisfying (3) such that ℓp,q,r(ξ) = limn→∞ Hk1 ◦· · ·◦Hkn(∆
◦).

Proposition 4.9. Every rational point in ∆ belongs to
⋃

n≥0

⋃
k1,...,kn∈N Hk1

◦ · · · ◦Hkn
(∂∆).

Proof. Suppose (x, y) ∈ ∆◦ has rational coordinates. We can give them the same denominator, i.e.,

we write (x, y) = (pq ,
p′

q ) with p+ p′ < q because x+ y < 1. Take k1 ∈ N such that (x, y) ∈ Hk1
(∆). If

(x, y) ∈ Hk1
(∂∆) we are done, so assume that (x, y) ∈ Hk1

(∆◦). Then using (20) we get

H−1
k1

(x, y) =

(
x+ (k1 + 1)y − 1

x+ y
,

x

x+ y

)
=

(
p+ (k1 + 1)p′ − q

p+ p′
,

p

p+ p′

)
,

which are fractions of common denominator p+ p′ < q, independently of k1. Continuing this way, we
find n < q such that H−1

kn
◦ · · · ◦H−1

k1
(x, y) lies on the line {x+ y = 1} ⊂ ∂∆.

Theorem 4.10. There exist parameters (α, β) such that Tα,β is of type ∞ and ξ⃗ does belong to the

stable space W s(⃗0) mod 1 for ξ ∈ (0, 1), but e2πiξ is not a continuous eigenvalue of the Koopman
operator.

Proof. From (17) it follows that a parameter (u, v) ∈ ∆ is such that ξ⃗ is in the stable subspace W s(⃗0)
only if it belongs to ℓp,q,r for some p, q, r ∈ Z. The lines ℓp,q,r all pass through (1, 1) and have positive
slope if they indeed intersect ∆. Therefore if ℓp,q,r intersections some subtriangle Hk1

◦ · · · ◦Hkn
(∆),

it goes through its upper side.
Assume now that Ã1 · · · Ãi is a block of telescoped matrices, each of the form (6). Then εi :=

|||ξ⃗Ak1
· · ·Akn

||| is exponentially small in i (or even smaller). For the block Ãi+1 as in (6), we choosem =
1, and let ri+1,1 be some large integer and ki+1,1 = ki+1,2 = 2, then Ãi+1 = Ar

1 ·Aki+1,1
·Aki+1,2

·Aki+1,3

is the next telescoped matrix, and the corresponding value s̃i ≈ r. Choosing r sufficiently large, we can
assure that 1

i ≤ |⟨s̃i, ξ⃗Ã1 · · · Ãi⟩| ≤ 1
2 . Then the summability condition (21) for a continuous eigenvalue

fails.
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Theorem 4.11. The set of parameters (α, β) ∈ Ω∞ such that Tα,β does not have an eigenvalue e2πiξ

with ξ ∈ (0, 1) contains a dense Gδ-subset of Ω∞.

Hence, for a dense Gδ-subset of parameters (α, β) ∈ Ω∞, the map Gα,β is weak mixing.

Proof. The map G : U → U ∪ L from (1) is piecewise continuous. Let Uk = {(α, β) ∈ R2 : 1
k+1 <

α ≤ 1
k , 0 ≤ β ≤ α}, k ∈ N, be the domains on which G is continuous. The sets Ω∞ and ∆∞ =⋂

n

⋃
k1,...,kn∈Nn Hk1

◦ · · · ◦Hkn
(∆◦) are homeomorphic via the coding sequences (ki)i∈N satisfying (3).

Indeed, every cylinder set [k1, . . . , kn] corresponds to open triangles Ωk1...kn
in parameter space and

∆k1,...,kn in ∆, and these triangles form a topological basis of Ω∞ and ∆∞ respectively. Common
boundary points of such triangles don’t belong to Ω∞ or ∆∞, so Ω∞ and ∆∞ are zero-dimensional
sets without isolated points, but not compact. The itinerary maps{

(α, β) 7→ (ki)i∈N, Gi−1(α, β) ∈ U◦
ki
,

(u, v) 7→ (ki)i∈N, H1−i(u, v) ∈ ∆◦
ki
,

are homeomorphisms, and the composition h : ∆∞ → Ω∞ that assigns to (u, v) ∈ ∆∞ the unique
parameter pair (α, β) ∈ Ω∞ so that their itineraries coincide is the required homeomorphism between
∆∞ and Ω∞. Since ∆∞ \

⋃
p,q,r∈Z ℓp,q,r is clearly a dense Gδ set and no (u, v) satisfies the summability

condition (21), the h-image of this set is the required dense Gδ-subset of Ω∞ of parameters failing
(21).

4.5 Weak mixing and measurable eigenvalues for the general case.

For the Bratteli-Vershik representation (V,E,≤) of the ITM let hn ∈ Z3 be the vector with entries

hn(v) = #{paths from vertex v0 to v ∈ Vn} = (1, . . . , 1)M1 · · ·Mn

and let µ be an ergodic probability measure. A necessary and sufficient condition for e2πiξ to be a
(measure-theoretic with respect to µ) eigenvalue is the following ([9] and [12, Prop 6.122]): There is a
sequence of functions ρn : Ṽn+1 → R such that

gn(x) :=
(
S̃n(x) + ρn(t(xn+1))

)
ξ mod 1 converges for µ-a.e. x ∈ XBV as n → ∞, (23)

where S̃n(x) =
∑n

j=1⟨s̃j(x), hj(s(xj+1))⟩ is the minimal number k ≥ 1 of iterates of the Vershik map

such that τk(x)n+2 ̸= xn+2. (Recall s̃j(x) from (21) with Ãk instead of Mk.) Furthermore, µ is a τ -
invariant and ergodic probability measure. The condition lim infj kj < ∞ made in this section implies
that there is only one such measure, see Corollary 4.15.

Let Σ be the unit simplex in R3 and for w ∈ R3
≥0 \ {0}, let π(w) = w

∥w∥1
denote the projection of

w onto Σ. In terms of properties of the matrices Akj
, unique ergodicity is equivalent to

π

⋂
j>m

Akm+1
· · ·Akj

(R3
≥0

)

 = ℓm

is a single point in Σ. This enables us, for any sequence (εn)n∈N, to find a sequence rn ↗ ∞ and
telescope the sequence of substitutions (and associated matrices) accordingly, such that for χ̃n+1 :=
χkrn−1+1 ◦ · · · ◦ χkrn+1

with associated matrices Ãn+1 = Akrn+1 · · ·Akrn+1
we have for all n ∈ N:

sup
a∈{1,2,3}

sup
b,b′∈{1,2,3}

fa(b
′)

fa(b)
≤ sup

a∈{1,2,3}
sup

x,y∈R3
>0

π(Ãn+1x)a

π(Ãn+1y)a
≤ 1 + εn+1, (24)

for the frequencies fa(b) :=
|χ̃n+1(b)|a
|χ̃n+1(b)| .
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Theorem 4.12. If lim infn kn < ∞ and ξ⃗ does not belong to the stable space W s(⃗0) mod 1 for ξ ∈
(0, 1), then the corresponding ITM is weakly mixing.

Contrary to Theorem 4.8 about the absence of continuous eigenvalues, the proof below does depend
explicitly on the substitutions χki

rather than only its abelianizations. It remains an open question
whether our family of ITMs contains maps with a measurable non-continuous eigenvalue.

To prove Theorem 4.12, we need some lemmas, which feature the constant

C∗ := 3 + lim inf
j

kj . (25)

First we show the existence of a common prefix in words χk1 ◦ · · · ◦ χkn(v) for all v ∈ {1, 2, 3}.
Then we show that the number of occurrences of any symbol in χk1

◦ · · · ◦ χkn
(v) are comparable

for all v ∈ {1, 2, 3} and thus, so are the heights hn(v). With these results we prove that ITMs with
lim infn kn < ∞ are uniquely ergodic and that such systems are typical in the parameter space. The
last lemma shows that the common prefix holds significant mass, thus we can use the behaviour of
points x in the prefix to show the non-existence of eigenvalues for the theorem.

Lemma 4.13. For all values of k1, . . . , kn, the word χk1
◦ · · · ◦ χkn

(3) is a prefix of χk1
◦ · · · ◦ χkn

(2).
If kn ≥ 2, then χk1 ◦ · · · ◦ χkn(1) is a prefix of χk1 ◦ · · · ◦ χkn(3), up to its last letter which is 1 or 2
when n is even or odd. If kn = 1 and n ≥ 2, then χk1 ◦ · · · ◦ χkn(3) is a prefix of χk1 ◦ . . . χkn(1).

Proof. Direct by induction on n.

For the remainder of this section, set

Lemma 4.14. If 2 ≤ kn ≤ C∗ or kn = 1, kn−1 ≥ 2, then for every j such that Akn−j
· · ·Akn

is a full
matrix,

|χkn−j ◦ · · · ◦ χkn(v)|u ≤ 4C∗|χkn−j ◦ · · · ◦ χkn(v
′)|u

for all v, v′ ∈ Vn and u ∈ {1, 2, 3}. In particular, hn(v) ≤ 4C∗hn(v
′) for all v, v′ ∈ Vn.

The proof is deferred to Section 4.6.

Corollary 4.15. If (3) holds and lim infj kj < ∞, then the corresponding ITM is uniquely ergodic. In
particular, for every invariant measure ν on Ω∞, ν-a.e. (α, β) ∈ Ω∞ corresponds to a uniquely ergodic
ITM.

Proof. We telescope the sequence χkj into blocks χkni−1+1 ◦ · · · ◦χkni
such that Ãi = Akni−1+1 · · ·Akni

is a full matrix and kni
≤ C∗ with C∗ as in (25) and if kni

= 1 then kni−1
≥ 2 for all i. Using

Lemma 4.14 we estimate

ρ(L,L′) :=

√
max{Pu/P ′

u : u = 1, 2, 3}
min{Pu/P ′

u : u = 1, 2, 3}
with P, P ′ columns of Ãi

for the Hilbert metric4. For these associated matrices, we get ρ ≤ 4C∗. This gives a contraction factor
tanh( 12 log(ρ)) < 1 for the Hilbert metric, independently of i. Hence, unique ergodicity follows.

Now if ν is an ergodic G-invariant measure, then there is k ∈ N such that ν(Lk) > 0 for the strip
Lk = {(a, b) ∈ Ω∞ : 1

k+1 < α ≤ 1
k}. By the Ergodic Theorem, #{i ∈ N : Gi(α, β) ∈ Lk} = ∞ for

ν-a.e. (α, β). Hence for such (α, β) lim infi ki ≤ k < ∞, and Tα,β is uniquely ergodic.

In the sequel, write χ̃n = χk̃1
◦ · · · ◦ χk̃m

where m = m(n). We will use Bratteli-Vershik system
arguments, but still prefer to keep a metric that agrees with the metric on the subshift. Hence if (X, τ)
is the Bratteli-Vershik system containing distinct edge-labeled paths x and y, then we set d(x, y) = 2−n

for n = min{j ≥ 0 : τ j(x)1 ̸= τ j(y)1}.
4This time we multiply by column vector on the right, so the notation is exactly as in [12, Formula 8.29] and transposed

compared to (15).
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For x ∈ XBV and n ∈ N fixed, define recursively

y0 = (y0m)m≥1 = x and yℓ+1 = τhn(s(y
ℓ
n+1))(yℓ). (26)

This is a speed-up of the τ -orbit of x which, if one observes only the levels ≥ n + 1 of the Bratteli
diagram, acts as τ itself. The next lemma shows that given sufficiently large n, this speed-up doesn’t
change the path x on the first n/(16C∗) levels of the Bratteli diagram.

Lemma 4.16. Let µ be the uniquely ergodic measure. Then there exists n0 ∈ N such that for all
n > n0 for which k̃m(n) ≤ C∗ from (25) and if k̃m(n) = 1, then k̃m(n)−1 ≥ 2, we have

µ({x ∈ [e] : d(x, yℓ) < 2−n/16C∗
}) ≥ 1

16C∗µ([e]), (27)

for all ℓ ≥ 0 and e ∈ En+1, where [e] = {x ∈ XBV : xn+1 = e}.

Proof. The telescoping is such that χ̃n(v) = χk̃1
◦ · · · ◦ χk̃m

(v) satisfies (24); in particular, for each
v ∈ Vn, χ̃n(v) contains every symbol in Vn−1 multiple times, and m = m(n) is so large that there
are a minimal even j′ ≥ 2 and a minimal odd j′′ ≥ 2 both such that k̃m−j′ , k̃m−j′′ ≥ 2. Due to (3)
such j′ and j′′ can always be found. Set j = max{j′, j′′}. Then χk̃m−j

◦ · · · ◦ χk̃m
(v), v ∈ Vn, have

a maximal common prefix W ′ that contains every symbol. In the light of Lemma 4.13, W ′ equals
χk̃m−j

◦ · · · ◦ χk̃m
(1) minus its last letter if k̃m ≥ 2, and W ′ = χk̃m−j

◦ · · · ◦ χk̃m
(3) if k̃m−1 > k̃m = 1.

Clearly
W := χk̃1

◦ · · · ◦ χk̃m−j−1
(W ′)

is a common prefix of χ̃n(v), v ∈ Vn, of length |W | ≥ 1
8C∗ |χ̃n(v)| according to Lemma 4.14, and W

contains every symbol as well. Therefore

q :=

⌊
1

2
|χ̃1 ◦ · · · ◦ χ̃n−1(W )|

⌋
≥ 1

16C∗ max
v∈Vn

|χ̃1 ◦ · · · ◦ χ̃n(v)|.

Then as all paths from v0 to t(e) in the Bratteli diagram have the same mass, the union of the first
q such paths in [e] has mass ≥ 1

16C∗µ([e]).
Take v = s(e) and let xmin(v) be the minimal path from v0 to v. For any x ∈ [e]∩τ j([xmin(v)]) with

0 ≤ j ≤ q, if follows that τhn(v)(x) ∈ τ j([xmin(v
′)]), where v′ ∈ Vn is the source of the successor edge

to xn+1 (or if xn+1 is the maximal incoming edge, v′ ∈ Vn is the source of τhn(v)(x)n+1). Because q is
only half of the length of the common prefix W , d(x, y1) = d(x, τhn(v)(x)) ≤ 2−n/16C∗

. Since this is
true for all x ∈ τ j([xmin(v)]) and 0 ≤ j ≤ q, and for every ℓ ≥ 0, yℓ ∈ τ j([xmin(v

′′)]) for some v′′ ∈ Vn,
the lemma follows.

Proof of Theorem 4.12. Recall from (25) that C∗ = 3+lim infj kj . We can assume that the telescoping
of the BV-diagram can be done in such a way that (24) holds, and the last matrix in each telescoped
block either has subscript 2 ≤ k ≤ C or is equal to 1, but then the subscript of the penultimate matrix
is ≥ 2. Let ξ⃗0 = ξ⃗ and ζ⃗n+1 = ξ⃗n · Ãn+1 and ξ⃗n+1 = ζ⃗n+1 − z⃗n+1 ∈ (− 1

2 ,
1
2 ]

3, where z⃗n+1 ∈ Z3 is the

closest integer vector to ζ⃗n+1. By assumption, ξ⃗ /∈ W s(⃗0) mod 1, therefore there must be η > 0 such

that ∥ζ⃗n+1∥1 > η infinitely often.
Assume by contradiction that (23) holds. Let g(x) = limn→∞ gn(x) wherever it converges. By

Lusin’s Theorem, for every δ > 0, there is a compact subset X ′ ⊂ XBV such that µ(XBV \X ′) < δ,
g is uniformly continuous on X ′ and limn→∞ gn(x) = g(x) for all x ∈ X ′. Pick δ < 1/(144C∗). Then,
for ε ∈ (0, η/(288C∗)) arbitrary, there is N ∈ N such that for every n > N and x, y ∈ X ′ such that
d(x, y) < 2−N/16C∗

we have

|g(x)− g(y)| < ε and |gn(x)− g(x)| < ε. (28)

It also follows that |gn+1(x)− gn(x)| < 2ε for all n ≥ N .
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LetXn = {x ∈ τ j([xmin(v)]) : v ∈ Vn, 0 ≤ j < q} with the notation q and xmin(v) from Lemma 4.16.
In fact, Xn consists of all the paths x ∈ X such that the finite path (x1, . . . , xn) is among the first q
paths from v0 to s(xn+1) and µ(Xn) ≥ 1/(16C).

Recalling also the points yℓ from (26), we get from Lemma 4.16 that

d(x, yℓ) < 2−n/16C∗
for all x ∈ Xn and ℓ ≥ 0. (29)

Now take x ∈ Xn and corresponding yℓ such that x, yℓ ∈ X ′ and xn+2 = yjn+2 for all 0 ≤ j ≤ ℓ.
Then

|||
ℓ−1∑
j=0

ξhn(s(y
j
n+1))||| = |||ξ · (S̃n(x)− S̃n(y

ℓ))|||
= |||ξ · S̃n(x) mod 1− ξ · S̃n(y

ℓ) mod 1||| = |||gn(x)− gn(y
ℓ)|||

≤ |||gn(x)− g(x)|||+ |||g(x)− g(yℓ)|||+ |||g(yℓ)− gn(y
ℓ)||| < 3ε. (30)

Now take n ≥ N such that ∥ζ⃗n+1∥ ≥ η. Notice that the components of ξ⃗n are ξn(v) = ξhn(v) mod 1 ∈
(− 1

2 ,
1
2 ].

ζ⃗n+1 = ξ⃗n · Ãn+1 = (ξn(1), ξn(2), ξn(3)) · Ãn+1

=

|χ̃n+1(1)|∑
j=1

ξn(χ̃n+1(1)j),

|χ̃n+1(2)|∑
j=1

ξn(χ̃n+1(2)j),

|χ̃n+1(3)|∑
j=1

ξn(χ̃n+1(3)j)

 .

By (24), for each v ∈ Vn, the frequencies fv(w) differ among the w ∈ Vn+1 by no more than a factor
1+ εn+1, where we choose εn+1 to be the smallest positive value among the sums

∣∣∑
v∈Vn

ξn(v)fv(w)
∣∣

for w ∈ Vn+1. Lemma 4.14 applied to the block of substitution that produces χ̃n+1 gives |χ̃n+1(w)| ≤
4C∗|χ̃n+1(w

′)| for all w,w′ ∈ Vn+1.

Since ∥ζ⃗n+1∥1 ≥ η, we can pick w ∈ Vn+1 such that
∣∣∣∑|χ̃n+1(w)|

j=1 ξn(χ̃n+1(w)j)
∣∣∣ ≥ η/3. First assume

that
∑

v∈Vn
ξn(v)fv(w) > 0. Then, recalling that

∑
v∈Vn

|ξn(v)|fv(w) ≤ 1
2 , we have

η

24C∗ ≤ 1

8C∗

|χ̃n+1(w)|∑
j=1

ξn(χ̃n+1(w)j) ≤
1

4C∗ |χ̃n+1(w)| ·
1

2

∑
v∈Vn

ξn(v)fv(w)

≤ 1

4C∗ |χ̃n+1(w)|

(∑
v∈Vn

ξn(v)fv(w)− εn+1

∑
v∈Vn

|ξn(v)|fv(w)

)

≤ 1

4C∗ |χ̃n+1(w)|

 ∑
ξn(v)>0

ξn(v)
fv(w)

1 + εn+1
+

∑
ξn(v)<0

ξn(v)fv(w)(1 + εn+1)


≤ |χ̃n+1(w

′)|

 ∑
ξn(v)>0

ξn(v)fv(w
′) +

∑
ξn(v)<0

ξn(v)fv(w
′)


= |χ̃n+1(w

′)|
∑
v∈Vn

ξn(v)fv(w
′) =

|χ̃n+1(w
′)|∑

j=1

ξn(χ̃n+1(w
′)j).
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If on the other hand
∑

v∈Vn
ξn(v)fv(w) < 0, we change signs:

η

24C∗ ≤ 1

8C∗

∣∣∣∣∣∣
|χ̃n+1(w)|∑

j=1

ξn(χ̃n+1(w)j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣ 1

4C∗ |χ̃n+1(w)| ·
1

2

∑
v∈Vn

ξn(v)fv(w)

∣∣∣∣∣
≤ − 1

4C∗ |χ̃n+1(w)|

(∑
v∈Vn

ξn(v)fv(w)− εn+1

∑
v∈Vn

|ξn(v)|fv(w)

)

≤ − 1

4C∗ |χ̃n+1(w)|

 ∑
ξn(v)>0

ξn(v)fv(w)(1 + εn+1) +
∑

ξn(v)<0

ξn(v)
fv(w)

1 + εn+1


≤ −|χ̃n+1(w

′)|

 ∑
ξn(v)>0

ξn(v)fv(w
′) +

∑
ξn(v)<0

ξn(v)fv(w
′)


= −|χ̃n+1(w

′)|
∑
v∈Vn

ξn(v)fv(w
′) =

∣∣∣∣∣∣
|χ̃n+1(w

′)|∑
j=1

ξn(χ̃n+1(w
′)j)

∣∣∣∣∣∣ .
Recall that the χ̃n+1(w) gives the order of incoming edges to w ∈ Vn+1. Without loss of generality,

we can assume that (24) applies to any subword of χ̃n+1(w) of length at least |χ̃n+1(w)|/3. That is, if
1 ≤ a < a+ |χ̃n+1(w)|/3 < b, then

η

72C∗ ≤

∣∣∣∣∣∣
b−1∑
j=a

ξn(χ̃n+1(w)j)

∣∣∣∣∣∣ . (31)

Indeed, since the frequencies of letters in all of these subwords are almost the same, these sums
(consisting of b − a terms of three types ξn(1), ξn(2) and ξn(3)) indicate almost collinear vectors of
lengths almost proportional to |b− a|/|χ̃n+1(w)|.

Now choose the most frequent (measure-wise) w ∈ Vn+1 and v ∈ Vn; that is

µ({x ∈ X ′
n : s(xn+1) = v, t(xn+1) = w}) ≥ 1

144C∗ − δ > 0.

For a path u := u1 . . . un ∈ τ j([xmin(v)]) from v0 to v ∈ Vn and 0 ≤ j ≤ q and for each edge a ∈ En+1

with s(a) = v and t(a) = w, let x(a)(u) be a path from v0 to w ∈ Vn+1 such that

(i) x
(a)
n+1(u) = a, and

(ii) x
(a)
k (u) = uk for all 1 ≤ k ≤ n.

Hence for edges a, b ∈ En+1 connecting v ∈ Vn and w ∈ Vn+1 such that (31) holds. Then

µ(X ′ ∩ [x(a)(u)]) >
1

2
µ([x(a)(u)]) and µ(X ′ ∩ [x(b)(u)]) >

1

2
µ([x(b)(u)]).

This implies that there exists x ∈ [x(a)(u)]∩X ′ and y ∈ [x(b)(u)]∩X ′ such that y = yℓ for some ℓ ≥ 1
in the sense of (26) (because y(j) 7→ y(j+1) is measure-preserving).

Then S̃n−1(x
(a)(u)) = S̃n−1(x

(b)(u)) and hence gn−1(x
(a)(u)) = gn−1(x

(b)(u)). Because s(a) = s(b)
and b− a > |χ̃n+1(w)|/3, it follows from (31) that

∣∣∣gn(x(b)(u))− gn(x
(a)(u))

∣∣∣ = ∣∣∣ξ · (S̃n(x
(b)(u))− S̃n(x

(a)(u))
)∣∣∣ =

∣∣∣∣∣∣
b−1∑
j=a

ξn(χ̃n+1(w)j)

∣∣∣∣∣∣ ≥ η

72C∗ .
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Therefore

4ε ≥
∣∣∣(gn(x(b)(u))− gn−1(x

(b)(u))) + (gn−1(x
(b)(u))− gn−1(x

(a)(u)))

+ (gn−1(x
(a)(u))− gn(x

(a)(u)))
∣∣∣

= |gn(x(b)(u))− gn(x
(a)(u))| ≥ η

72C∗ ,

which contradicts the choice of ε. This finishes the proof.

Corollary 4.17. A linearly recurrent ITM of infinite type is weakly mixing if and only if ξ⃗ does not
belong to the stable space W s(⃗0) mod 1 for ξ ∈ (0, 1). Furthermore, any measurable eigenvalue is
continuous.

Proof. It follows from Theorem 4.12 that if ξ⃗ ̸∈ W s(⃗0) mod 1, then the system is weakly mixing. If on

the other hand ξ⃗ ∈ W s(⃗0) mod 1, then the convergence of ∥ξ⃗Ak1
· · ·Akn

∥ to zero is exponential. By
[9, Theorem 1], a measurable eigenvalue e2πiξ for linearly recurrent system exists if and only if∑

n≥1

|||ξ⃗Ã1 · · · Ãn|||2 < ∞

and additionally the eigenvalue is continuous if and only if∑
n≥1

|||ξ⃗Ã1 · · · Ãn||| < ∞.

Thus if ξ⃗ ∈ W s(⃗0) mod 1, then the sum converges in both cases and e2πiξ is a continuous eigenvalue
of the ITM.

4.6 The proof of Lemma 4.14

Proof of Lemma 4.14. Let us write Am = Akm
· · ·Akn

for the matrix associated to the substitution
χkm ◦ · · · ◦ χkn . Then An = Akn and the columns Am

2 ≥ Am
3 element-wise for every m ≤ n.

Let

Dm := Akm−2 ·Akm−1 =

km−2 km−2 − 1 km−2 − 1
0 km−1 km−1 − 1
1 1 1

 .

be the matrix associated to the next pair of substitutions χkm−2 ◦ χkm−1 . Our proof is of algorithmic
nature, illustrated by the following scheme:

The properties of the matrices in each state are:

State 1: Am =

0 kn kn − 1
1 0 0
r rkn + 1 r(kn − 1) + 1

 for some integer r ≥ 0.

If kn ≥ 2, then An is in this state, with r = 0.

State 2:

Am =

 0 kn kn − 1
Q1 Q2 Q3

R1 R2 R3

 for integers 1 ≤ mini Qi ≤ maxj Qj < 3C∗ mini Qi − C∗

satisfying 1 ≤ mini Ri ≤ maxj Rj < 3Cmini Ri − C∗.

State 3:

Am =

P1 P2 P3

q 1− q 0
R1 R2 R3

 for integers 1 ≤ mini Pi ≤ maxj Pj < 3C∗ mini Pi

satisfying 1 ≤ mini Ri ≤ maxj Rj < 3C∗ mini Ri

q ∈ {0, 1}.

If 1 = kn < kn−1, then An is in this state, with q = 0.
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State 10 kn kn − 1
1 0 0
r rkn + 1 r(kn − 1) + 1


State 2 0 kn kn − 1

Q1 Q2 Q3

R1 R2 R3



State 3P1 P2 P3

q 1− q 0
R1 R2 R3

 State 4

Am is full

km−1 > 1

km−2 = 1

km−2 > 1

km−1 > 1

km−2 > 1
km−1 > 1

km−2 > 1

km−2 = 1

km−1 =

km−1 = 1

km−2 = 1

Figure 4: Every arrow stands for left multiplication with Dm

State 4: Am is full and (maxi Am
i )u ≤ 4C∗(minj Am

j )u for all u ∈ {1, 2, 3}. The lemma follows from
these inequalities.

Now we verify the transitions between the states.

� From State 1 to State 1: km−1 = km−2 = 1. In this case

Dm = J :=

1 0 0
0 1 0
1 1 1

 ,

and we compute:

Jr · An =

1 0 0
0 1 0
r r 1

 ·

0 kn kn − 1
1 0 0
0 1 1

 =

0 kn kn − 1
1 0 0
r rkn + 1 r(kn − 1) + 1

 , (32)

as required.

� From State 1 to State 2: km−1 > 1 = km−2. From (32) we get

Am−2 =

1 0 0
0 km−1 km−1 − 1
1 1 1

 ·

0 kn kn − 1
1 0 0
r rkn + 1 r(kn − 1) + 1



=

 0 kn kn − 1
X + km−1 Xkn + km−1 − 1 X(kn − 1) + km−1 − 1

r + 1 (r + 1)kn + 1 (r + 1)(kn − 1) + 1


for X = r(km−1 − 1) ≥ 0, and the properties of State 2 hold.

� From State 1 to State 3: km−2 > 1 = km−1. From (32) we get

Am−2 =

km−2 km−2 − 1 km−2 − 1
0 1 0
1 1 1

 ·

0 kn kn − 1
1 0 0
r rkn + 1 r(kn − 1) + 1



=

Y − 1 Y kn + km−2 − 1 Y (kn − 1) + km−2 − 1
1 0 0

r + 1 (r + 1)kn + 1 (r + 1)(kn − 1) + 1


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for Y = r(km−2 − 1) + km−2 ≥ 2, and the properties of State 3 hold with q = 1.

� From State 1 to State 4: km−2, km−1 > 1. From (32) we get

Am−2 =

km−2 km−2 − 1 km−2 − 1
0 km−1 km−1 − 1
1 1 1

 ·

0 kn kn − 1
1 0 0
r rkn + 1 r(kn − 1) + 1



=

 Y − 1 Y kn + km−2 − 1 Y (kn − 1) + km−2 − 1
X + km−1 Xkn + km−1 − 1 X(kn − 1) + km−1 − 1

r + 1 (r + 1)kn + 1 (r + 1)(kn − 1) + 1


for X = r(km−1 − 1) ≥ 0, Y = r(km−2 − 1) + km−2 ≥ 2, and the properties of State 4 hold.

� From State 2 to State 2: km−1 ≥ 1 = km−2. Left multiplication with

Dm =

1 0 0
0 km−1 km−1 − 1
1 1 1


leaves the first row of Am unchanged. For the second row the inequalities for the new Q̃i follow
from

Q̃i + C∗ = km−1Qi + (km−1 − 1)Ri + C∗

< 3C∗km−1Qj + 3C∗(km−1 − 1)Rj = 3C∗Q̃j

and for the last row

R̃i + C∗ ≤ Qi +Ri + 2C∗ < 3C∗Qj + 3C∗Rj = 3C∗R̃j .

So the conditions of State 2 remain valid.

� From State 3 to State 3: km−2 ≥ 1 = km−1. Left multiplication with

Dm =

km−2 km−2 − 1 km−2 − 1
0 1 0
1 1 1


keeps the conditions of State 3 valid. By Ri + 1 ≤ 3C∗Rj it holds that for the new P̃1

P̃1 = P1 +R1 + q < 3C∗Pi + 3C∗Ri ≤ 3C∗P̃i

for all i and so on for the other entries.

� From State 2 to State 4: km−2 > 1. Left multiplication with Dm gives

Am−2 = Dm · Am =

km−2 km−2 − 1 km−2 − 1
0 km−1 km−1 − 1
1 1 1

 ·

 0 kn kn − 1
Q1 Q2 Q3

R1 R2 R3



=


(km−2 − 1)(Q1 +R1) knkm−2+ (kn − 1)km−2+

(km−2 − 1)(Q2 +R2) (km−2 − 1)(Q3 +R3)

km−1Q1 + (km−1 − 1)R1 km−1Q2 + (km−1 − 1)R2 km−1Q3 + (km−1 − 1)R3

Q1 +R1 kn +Q2 +R2 kn − 1 +Q3 +R3


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keeps the inequality in the second and third row as before. For the first row

P̃2 = knkm−2 + (km−2 − 1)(Q2 +R2)

≤ (km−2 − 1)(Q2 +R2 + C∗) + C∗

< 4C∗(km−2 − 1)(Qj +Rj) ≤ 4C∗P̃j

and analogously the inequalities hold for the other entries. Thus the conditions of State 4 hold.

� From State 3 to State 4: km−2 > 1. Left multiplication with Dm gives

Am−2 = Dm · Am =

km−2 km−2 − 1 km−2 − 1
0 km−1 km−1 − 1
1 1 1

 ·

P1 P2 P3

q 1− q 0
R1 R2 R3

 =

=


km−2P1+ km−2P2+ km−2P3+

(km−2 − 1)(q +R1) (km−2 − 1)(R2 + 1− q) (km−2 − 1)R3

qkm−1 + (km−1 − 1)R1 (1− q)km−1 + (km−1 − 1)R2 (km−1 − 1)R3

P1 + q +R1 P2 + 1− q +R2 P3 +R3


keeps the required inequalities of the first and third row as before. For the second row we see
that

Q̃1 = qkm−1 + (km−1 − 1)R1 = (km−1 − 1)(R1 + q) + q

≤ 3C∗(km−1 − 1)Rj + 1 < 4C∗(km−1 − 1)Rj ≤ 4C∗Q̃j

for all j and analogously for the other entries. Hence the conditions of State 4 hold.

Since for a full matrix in State 4, any further left multiplications with Dm−2 etc., preserves the
conditions of State 4, this proves the lemma for kn ≥ 2.
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