NONCONFORMAL PERTURBATIONS OF 2+ 22 + ¢
THE 1:3 RESONANCE

H. BRUIN & M. VAN NOORT

ABSTRACT. We study a family of non-conformal maps of the plane, as a perturbation of
the quadratic map z — 22 + ¢. In particular, a neighborhood in phase-parameter space
of the 1:3 resonance of the unperturbed map is analyzed, by theoretical and numerical
means, mostly in a local setting, but some more global aspects are discussed as well.

Certain topological constructions, like the Mandelbrot and Julia sets, and external
rays, can be carried through to the nonanalytic setting. Other familiar properties of the
quadratic map, like the number and possible types of periodic points, are lost under the
perturbation.

A bifurcation analysis shows complicated dynamics, where the 1:3 resonance point as
well as cusp and Bogdanov-Takens points act as organizing centers. Arnol’d tongues and
invariant circles — originating from Neimarck-Sacker bifurcations — also play an important
role in structuring the dynamics. Finally, we discuss a planar vector field approximation
of the family of maps that can explain part of these phenomena.

1. INTRODUCTION

The quadratic family z — z? + ¢ on the complex plane has been extremely well studied,
and its “bifurcation diagram”, the Mandelbrot set M is famous even outside mathematics.
Our understanding of the quadratic family depends largely on its conformal nature and
the tools from complex analysis that apply to it. Perturbations, especially nonconformal
perturbations, of this family are much less understood. In Bielefeld et al. [4], the family

fa,c(2) = |z|2"‘_2z2 +c (1)

is proposed; it still has the global structure of a two-fold covering map of the plane with
a single critical point at the origin, while its conformal structure is lost for a # 1. For
a # 1, Mandelbrot sets M, being the c-locus of connected filled-in Julia sets can still be
defined, and for a = 1 roughly have the same shape as the standard Mandelbrot set. If the
attention is restricted to the “main cardioid” and the (hyperbolic) components directly
attached to it, it is a general observation that for o > 1, these components tend to sink into
the main cardioid (allowing coexistence of attractors), while for @ < 1, the components
seem to detach themselves from the main cardioid, see [4, Figure 13].

The boundary of the main cardioid can be computed explicitly for a > 1/2, see formula
(2). For the conformal case (o = 1) the bifurcations at the boundary of the cardioid are
well-understood; they occur to the “central” fixed point and for multipliers at resonance
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(u = e*™P/7), they are known as Leau-Fatou bifurcations. Bielefeld et al. [4] give a
thorough analysis for a = 1 of the bifurcation of the central fixed point near multiplier
=1 (the root of the main cardioid) and multiplier 4 = —1 (the period doubling), while
Peckham et al. [22, 23] give similar results for a slightly different family. The bifurcation
structure at other multipliers is more conjectural.

In this paper we intend to carry out a thorough analysis of the bifurcations near the
1:3 resonance, i.e., multiplier e2™"/3, where the nonanalytic family is considered as an
unfolding of the analytic case & = 1 in the space of C'* maps on the punctured plane
R? \ {0}. Obviously, (1) is not the most general family to study the (local and global)
bifurcations, since there is a single critical point. Generic, but local, perturbations are
studied in [22, 23], whereas Nien, [21], involves the critical set in an analysis of quadratic
maps. For our system, o — 1 plays the role of a small perturbation parameter, and our
interest lies with those parts of the dynamics that are present for arbitrarily small a — 1.
Firstly this involves an analysis of the local bifurcations, using both numerical tools and
general bifurcation theory. It is important to note that Leau-Fatou bifurcations or the
presence of Siegel disks are not generic in the context of C°° maps on the plane. On the
other hand, saddles and hyperbolic invariant circles, and consequently saddle-node and
Neimarck-Sacker bifurcations are possible only for « # 1.

Secondly, more global aspects, such as the dynamics of invariant circles or the critical
point, are studied by topological means, again backed up by numerical calculations. Many
of the constraints on analytic maps do not hold in the real setting. For example, there can
be more attractors than critical points (so in our case, more than one), and the Julia set
need not coincide with the boundary of the basin of co. However, other, more topological
properties are still true.

1.1. Method and results. In the conformal case, the Leau-Fatou bifurcation at the 1:3
resonance involves a period three orbit passing through the fixed point, exchanging sta-
bility at the bifurcation point. The corresponding Julia set is known as the fat rabbit
(of Douady). Under perturbation (« # 1), this bifurcation falls apart in a complicated
configuration of saddle-node and Neimarck-Sacker bifurcations (i.e., the discrete time ver-
sion of Hopf bifurcations) of period three points. The bifurcations are organized by some
codimension 2 Bogdanov-Takens and cusp points. The configurations for « < 1 and a > 1
are different. In both cases the bifurcation pattern is generic in the context of C'*° maps
on the real plane.

Of special interest are the invariant circles born at Neimarck-Sacker bifurcations. They
are destroyed either in heteroclinic tangencies (see e.g. [2]), or in a more complicated bi-
furcation that seems to involve loss of invertibility and possibly hyperbolicity in a collision
of the circle with its preimage at the critical point. See [14] for research in this direction.

Another global aspect of the dynamics is the interaction of the 1:3 resonance with other
resonances. Indeed, near the 1:3 resonance there is a dense set of parameter points on the
main cardioid that correspond to higher resonances. Each of these resonances gives rise
to an Arnol’d tongue (for o # 1), with the tip on the main cardioid, compare Figures 1
and 2. The tongue is pointing inwards or outwards, depending on the sign of a — 1, cf. [4,
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FIGURE 1. The fate of the critical point, in a part of the c-plane near the 1:3
resonance, for a = 1.1. In the white region it escapes to infinity, in the dark grey
region it converges to a period 1 or 3 orbit, and in the black regions to a periodic
orbit of period at least 4 and at most 46. In the light grey regions, the motion is
“undetermined”, which can indicate an invariant circle or an attracting orbit of
high period, or chaotic motion. The lines indicate curves of saddle-node (for v,
and 74) or Neimarck-Sacker bifurcations (for v3). See Figure 3 for more details.

Section 4]. Outside the Arnol’d tongues, the main cardioid corresponds to a Neimarck-
Sacker bifurcation. The invariant circle created in this bifurcation undergoes a saddle-node
bifurcation on the boundaries of an Arnol’d tongue, changing it into a ring of saddles and
nodes, connected by invariant manifolds.

To study the dynamics more thoroughly, we propose to construct a vector field that qual-
itatively describes the essential dynamics. Following Takens [26], we show the existence
of a vector field such that its time 1 flow, composed with a rotation over 27/3, is a small
perturbation of the map f, .. The vector field is obtained by a normal form computation,
and the perturbation can be made arbitrarily small in a neighborhood of the 1:3 resonance
point in phase-parameter space. In particular, the vector field will capture all local bifur-
cations. The present paper presents and analyzes such a vector field in the holomorphic
case a = 1, showing that its dynamics corresponds nicely to the dynamics of the map. We
intend to pursue this matter further in future research.

1.2. Overview. In the next section we recall well known theory on the quadratic map,
and fix some notation. Sections 3 and 4 deal with the bifurcation diagram for @ > 1 and
a < 1, respectively. Arnol’d tongues are discussed in Section 5, while Section 6 presents
a vector field model for the holomorphic case a = 1. The normal form theory used to
obtain this model is explained in Appendix A and B. Appendix C gives some background
information on external rays.
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FIGURE 2. The fate of the critical point, in a part of the ¢c-plane near the 1:3
resonance, for &« = 0.9. The color coding is the same as in Figure 1. The curves
are saddle-node (for v1,7s) or Neimarck-Sacker bifurcations (for +s,~ys,7s), cf.
Figure 8.

1.3. Acknowledgements: We would like to thank H. W. Broer, B. Peckham, F. Takens
and F. Wagener for useful discussions and R. Vitolo for his assistance with computer
software. We are also grateful for the careful reading and suggestions of the referee.

2. PRELIMINARIES

The family fo(2) = |2|?**722% + ¢ has been studied by more people than the literature
suggests. Local connectivity of M, and the construction of external rays (especially in
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parameter space) is an intriguing and also hard problem. It should be noted that f, . is a
plausible complexification of the unimodal interval map z +— |z|2* +¢. One motivation for
external rays is therefore that it can shed light on the monotonicity problem of topological
entropy for z — |z|?® + ¢, cf. [12], which is still open for o ¢ N.

Another topic has been the structure of the Julia set for ¢ close to 0. For a = 1, J. is a
topological circle which carries hyperbolic dynamics conjugate to the angle doubling map.
Depending on the relative positions of @ — 1 and |c|, this circle is smooth (and normally
hyperbolic) [4] or non-rectifiable with Hausdorff dimension > 1, [17, 25].

Let us starts describing the main cardioid as function of . Depending on the choice of
coordinates, we can write f, . as

faelz) = [z +c
= r2ee?v 4 ¢
= (@ +v) N 2® —y?) +Rec + (2 +4°)* zy +Im ) i,

where z = re'? = z + 41y. Using polar coordinates, one easily computes

Df =2r?1 (
This gives for the trace and determinant
tr Df = 2r?* Ha+1)cosp, det Df = 4ar?e=1),

The curve in phase space with det Df = 1 is a circle with radius ro = (2¢/a) /21,
The boundary of the main cardioid is the curve in parameter space such that one of the
fixed points, we call it the central fixed point p, has det D f(p) = 1. This means that p is
non-hyperbolic, undergoing a Neimarck-Sacker or more complicated bifurcation, or p is a
hyperbolic saddle, whose eigenvalues happen to multiply to 1. To compute it, we need to
solve p = roe’? = f(p) = r2%*% + ¢, which gives

acos2pcosp +sin2psing acos2psing — sin2p cos ¢
asin2pcosp —cos2psing asin2ypsing 4+ cos2pcosp |’

1 1 i _ __2a_ o
cp:=c=q 227 2-1¢e'¥ — 7 *27 2a-1¢7%, (2)
This describes a limacon-shaped curve. For a < 1 it has a small inner loop near ¢ = %,
for @« = 1 we have the well-known cardioid, and for o > 1 the cusp in the cardioid flattens
to a smooth curve. The multiplier 4 of p = rge’ is €, where 2cos9 = tr Df(p) =
2r2* a4+ 1) cos ¢, so
1

cost = % Cos . (3)
The conformality at @ = 1 prevents several features to occur which are present for o # 1.
Examples are saddle points, normally hyperbolic invariant cycles conjugate to rotations
(due to Schwarz’ lemma) and hence Neimarck-Sacker bifurcations, and the coexistence of
several periodic attractors. Let us define the filled-in Julia set K. = {z € C | f"(z) /4 oo}
and A(oco) = C\ K, is the basin of infinity. Note that officially, the Julia set J, is defined
as the set of points z such that fy . : U — C, n € N is not an equicontinuous family on
any neighborhood U of z. Since Montel’s Theorem no longer holds for a # 1, one cannot
conclude that J, is the common boundary of K, and A(co). When discussing the global
behaviour of f, we will be interested in dA(oc0) = @K, rather than in J., and call this set
the Julia set (slightly abusing terminology).
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As in the conformal case, K. is connected and full, i.e., A(c0) consists of a single com-
ponent, if and only if the critical point has a bounded orbit. The argument is based
on a straightforward adaptation of the construction of external rays (included in Appen-
dix C) and roughly suggests the global shape of the Julia set. It indicates that A (o) is
a topological factor of a circle (Caratheodory loop), where each z € 9A(o0) arises from
identifying a bounded number of points of the circle. The action f, |0A(co) and the angle
doubling map z + 2% on the unit circle have a common factor (we explain this in more
detail in Appendix C), and as a result, it has at least the complexity of a factor of the
full two-shift. Therefore, for generic «, dA(c0) is expected to contain 2" — 1 points of
period n for co-finitely many n. For example, we always expect to find a fixed point on
0A(oo) with external angle 0, which we call p’ in this paper. The other fixed point, called
p, plays a role in the 1:3 bifurcation discussed in this paper. In the conformal version of
this bifurcation, one period 3 orbit collapses to this fixed point.

3. THE 1:3 BIFURCATION DIAGRAM, FOR o > 1.

In this section we give a global description of the bifurcation diagram corresponding to
the creation of the period 3 sink that occurs at the top side of the locus of existence of an
attracting fixed point. In the conformal case (a = 1), this period 3 sink emerges in a Leau-
Fatou-bifurcation at the parameter value ¢ = e¥ — 1e*%, for ¢ = 2%, see e.g. [9]. For
a > 1, the bifurcation diagram is as displayed in Figure 3, which shows the particular case
a = 1.1. Tt consists of seven regions (1 - 7) separated by curves 7;, i = 1,...8 (curve s is
too small to be seen on this scale). All curves are computed numerically by AUTO [10, 11],
except for 73, 5, v7 and g, whose existence is conjectured for reasons explained below.
In fact, we conjecture that these four curves are generically narrow regions rather than
curves. Phase portraits are shown for relevant regions in the bifurcation diagram. In order
to focus on the important aspects of the dynamics we will omit phase portraits of small
regions with trivial or otherwise uninteresting dynamics, and of regions with dynamics
very similar to a displayed phase portrait of another region. The dynamics in the two
unlabeled regions on the left is similar to that in the corresponding regions 6 and 7 on the
right. Therefore these two are omitted from the analysis. The region between -5 and ~y; is
conjectured to be very narrow. In this region the dynamics near the central fixed point is
trivial, simply consisting of a repelling fixed point surrounded by a period three repeller,
and is therefore not analyzed.

There are five codimension two local bifurcation points in this part of phase-parameter
space: a 1:3 resonance point (not marked), two cusp points, indicated by C, and two
Bogdanov-Takens points (BT) in the context of maps, compare [5]. At the 1:3 resonance
point, a curve of Neimarck-Sacker bifurcations is tangent to a narrow region of heteroclinic
tangle, cf. [19]. Two curves of saddle-sink bifurcations intersect tangentially at the cusp
points. A Bogdanov-Takens point arises when a curve of Neimarck-Sacker bifurcations and
a narrow region of heteroclinic tangle end tangentially at a curve of saddle-node bifurca-
tions, and the node changes stability at the bifurcation point. The cusp and Bogdanov-
Takens points are extremely close together, and their separation becomes visible only after
a huge magnification of the relevant parameter region, see Figure 4. In this figure one can
also see the location of v3. We do not show phase portraits for some very small regions
near the Bogdanov-Takens point, as this bifurcation is well understood.
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FIGURE 3. Bifurcation diagram and phase portraits of the unimodal map near
the 1:3 resonance point, for & = 1.1. Phase portraits are located at the indicated
parameter points. In each phase portrait, p is the organizing fixed point (but not
labeled in order not to clod up the picture) whereas p' is far outside the picture.
The organizing center of the bifurcation diagram is the 1:3 resonance point ¢y, see
(2). The dynamics is explained in Section 3. The solid curves in the bifurcation
diagram are computed by a continuation method, the dashed ones are conjectured.

Let us describe the dynamics in each of the regions 1 — 7 and at the transition curves. For
numerically computed phase portraits in each of the regions we again refer to Figure 3.
In these diagrams, dots correspond to orbit points, while solid curves indicate stable
manifolds of a saddle point, and dashed curves indicate unstable manifolds. We remark
that these manifolds are well-defined locally, that is, not beyond the critical point. Due
to the 2-to-1 covering, the stable manifold has infinitely many branches, and we select the
branch connected to the saddle point, cf. [13, 14, 24]. The phase portraits are computed
by DsTool [3, 18].
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FIGURE 4. Zoom-in of the bifurcation diagram for o = 1.1 on the rightmost cusp
and Bogdanov-Takens point, cf. Figure 3.

Region 1: The map f has two fixed points, one of which, p, is attracting, and it
attracts the critical point. Note that unlike the holomorphic case, coexistence of
several attractors is now possible. The common boundary dA(p) = dA(co) of the
basins of p and oo contains the other fixed point p’, as well as two period 3 orbits.
The fixed point p’ is hyperbolic repelling, and it belongs to dA(occ). We expect
that all periodic points other than the fixed point p belong to dA(c0) = JA(p).
The numerical evidence for these last observations (concerning 0A(oc)) apply to
the local parameter range discussed in this section. The equality 0A(p) = dA(o0)
cannot hold globally in the main cardioid close to its boundary, see e.g. [4].

Region 2: Coexistence of the attracting fixed point p and a period 3 sink, attracting
the critical point. The fixed point p is surrounded by a ”triangular” ring of period
3 saddle-source connections. The preimages of the immediate basins of the period
3 sink (the ears and body of the rabbit) and of p have a comparable intricate
pattern as is known from Douady’s rabbit. As a result, the fixed point p’ does not
belong to the boundary of any of these preimages, but it still belongs to dA(c0).
The period 3 sources in the saddle-source connection belong to dA(o0) as well.

Curve 7;: Traversing from region 1 into region 2 or from region 6 into region 3, a
saddle-sink bifurcation occurs creating a period 3 sink and saddle out of nothing.

Region 3: The period 3 sinks (attracting the critical point), saddles and sources of
region 2 coexist with the fixed point p. This point is repelling and surrounded
by an attracting invariant circle I', which either carries an irrational rotation with
rotation number close to %, or is at resonance (and then it is a ring of saddle-sink
connections). A further discussion of corresponding Arnol’d tongues is given in
Section 5.

We remark that if the circle I' is at resonance with another period than 3, then
this does not create conflicts in the geometry: The inward unstable manifolds of
the 3 saddles intersect the outward stable manifolds of the saddles on the curve
of saddle-sink connections I', but these intersections do not lead to heteroclinic
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behaviour. In Figure 5 we illustrate these intersections schematically for the case
that I' contains only two saddles. The critical point is attracted to the period 3
sink, hence not to I'.

FIGURE 5. Sketch of the Neimarck-Sacker circle in resonance (center), sur-
rounded by a period three saddle orbit, for a parameter point in region 3 of figure
3. Solid lines indicate stable manifolds, dashed lines unstable ones. The sketch
demonstrates that there is no obstruction against transversal intersections of the
invariant manifolds of the period three saddle and those of the saddle orbit on the
circle. The points 0 — 9 are iterates of a sample intersection point.

Curve 7y: Traversing o from region 2 into region 3, the fixed point p undergoes a

Neimarck-Sacker bifurcation, generating an invariant circle I' and itself becoming
repelling. The Neimarck-Sacker bifurcation can be at resonance; this indicates the
tip of an Arnol’d tongue, see Section 5.

Traversing o from region 2 into region 4, one passes through the organizing
center ¢y with polar coordinates ry = (4a) 1/4®2) and cos ¢y = é+7% cos 27, see
(3). For fixed @ > 1, the map f. seems to unfold generically at this codimension 2
bifurcation, see e.g. Kuznetsov [19]. In particular, the curve -, and pinched sickle
shape region 3 have quadratic tangency at cg.

Between region 1 and region 6, 9 is a curve of Neimarck-Sacker bifurcations,
possibly at resonance. In contrast to the conformal case, it does not belong to the
boundary of the Mandelbrot set, see below for more details.

Region 4: A period 3 sink is part of a ring of saddle-sink connections, surrounding

the fixed point p which is repelling. The critical orbit converges to the period 3
sinks. One part of the stable manifold of each of the period 3 saddles connects
with a period 3 source, which belongs to 9A(c0).

”Curve” v3: The Neimarck-Sacker circle I' clashes with the ring of saddle-source

connections, destroying both and leaving a ring of period 3 saddle-sink connections.
Most likely, this clash is not the tangential collision of the two circular curves
(known from the continuous time version of the 1:3 resonant Hopf bifurcation, see
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e.g. [19]), but it involves a heteroclinic bifurcation, in which the unstable manifold
of one period 3 saddle intersects the stable manifold of the neighboring period 3
saddle, creating a heteroclinic tangle with the corresponding chaotic dynamics.
Theoretically, these heteroclinic intersections occur in an exponentially narrow (in
terms of distance to the organizing center) region, bounded by curves of heteroclinic
tangencies. Since the existence of region y3 presupposes the existence of a saddle
and a Neimarck-Sacker circle, 3 lies above 2 and between ; and 4. We do not
know where exactly 3 ends; Numerical evidence suggests that its endpoints are
very close to the cusps.

Region 5: No period 3 saddles and sources exist close to the repelling fixed point
p. The period 3 sinks attract the critical orbit. Their immediate basins have the
repelling fixed point p as common boundary point. At the same time p € 0A(0).

Curve 4: Traversing <4 from region 4 into region 5 between the two Bogdanov-
Takens points a saddle-source bifurcation occurs in which the period 3 saddles
and period 3 sources merge and disappear. If the curve is traversed between
a Bogdanov-Takens point and the nearby cusp point, then the bifurcation is of
saddle sink type.

Region 6: No period 3 sink exists. The fixed point p is repelling and surrounded by
an attracting invariant circle I', which either carries an irrational rotation number,
or is at resonance (and hence is a ring of saddle-sink connections). Region 6
therefore contains infinitely many Arnol’d tongues, see the schematic Figure 12.
The circle I" attracts the critical point, and hence the curve 2 does not bound the
locus of connectivity of the complement of A(co).

Region 7: The point p is repelling and a repelling period three orbit is surrounded
by an attracting invariant 3-circle, which grows when moving down in region 7.
”Curve” v5: Moving from region 6 upwards through -5, we conjecture that the
curve I' is destroyed shortly before it collides with 0A(c0). Indeed, when moving
upwards within region 6, I' increases in size, and approaches the critical point.
Here T looses its smoothness, and conjecturally also its invertibility, see Figure 6.
We conjecture that the resulting “chaotic” set eventually collides with 0A(oc0). At
that time the critical point could theoretically escape to oo, and render A(oco)¢

disconnected (with infinitely many connected components).

Figure 7 shows in more detail the loss of smoothness, and conjecturally quasiperi-
odic motion, of I'; it shows features similar to those discussed in [6], which are
thought to be caused by heteroclinic tangencies of saddles on the invariant “cir-
cle” in resonance. The “chaotic” set is still attracting. To our best knowledge, the
transition from -y3 to 75 is an open problem.

Curve y5: When entering region 5 from region 7 one passes through s, which is a
curve of Neimarck-Sacker bifurcations (possibly at resonance), at which a triple
of invariant attracting period 3 curves merges into a period 3 orbit, changing this
orbit from repelling to attracting.

“Curve” y7: Moving down from region 7 through 7, we conjecture that the 3-
circle of region 7 is destroyed in a collision with the critical point, similar to the
bifurcation on 5.
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FIGURE 6. The Neimarck-Sacker circle I’ for « = 1.1 and (a finite number of)
its preimages under f, at the indicated parameter points, near 5. In the top left
diagram the Neimarck-Sacker circle — the big closed curve just above the critical

point — seems to be intact, that is, the parameter point is below ~s.

The top

right diagram is very close to the merging point, while in the bottom diagrams
the curve has merged with its preimages. The dynamics on the resulting curve is

angle doubling.

“Curve” vg: (See Figure 4.) This curve actually is a region which is exponentially
narrow with respect to the distance to the Bogdanov-Takens point, correspond-
ing to a heteroclinic tangle in which the 3-circle created in the Neimarck-Sacker
bifurcation at 7g is destroyed. This bifurcation is similar to the one on ~s.

The disappearance of the Neimarck-Sacker circle in a clash with its preimages and the
Julia set has an analogue in the holomorphic case @ = 1. In this case, if ¢ is a parameter
point on the boundary of the main cardioid satisfying a Diophantine condition, then the
map f1. has a Siegel disk, consisting of invariant closed curves that wind around the
fixed point p, and the boundary of the Siegel disk contains the critical point, cf. [15].
Let us consider a curve in the parameter plane passing transversally through the main
cardioid at such a Diophantine point. In the resulting three dimensional combined phase-
parameter space, the Siegel disk separates two regions where the fixed point p is attracting
or repelling, respectively. We conjecture that this separation persists under the nonanalytic
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FIGURE 7. Zoom-in in Figure 6 (i.e., & = 1.1) near the critical point, indicated by
*, shows the destruction of the attracting Neimarck-Sacker circle T" as it approaches
the critical point.

perturbation, resulting in a skewed Siegel disk, that is, with a single invariant circle for
every parameter point on the curve on one side of the main cardioid.

4. THE 1:3 BIFURCATION DIAGRAM, FOR « < 1.

In this section we analyse the bifurcations of f,. for @« < 1 but close to 1, near the
1:3 resonance point. A bifurcation diagram for o = 0.9 is displayed in Figure 8. All
bifurcation curves are computed numerically by AUTO [10, 11], except for 72, 75, v7 and
~9. The existence of these four follows from the dynamical properties of the map. In fact,
we expect Y2, V5, ¥r and 9 to correspond to narrow regions rather than curves.

The bifurcation diagram is organized by the 1:3 resonance point and four other codimen-
sion two points. Based on our numerical explorations we classify two of them as cusps,
and the other two as Bogdanov-Takens points. The coding of cusps and Bogdanov-Takens
points is as in Section 3.

The nine curves v;, 1 = 1,...,9 divide the parameter domain in 12 regions. We describe
the dynamics in these regions, and the transitions from one region to another, one by one.
We note that there are four small regions in the parameter plane, near the right Bogdanov-
Takens point, where we do not show a phase portrait. The reason is that the dynamics in
these regions is the same as in regions 4, 5, 6 and 7, except that the order of two unrelated
Neimarck-Sacker bifurcations is reversed. Moreover, the dynamics of regions 10, 11 and
12 is similar to the dynamics in the corresponding regions to the right of the central part
of the bifurcation diagram, and hence the latter trio will not be discussed. Finally, there
is a very small unlabeled region bounded by =1, 2 and 9, that will be discussed together
with the curve g, see below.
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A sink
Bl source

X saddle

— stable manifold

- unstable manifold

FIGURE 8. Bifurcation diagram and phase portraits of the unimodal map near
the 1:3 resonance point, for & = 0.9. Phase portraits are located at the indicated
parameter points. The role of p, p' and ¢y is as in Figure 3. The dynamics is
explained in Section 4. The solid curves in the bifurcation diagram are computed
by a continuation method, the dashed ones are conjectured. Continued in the next
figure.

Figures 8 and 9 show a phase portrait for each region, computed by DsTool [3, 18]. In the
phase portraits, dots correspond to orbits, while solid and dashed curves correspond to
stable and unstable manifolds, respectively. We note that at each parameter point there
exists a repelling fixed point, p’ and a repelling period three orbit, that are not involved
in any of the bifurcations we describe, and are in fact located on the boundary of A(oc).
Consequently, these periodic points are ignored in the sequel.

Region 1: The map has an attracting fixed point (attracting the critical point) and
a repelling period three orbit.



14

H. BRUIN & M. VAN NOORT

8: ¢ =—0.108 + 0.61¢ 9: c=—0.11 4 0.615¢ 10: ¢ = —0.113 + 0.593¢

]

e
) x.\/

o
.

12: ¢ = —0.113 4+ 0.5965¢

. 11: ¢ = —0.113 4 0.595i

Legend phase portraits: ) U

A sink . Y ==y

B source . g ( \) ‘ @/ .
) B N

X saddle o (

e

stable manifold
- unstable manifold

o
08

FIGURE 9. Phase portraits of the unimodal map near the 1:3 resonance point,
for a = 0.9. Continued from the previous figure.

Region 2: Apart from the attracting fixed point there are two repelling period three

orbits and one period three saddle. The unstable manifolds of each saddle point
(both) go to the fixed point, while the stable manifolds converge to two period
three points.

Curve ~;: This is a curve of period three saddle-source bifurcations, consisting of

two smooth branches, joining at the lower cusp point and ending at the Bogdanov-
Takens points. Going from region 1 to region 2, a period three saddle and source
are created. The same bifurcation occurs on y; between regions 10 and 3, 10 and
2,11 and 4, 12 and 5, or 9 and 6. On the left branch of 7; the saddle orbit collides
with one of the period three repellers present in region 2, while on the right branch
it collides with the other, which necessitates the cusp in between.

Region 3: The attracting fixed point is surrounded by a repelling invariant circle.

This circle either has irrational rotation number or it is at resonance, in which
case the dynamics consists of a ring of saddle-source connections. Further there
are two repelling and one saddle period three orbit. The stable manifolds of the
saddles converge to the invariant circle and one of the period three repellers, while
the unstable manifolds diverge. The critical orbit diverges to oo, rendering 0 A(oo)
disconnected.

“Curve” v,: Between regions 2 and 3 a heteroclinic tangle corresponding to the

period three saddle exists in a narrow domain indicated by the curve 5. On the
boundaries of the domain the invariant manifolds of the saddles are tangent, while
they intersect transversally in the interior. By this mechanism an invariant circle
is created when traversing -y into region 3. The region indicated by v will be
pinched at and tangent to the 1:3 resonance point on 3.

Region 4: A repelling fixed point is surrounded by a period three saddle orbit and

two period three repellers. The unstable manifolds of the saddles escape to oo,
while the stable manifolds go to the fixed point or to one triple of the period 3
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repellers. When moving from left to right in region 4, the latter stable manifolds
switch from one set of repellers to the other. We call this process a stable manifold
switch.

The critical orbit tends also to co, except when 0 lies on the stable manifold of
the period 3 saddle orbit. This indeed happens, as numerical evidence shows, in a
more or less vertical curve, near Re(c) = —0.107, that crosses regions 4, ..., 8.

Curve ~3: Traversing y3 from region 3 into region 4 or from region 10 into 11, the
invariant circle is destroyed in a Neimarck-Sacker bifurcation at the fixed point.
Going directly from region 2 to region 4 through the 1:3 resonance point, the period
three saddle points pass through the fixed point, changing the stability type of the
latter.

Region 5: The repelling fixed point is encircled by 3 period three orbits, one re-
pelling, one attracting and one of saddle type. The attracting period three points
are surrounded by repelling invariant 3-circles. The unstable manifolds of the sad-
dles diverge, while the stable ones go to the repelling fixed and, depending on
whether ¢ belongs to the left or right side of region 5, to the period 3 repellers
or the period 3 invariant circles. The critical orbit diverges to co, except when 0
belongs to the stable manifold of the period 3 saddle orbit.

Curve 7y4: Crossing this curve from region 4 into 5 or from region 11 into 12, a
Neimarck-Sacker bifurcation occurs at one of the (in the latter case, the only)
period three repellers.

Region 6: There is one repelling, one attracting and one saddle period three orbit,
as well as a repelling fixed point, but the period 3 circle from region 5 no longer
exists. The critical point is attracted to the period 3 sink, except when it belongs
to the stable manifold of the period 3 saddle orbit.

“Curve” v5: Going from region 5 to 6, or from 12 to 9, the period 3 circle is de-
stroyed. Based on numerical results and bifurcation theory for Bogdanov-Takens
points of maps, we conjecture that near the (right hand) Bogdanov-Takens point
there exists a region where the invariant manifolds of the three period three sad-
dles form a heteroclinic tangle. This region, indicated by s, is tangent to the
curve of saddle-nodes at the Bogdanov-Takens point, and is exponentially narrow
with respect to the distance to this point. On the boundaries of this region the
manifolds are tangent. When approaching 5 from region 5, the 3-circle grows
and collides with the stable manifolds of the saddles. Generically one expects the
invariant circle to loose differentiability before being destroyed, cf. [5].

We conjecture that further away from the Bogdanov-Takens point (e.g. left
from the stable manifold switch, when the stable manifold wraps around the other
period 3 source), the 3-circles are destroyed when they come close to the critical
point, see Figure 10.

The bifurcations, and a collision with 9A(co) could be comparable to the sce-
nario proposed for 75 in Figure 4 for the case a = 1.1. However, we observe that
the case @ < 1 has an additional complication (compared to o > 1). Indeed, an
orbit passing through the critical point has two Lyapunov exponents equal to —oo,
whereas an orbit on the repelling Neimarck-Sacker circle has one positive and one
zero exponent. This implies that the positive exponent has to pass through zero
before the invariant circle clashes with the critical point, probably leading to a loss
of hyperbolicity (of the invariant circle).
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FIGURE 10. Destruction on s of repelling period 3 Neimarck-Sacker circles close
to the critical point, for & = 0.9. In addition to the (destroyed) 3-circle directly
above the critical point (marked *), some preimages under f;?c of the Neimarck-
Sacker circle are shown. The other two invariant 3-circles are not displayed for
clarity. The left diagram is situated below 5. In the right diagram it seems that
the 3-circle is broken. We conjecture it lost its hyperbolicity. At ¢ = —0.11+0.5964
(not displayed) the circle has disappeared completely.

Region 7: There is a repelling fixed point, and two attracting and one saddle period
3 orbit. One of the attracting orbits is surrounded by a repelling 3-circle. The
critical orbit converges to the period 3 sinks without invariant circles, except when
it lies on the stable manifold of the period 3 saddle orbit.

Curve 75: Going from region 6 to region 7, the (unique) repelling period 3 orbit un-
dergoes a Neimarck-Sacker bifurcation, creating a repelling 3-circle and stabilizing
the periodic orbit.

Region 8: A repelling fixed point is accompanied by two period 3 attractors, as well
as a period three saddle orbit. The critical orbit is attracted to one of the period
3 attractors, except at the stable manifold switch. No repelling 3-circle exists.

“Curve” v7: Traversing from region 7 into region 8, the 3-circle created at ~g is de-
stroyed. Near the (left-hand) Bogdanov-Takens point this happens in a heteroclinic
tangle. The dynamics is very much like in the case of -5, including the “collision”
of the period 3 Neimarck-Sacker circles to the right of the stable manifold switch.

Region 9: In this region, a repelling fixed point coexists with an attracting period
3 orbit, which attracts the critical orbit.

Curve v3: Between regions 8 and 9 a saddle-sink bifurcation occurs, destroying one
period three saddle and one of the period three sink orbits. The cusp point can
be explained in the same way as the one on ~;.

Region 10: An attracting fixed point is surrounded by a repelling invariant circle
and a repelling period three orbit. The critical orbit escapes to 0o, the set dA(o0)
is disconnected and contains the invariant circle and all its preimages.
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“Curve” vg: Crossing “curve” or rather narrow region g from region 10 into region
1, we conjecture that an invariant circle approaches the critical point and disin-
tegrates, cf. Figure 6 with reversed stability. The remainder of the circle collides
with 0A(c0).

Traversing region 10 into region 2, this circle surrounds the triangle of period 3
saddles, while it is inside this triangle when we go from region 10 to region 3. Going
from region 3 to 2, one of the stable manifolds of the period three saddle crosses
both unstable manifolds, see Figure 11 (cf. also [16]). In the first crossing the
invariant circle inside the triangle is destroyed, while the last crossing corresponds
to the birth of the circle outside the triangle.

Region 11: A repelling fixed point coexists with a repelling period three orbit. The
critical orbit diverges. There is no invariant circle.

Region 12: In this region the fixed point is repelling, and there is an attracting
period three orbit encircled by a repelling invariant 3-circle. The critical orbit
diverges.

5. ARNOL'D TONGUES

For the conformal map fi. : z — 2% + ¢, the parameter regions for which f;. has a
hyperbolically attracting periodic orbit are known as hyperbolic components. These are
topological disks, containing a center at which parameter the critical point itself is a
superattracting periodic point, cf. [9, Theorem VIII 2.1] or [20]. From the main cardioid
(the hyperbolic component of period 1), infinitely many hyperbolic components emerge,
namely at those parameters ¢ for which the multiplier of the central fixed point is a root
of unity. All these bifurcations are so-called Leau-Fatou-bifurcations.

For the nonconformal case, the central fixed point p looses stability in a Neimarck-Sacker
bifurcation, and Arnol’d tongues in the parameter space that indicate that the Neimarck-
Sacker circle is in resonance can be viewed as the continuation of the hyperbolic compo-
nents of the Mandelbrot set M directly attached to the main cardioid. A simple counting
argument gives, for generic «, that these Arnol’d tongues too should contain a center, i.e.,
a parameter for which the critical point 0 is periodic with the period of the resonance.

Lemma 1. The family fo(2) = r?@e*% + ¢ (with z = re'®) has for generic choices of
a > 1/2 at least 2"~ parameters ¢ € C such that 0 is a super-attracting point of (not
necessarily prime-)period n. If o = 1, then there are ezactly 2" ! such parameters.

Proof. Consider the map G, : ¢ — fg;l(c). Obviously G, is continuous, and it maps, for
large R, the circle {|c| = R} to a closed curve of radius ~# R2»"™" and winding number
2"~1 with respect to the origin. Therefore, G,, maps the disk {|c|] < R} in a 2" !-fold
covering fashion onto a neighborhood of the origin. Therefore, for generic a, G, *(0)

consists of at least 2"~! points ¢, and for each such c, ac(0)=0. If « = 1, then
fle(z) =zforz=0 (4)

is a polynomial of degree 2" ! over ¢, hence there are no more than 2" ! solutions. The
only possibility that less than 2" ! solutions would occur is when they have multiple
multiplicity. For @ = 1, this does not occur, cf. [9, Theorem VIII 2.1]. For a short
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c=—0.1095+0.59¢, a=0.9 Zoom-in at ¢ = —0.1095 + 0.5939:

Zoom-in at ¢ = —0.1095 + 0.59: Zoom in at ¢ = —0.1095 + 0.58967

FIGURE 11. Disappearance of a small and appearance of a large invariant circle
in a double homoclinic bifurcation. The stable manifold (solid) of the period three
saddle orbit crosses both parts of the unstable manifold (dashed).

Top left: Global picture. Top right: Before the the crossings. The invariant circle
exists inside the triangle. Bottom left: After the first crossing. No invariant circle
exists. Bottom right: After both crossings. A large invariant circle exists.

argument consider (4) over the field Zo[c]. This equation becomes ¢~ + 2"~ + ---

+
¢ + ¢ = 0, which has no double zeroes over Zs]c|. O

The Neimarck-Sacker circle at parameters in region 3 of Figure 3 displays resonances,
at least for some parameters. We conjecture that these correspond to Arnol’d tongues
depicted schematically in Figure 12. The cuspidal tongues, widening to bulbs, can also
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FiGURE 12. Left: Schematic picture of bifurcation curves and Arnol’d
tongues near the 1:3 resonance, for « = 1.1. The “curves” 7j,...7s are
as in Figure 3, 77 is the locus where a period 3 Neimarck-Sacker circle
(dis)appears due to the critical point and ~g is the locus where a period 3
Neimarck-Sacker circle (dis)appears in a homoclinic tangle. Right: Com-
putation of rotation numbers of the Neimarck-Sacker circle for parame-
ter ¢ along the thick arc in the left picture: Rec € [—0.136,—0.127] and
Imc = 0.6898. The bulb on top of each resonance tongue is supposed to
contain a parameter where zero is periodic, and hence the narrow region
75 should intersect all such bulbs.

been seen in black at the upper rim of the main cardiod in Figure 1, at least for fairly
small resonances. For the a-parameters that we have looked at, and c-parameters near
the 1:3 resonance point, the tongues are so small, and of such high period, that they are
difficult to pinpoint. However, estimates of the rotation number of the Neimarck-Sacker
circle show that rational rotation numbers, and hence resonances, do occur in region 3.
(The rotation numbers in Figure 12 are computed by estimating the ‘slope’, by a least
square algorithm, of the set {(i, F'(z) — z);i = 0,1,..., N} for N = 1000 and F the
approximation of the lift of the action on the Neimarck-Sacker circle. This algorithm has
a proven error of O(1/N?), [7].) In the right half of region 3, these rotation numbers vary
between 0.331... and 0.333..., so the difference with the 1:3 resonance is of O(1073).
This corresponds to resonances of denominator O(102).

For Arnol’d tongues emerging at the lower boundary of region 3 (a subset of curve s),
the Neimarck-Sacker circle is shielded off from the critical orbit by the saddle-source
connections, see phase portrait 3 of Figure 3. Therefore no such Arnol’d tongue can have its
center within region 3. Assuming each tongue is connected, it has to be elongated, curving
sideways and crossing the saddle node curve ; into region 6. It is this phenomenon that
we illustrate in Figure 12. The Arnol’d tongues are schematic. As far as our numerical
evidence goes, it agrees with the observations made by Peckham, see [22, Figure 4f and
explanations].

6. A MODEL FOR THE HOLOMORPHIC CASE

Since the family (1) is a perturbation of a holomorphic family, it is natural to ask how the
bifurcations presented in this paper behave in the limit to the holomorphic case (o — 1).
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In this section we present a holomorphic bifurcation analysis to enable a comparison and
to demonstrate how the holomorphic bifurcation diagram (see Figure 13) unfolds to the
bifurcation diagrams in Figures 3, 8 and 9. To this end, we derive a model vector field
that describes the dynamics of the holomorphic quadratic map near the 1:3 resonance,
following the approach of Takens [26]. To be precise, the time-1 flow of this vector field,
composed with a rigid rotation, will be conjugate to a perturbation of the map. This
perturbation is small near the 1:3 resonance point in the sense that it is of high order in
the distance to this point in the combined phase-parameter space. Hence the vector field
gives a good qualitative description of the local dynamics, in particular of the relevant
periodic points and local bifurcations of the map. The advantage of the model is that
such a planar vector field is much easier to study than a planar map, both theoretically
and numerically. A bifurcation analysis of the vector field and a discussion of the relation
with the dynamics of the map is given in the second part of this section.

The reader is encouraged to compare this analysis with the well-known approaches of
Voronin [27] and Camacho [8], which however focus on the phase- rather than parameter
space, and give less attention to multipliers close to e2mi/3,

The model is obtained in three steps. First, the 1:3 resonance point is translated to the
origin. At the resonance point, the linear part of the map is equivariant with respect
to a rotation S over angle 27/3. This permits a normalization of the map, taking it to
S-equivariant form, of arbitrarily high order in the parameters and phase variables. This
map will be of the form

z+ Soh(z) , where h is near-identity: h(z) = z + h.o.t.

In the final step we obtain an S-equivariant vector field X such that X' = h. Here X?
denotes the flow of X over time ¢. Thus near the 1:3 resonance point, the original map
fa,c 1s locally conjugate to S o X1,

A vector field treatment of the nonholomorphic case is in principle possible, yet will need
many more low order terms in the normal form h(z, z), see below. Hence we reserve this
issue for future research.

6.1. Derivation of the model vector field. Recall that the holomorphic quadratic
map is given by f.(u) = u? + ¢, having a 1:3 resonance point (the organizing center) at
U = Uy 1= —i + % 3, c=c¢y = —% + %\/ﬁ Translating the 1:3 resonance point to the
origin is a straightforward computation, and we summarize the result without proof in the
following lemma.

Lemma 2. Let ¢ : C — C be a continuous solution of the equation

o()? + e Bp(u) — p(p) +p =0

satisfying p(0) = 0. Then ¢ is uniquely defined, holomorphic and invertible on an open
neighborhood of 0 € C. By the invertible, holomorphic transformation

(u,c) = (2,A) := (u—ug — p(c — co), 2623 p(c — ),

defined on an open neighborhood of (ug,co) € C x C, and mapping onto an open neigh-
borhood of (0,0) € C x C, the map f. is (locally) conjugate to the map g = gy, given
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by
ga(z) = 23 (14 X) z + 22

Thus we consider the map g near the resonance point (z,A) = (0,0). At A =0, the linear
part of g is given by Sz, where § = e2mi/3 ig a rotation over one third of a full circle. Thus
this linear part is S-equivariant, and a standard normal form theorem now shows that g
can be made S-equivariant up to any order in z by applying near-identity transformations.
To be precise, we have the following theorem, compare Appendix A for a proof.

Theorem 1. Let N € N, N > 1. Then there exists a holomorphic transformation ¥y :
C — C such that

YN «g =gy + O(2") , where S,gn = gn.
The map ¢y depends on \ and is near-identity in the sense that 1y (z) = z + O(2?).

A straightforward normal form calculation shows that, for any N > 10 and any M > 1,
there exists a transformation 4 = 9y 2 of the above type, such that 9,g(z) = e>/3h(z2),
where

h(z) = z+Xz+aN)zt +b(N)z" + A0, (2) + O(zY) , with

a()) = g+%ﬁ+0(x),
b(A) = —%—4—%\/?:+0(/\).

The holomorphic function r is S-equivariant.

The map h is analytic and near-identity, and hence there exists a vector field X such that
h equals the flow of X over time 1: X! = h, compare Takens [26]. This vector field is of
the form

Xu(2) = pz + a(p)z* + b(u)z" + 0(z"),
where = log (1 + ) = XA + O()\?) is a small parameter. We refer to Appendix B for

details on the computation. Applying a rotation z — a'/3z to remove the coefficient in
front of the z* term, we obtain the vector field

X, (2) = pz + 24 + e)2 + 0(19),
In this formula the new phase variable is again called z for simplicity, and

) = bip) @) ? = — 0 — 2B+ Ofw).

6.2. Bifurcation analysis. In a neighborhood of (z,u) = (0,0), the vector field X, has
at most four equilibria z = z;, 7 = 0,1, 2, 3, given by

1
20 = 0 and Zj = _W <1 + gc(O)M + O(M2)> ’ .7 = 172a37

where the multivaluedness of the latter expression yields three different equilibria for
i # 0. The equilibrium z = 0 is stable for Re() < 0, and unstable for Re(u) > 0.
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FIGURE 13. Bifurcation diagram and phase portraits of the vector field that
models the holomorphic map near the 1:3 resonance point. Phase portraits are
located at the indicated parameter points. The dynamics is explained in Section 6.

(We do not distinguish between a node or a focus.) The other equilibria are stable for
Re(u) > u(Im(p)) and unstable for Re(u) < u(Im(p)), where

u(t) = —Re(c(0)) + O(t) = %ﬁ + O,

Thus there are three regions (labeled 1 — 3) with qualitatively different dynamics in phase
space, separated by two curves y;: Re(y) = 0 and 72: Re(s) = u(Im(p)). A bifurcation
diagram with phase portraits is shown in Figure 13. We note that all phase portraits
are S-equivariant. To compute this picture we actually use the vector field X u(z) =
pz + z* +¢(0)27, that equals X, apart from a small remainder of order O(uz", 2'0).
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In region 1 the origin is a sink and the other three equilibria are sources. Traversing
the curve ~y; into region 2, zy destabilizes, and becomes a source. On the curve ; for
u # 0, the origin is a center (i.e., it has purely imaginary eigenvalues), surrounded by a
continuous family of closed orbits (this latter remark follows from Schwarz’ lemma).

Passing through the curve 7, from region 2 into region 3, the equilibria 2, 2o and zj3
stabilize. On 7, for u # 0 these equilibria are centers and surrounded by invariant closed
curves.

Going directly from region 1 to region 3 through p = 0 all equilibria coincide for y = 0
and change stability at the same point. Thus, at 4 = O there is a single degenerate
equilibrium, having three attracting and three expanding directions (the figure shows one
of each). These correspond to the Leau-Fatou petals known from parabolic fixed points
for conformal maps. In general, the number of (attracting or repelling) petals could be
any multiple of three, depending on the order of degeneracy. Since each cycle of petals
contains a critical point, and the quadratic family has only one critical point in C, there
can be only three. By continuity, the same is true for a =~ 1.

For the original map g, (or f.) this means the following. It is conjugate to S o X' up to
a small perturbation, and hence the nonzero equilibria of X correspond to a period three
orbit of g, while the equilibrium at z = 0 is just a fixed point. The local bifurcations of
the vector field are the same as those of the map, since they are determined completely
by the low order terms in z and p. In this sense, the vector field gives a good description
of the local dynamics of the map, i.e., for small z and p.

Regions 1 and 3 correspond to the main cardioid and the (upper) period three bulb of the
Mandelbrot set, respectively, with a single point of contact 4 = 0 at the 1:3 resonance.
The degenerate vector field at this point corresponds to a Fatou flower. Arbitrarily close to
the 1:3 resonance there are other resonance points on the boundary of the main cardioid,
but they are not “seen” by the vector field since it is tuned to the 1:3 resonance (that is,
only points of period three correspond to equilibria of the vector field).

To allow a better comparison with the nonholomorphic bifurcation analysis, let us add
a table indicating which curves and regions correspond to which in the three bifurcation
diagrams.

Figure 3 Figures 8 and 9 Figure 13
72 73 "

Y6 Y4 U V2

region 1 region 1 region 1
region 6 U 7 region 11 region 2
region 5 region 9 region 3

APPENDIX A. A NORMAL FORM THEOREM

In this appendix we prove that the map g : z — e27%/3 (1+ )) 2z + 22 is locally conjugate
to a map of the form

z > 23 (z 4+ Xz + a(N)2* +b(N)z2") + AM207,(2) + O(2N), (5)
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for any M > 1 and N > 10. For a detailed statement, see Section 6. First we show that
any term a(\)z* in the expansion of g can be transformed away, provided that k — 1 is
not a multiple of 3. Then we show that the remaining terms can be brought to the given
form, i.e., that they are of order M in ), except for the terms z* and z7.

Consider a map of the form
F(2) =3 (1 +X) 2+ pa(2) + a(A)2™ + O (™), (6)

where m — 1 mod 3 # 0 and p) is S-equivariant, i.e.,

)= Y e
j>13j<m

Note that the map g is of this form, with p =0, m =2 and a = 1.

We want to kill the term a(A)z™. Consider a local holomorphic transformation of the form
P(z) = z+ d(A)z™. Then (recalling that S is the rotation over 27/3)

Yoforp l(z) = e2m/3 (1+X) z+pa(z) +a(X) 2"
+ d) (14 X)™8™ — (14 XN)8) 2™ 4+ O(z™H).

Since (1 +X)™S™ — (14+X)S =8™ — S+ O(X) # 0 for A sufficiently small, we can take

a(})
(1+X)m8m — (14 \)S’

d()) = —

and hence
Po foyp(2) = T (14 ) 2+ pa(2) + O(="),
which is again a map of the form (6), for a larger value of m.

Starting with the map g and proceeding inductively with respect to m, we can thus kill
all non-S-equivariant terms in g, resulting in a map of the form

F(2) = ™3 (14 X) 2+ a(M)2* +b(\) 2" + pa(z) + O(=N),

where px(2) = > 53 3501<n ¢j(A)z%+1 A direct calculation shows that a(0) # 0 in our
case.

It is to be shown that f is conjugate to a map of the same form where all the c;’s are of
order M in A. We proceed by a double induction, in the outer loop with respect to the
order in A, and in the inner one with respect to the order in z, that is, with respect to j.
Thus, let us assume that ¢; is of order m 4+ 1 in X for all j € {3,4,...,n — 1} (n > 3),
while ¢; is only of order m for j > n. Let 1 be the parameter-dependent transformation

Y(z) = z +d(N)P T,
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then a tedious but straightforward calculation shows that

pofoy™(2) 260/3 (14 X) 2 + a(A)2* + b(A)2T

2

+ Cj()\)z?’j-l—l + (cn—lo\) + d(/\)q()\)) z3(n—1)+1
j=3

¥ (cn — da(N)d(\) + (3n — 2)(1 + )\)3(”_1)a()\)d()\)) A

+ 3N+ A2 () + 0(2N),
j>n

S o

where r is some holomorphic function, and

q()\) — e27ri/3(1 + A) ((1 + A)?’(n—l) o 1) .

Since a(0) # 0 and n > 3, we can choose (for sufficiently small \)

) = - (Bn—2)(1+ )\)7;("_1) —4) a(X) =00,

such that the transformed map becomes

poforpt(z) = (1+X)z+aN)2' +bN)2" + D &N+ 0(=").
j=3

Here ¢j =¢j for 3 < j<n—1, é =0, and ¢; = ¢j + O(A™) for j > n, absorbing terms
of ry. From ¢()\) = O()) it follows that &,_; = co_1 + d(N)g(X) = O(A™*1). Hence this
transformation takes us one step further in the induction process.

To conclude, we note that a final number of holomorphic local transformations is needed to
obtain the final form (5). The coefficients a(0) and b(0) as stated in Section 6 are obtained
by a straightforward calculation. Applying infinitely many transformations, one can push
the numbers M and N to infinity. However, the resulting composed transformation is
in general not analytic, and an infinitely flat remainder will remain in (5). For a local
bifurcation analysis, finite values of M and N are sufficient.

APPENDIX B. THE ANALYTIC VECTOR FIELD

Given the near-identity map h defined in Section 6, we show how to obtain a vector field
X such that X! = h. Recall that A is of the form

h(z) = z + Az 4+ a(N)2* + b(\) 2" + MM 207, (2) + O(2Y),
for some functions a, b and r. Consider a vector field X of the form
Xu(2) = pz + @(uw)z* + b(u)z" + 0(2"7),
where p is some small parameter. We want to determine & and b such that X' = h. The
time-1 flow X! is given by
1

Xt = Z HXn , where

X1 = X(z),

X, = X(Xp-1)forn>1.
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Here X is considered as a directional derivative, and z denotes the coordinate function on
z. Thus X, is the n-fold action of X on z: X,, = XX ... X(z), and the expansion simply
expresses the fact that X! is the exponential of X.

Using this formula, a straightforward calculation shows that
X! = etz +alu)e* + (b(u) +4a%(n)) 27 + Oz, 2.
Thus we should take y = log (1 + )), and &, b have to satisfy

i 3
a(0) = a(O):§+%\/§,
142 34:

b(0) = b(o)—4a2(0)=—7—T 3.

APPENDIX C. EXTERNAL RAYS

In this appendix we briefly explain how to construct external rays in the basin A(occ) of
the point at infinity, i.e., we construct a bijection h : A(co) — {2z ; |z| > 1} such that
ho fac = h*(2). The external ray of external angle 9 is the curve Ry := h=!({re?™™ ; r >

1}).

Assume that ¢ € M. First extend f, . to a two-fold cover of the Riemann sphere C.
The point oo is super-attracting and slight adaptations of standard approaches yields a
conjugacy to the map z — 22 on C. Indeed, define the Green function as

G(2) = (log lim |£2(=)"/)")",

for k = log2/log(2a). Then G(z) is well defined om A(co), takes values in (0, 00) and
satisfies G(f(z)) = 2G(z). The level curves Gx = {z | G(z) = K} are the Green lines.
They are topological circles, and 0A(o0) = limg o Gk is called the Caratheodory loop.

For large K, the region Ax := {z | K < G(z) < 2K} is an annulus, and the subsets
Ak, = {2z € Ak | Re f/(z) > 0 for 0 < j < i} are nested (half-open) topological disks
whose intersection Cx = N;>oAk,; connects the two boundary curves of Ax. Any small
disk D = B(z;¢) for |z| large expands under iteration of f, . to contain a large annular
region around oo. Therefore, if @D N Ck contains at least three points, then at least one
arc H C 0D connecting two of those points will not remain in {z ; Re(z) > 0}. Therefore
Ck is an arc. The union Ry = Ug~oCk is the external ray at angle 0.

As ¢ € M, f! has two disjoint inverse branches on A(cc). Based on Ry, we find other
external rays, e.g., R;/; = f1(Ro)\ Ro and f‘l(Rl/Q) = Ry/4URg/4, etc. The dyadic rays
give a lamination of A(oc) and A(oo)\{dyadic rays} has empty interior, because, as before,
any open ball in this interior expands to contain an annular region around co. Therefore,
by dyadic approximation, we can find the external ray of any angle ¥ € [0,1) and all the
rays are indeed the bijective copies of (0,1). The map h(z) = exp(G(z)+27i ext. angle(z))
is the required conjugacy satisfying h o f(z) = (h(z))?.

If the external ray Ry has a single landing point, i.e., lim,~4 h~'(r) consist of a single
point, then this point is fixed; we call it p’. On the other hand, if dA(c0) contains a
hyperbolically repelling fixed point, then an external ray is indeed expected to land at it.
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At first glance, the dynamics on the “Caratheodory loop” dA(oo) should be considered
as a factor map of the angle doubling map z — 22 on {|z| = 1}. At certain regions near
the 1:3-resonance, for instance in region 5 of Figure 3 or region 9 of Figure 8, the factor
map h : {|z| = 1} — 9A(co) squeezes the period 3 orbit {*™/7, e*™i/7 87/} to a single
(central) fixed point p of fq ¢, while the preimage triples of the period 3 orbit are squeezed
to preimages of p. It is also possible that the rays of these angles accumulate on more
complicated continua, such as invariant circles carrying an (ir)rational rotation, cf. region
10 of Figure 8.

Equally standard geometric arguments show that K, consists of infinitely many compo-
nents if ¢ ¢ M, or equivalently 0 € A(co). Note however, that due to the occurrence of
saddle points and Neimarck-Sacker circles, these components need not be singletons, so
K. need not be a Cantor set.
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